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Abstract

The discrete cosine transform (DCT) offers superior energy compaction properties for a large class of functions and
has been employed as a standard tool in many signal and image processing applications. However, it suffers from
spurious behavior in the vicinity of edge discontinuities in piecewise smooth signals. To leverage the sparse
representation provided by the DCT, in this article, we derive a framework for the inverse polynomial reconstruction in
the DCT expansion. It yields the expansion of a piecewise smooth signal in terms of polynomial coefficients, obtained
from the DCT representation of the same signal. Taking advantage of this framework, we show that it is feasible to
recover piecewise smooth signals from a relatively small number of DCT coefficients with high accuracy. Furthermore,
automatic methods based on minimum description length principle and cross-validation are devised to select the
polynomial orders, as a requirement of the inverse polynomial reconstruction method in practical applications. The
developed framework can considerably enhance the performance of the DCT in sparse representation of piecewise
smooth signals. Numerical results show that denoising and image approximation algorithms based on the proposed
framework indicate significant improvements over wavelet counterparts for this class of signals.

Keywords: Sparse representation; Inverse polynomial reconstruction; Discrete cosine transform; Linear
approximation; Denoising

1 Introduction
Many signal processing tasks take advantage of trans-
forming the signal of interest into suitable transform
domain where relevant information is concentrated into
a small set of coefficients. This leads to so-called sparse
representations, which are essential in applications such
as approximation, compression [1], pattern recognition
[2], and denoising [3]. Popular choices of representa-
tion bases and corresponding transforms have been the
Fourier transform, the discrete cosine transform (DCT)
[4], the wavelet transform [1], and more recent devel-
opments, such as curvelets [5,6], and other lets [1,7,8].
Among those transforms, the Fourier transform has been
playing an important role, as the most classical one, for
the conceptual interpretation of the transform domain
coefficients in terms of frequency and spectrum.
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The choice of suitable basis for achieving a sparse signal
representation depends on the type of signal of interest,
and its characteristics such as regularity and smoothness.
In many cases, however, the type of the signal is not
clear in advance and standard harmonic transformations
(Fourier or cosine transform) are used to explore signal’s
peculiarities.While harmonic transformations are good in
terms of decorrelation and energy compaction for a large
class of signals, they might also cause reconstruction arti-
facts. This effect is especially pronounced for the class
of piecewise smooth signals, i.e. signals having smooth
regions separated by (jump) discontinuities. For such sig-
nals, harmonic transformations generate spurious oscilla-
tions, in the vicinity of discontinuities at the reconstructed
signals, commonly referred to as Gibbs phenomenon. The
Gibbs phenomenon is the effect of using partial harmonic
series for the reconstruction of a signal with discontinu-
ities, where the overshoots and undershoots around the
discontinuity do not disappear no matter how long the
series is [9].
The problem of mitigating the Gibbs phenomenon

has been thoroughly studied for the case of Fourier

© 2012 Dadkhahi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Dadkhahi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:133 Page 2 of 23
http://asp.eurasipjournals.com/content/2012/1/133

representation [10,11]. To overcome the Gibbs phe-
nomenon in Fourier series expansion, in [12], a polyno-
mial reconstruction method is proposed that successfully
eliminates the oscillations with high accuracy. This is fea-
sible through re-expanding the signal in a suitably chosen
polynomial basis. In other words, the Fourier represen-
tation of the signal, which includes the Gibbs oscilla-
tions, is re-projected onto a polynomial basis, which is
Gegenbauer polynomials in the case of Fourier series.
Thus, this procedure is referred to as re-projection.
Roughly speaking, the re-projection procedure is a basis

set transformation. The idea of a re-projection method
is to determine the transformation between the two
representations. In the direct method (originally termed
as Gegenbauer reconstruction method in the literature)
this transformation is realized as consecutive projections
of the signal first onto the Fourier series basis and then
onto the space of Gegenbauer polynomials [9,12]. Alter-
natively, the inverse method, also known as inverse poly-
nomial reconstruction method (IPRM), reverses the order
of projections, i.e. projects the signal first onto the poly-
nomial basis and then onto the Fourier space [11,13,14]. It
turns out that these two methods are not equivalent and
the reconstruction procedure using the inverse method is
not only more accurate, but also independent of the poly-
nomial basis [11]. The latter is an important advantage
of the inverse method, since there is no optimal way to
select the parameter of the Gegenbauer polynomials in the
direct method, automatically.
The formulation of IPRM for the case of Fourier series

expansion has been studied in [11,13]. In [14] the exten-
sion of this framework to partial Fourier series expansion
has been considered. Here we follow a similar formulation
as the one given by [13] and take advantage of the results
of [14] to derive the IPRM for the partial DCT expansion,
since DCT has been adopted as a standard tool for signal
and image compression and denoising, due to its excel-
lent decorrelation properties. We specifically concentrate
on the class of piecewise smooth signals where the exact
locations of the discontinuity points are known a priori
or can be estimated with suitable methods. For this class,
we derive a framework for the IPRM in the DCT expan-
sion. Limiting the order of polynomials and assuming the
discontinuity locations are given, it leads to solving a lin-
ear approximation problem. Applying this framework to
both piecewise polynomial and piecewise smooth signals,
we show that it is feasible to reconstruct the signals from
a limited number of DCT coefficients, with high accuracy.
This result can significantly improve the performance of
the DCT in sparse representation of piecewise smooth
signals.
In addition, we consider the problem of selecting the

polynomial orders in IPRM, especially when the signal
is given in the presence of noise. To this end, we use

two model selection methods, namely minimum descrip-
tion length (MDL) [15] and cross-validation (CV) [16,17].
Finally, having been equipped with the DCT-based IPRM
and polynomial order selection methods in IPRM, we will
show that the use of this framework leads to efficient
algorithms for denoising and linear approximation.
The article is organized as follows. In the next section,

the derivation of the inverse method in DCT expan-
sion is presented. In Section 3, we adopt order selection
techniques to determine the polynomial orders in IPRM.
Section 4 focuses on applications, namely, denoising and
approximation. In Section 5, numerical experiments are
presented, where the performance of the DCT-based
IPRM is compared with other methods, especially the
wavelet transform. Conclusions are given in Section 6.

2 DCT-based IPRM
Let f (xn) be the samples of a piecewise smooth signal on a
uniform grid {xn}N−1

n=0 over the interval � =[−1, 1]. Here
we assume that the exact locations of the discontinuities
(edges) are known and we have Ns smooth sub-intervals.
Let �i = {xn}bin=ai indicate the set of grid points of the ith
smooth sub-interval, where {�i}Ns

i=1 is a partition of �.a
Furthermore, assume that ni represents the cardinality of
�i, which is equal to bi − ai + 1. Designating f in each
sub-interval �i by fi, f (xn) can be written as

f (xn) =
Ns∑
i=1

fi(xn). (1)

Note that

fi(xn) =
{
f (xn) xn ∈ �i

0 otherwise.

The Gegenbauer polynomial expansion of fi at the grid
points is given by

fi(xn) =
∞∑

�=0
gi�C

λ
� (Xi(xn)), (2)

where Cλ
� (x) is the Gegenbauer polynomial of order �

with parameter λ (λ > 0), g� are the Gegenbauer polyno-
mial coefficients. Note that since IPRM is independent of
the polynomial basis [13], one may use other polynomial
bases arbitrarily. Here we use Gegenbauer polynomials for
consistency with the literature on IPRM. In addition, Xi
is a linear map defined from {xn}bin=ai to a uniform grid
{yn}ni−1

n=0 over the interval [−1, 1] such that y0 = x0 and
yni−1 = xN−1:

Xi : {xn}bin=ai → {yn}ni−1
n=0 . (3)
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Note that {xn}bin=ai and {yn}ni−1
n=0 are of the same cardi-

nality. Approximating fi with a polynomial of degree mi
yields:

f mi
i (xn) =

mi∑
�=0

gi�C
λ
� (Xi(xn)). (4)

Thus, polynomial approximation of f yields

f m(xn) =
Ns∑
i=1

mi∑
�=0

gi�C
λ
� (Xi(xn)). (5)

On the other hand, the DCT expansion of f (xn) is given
by

f̂k =β[ k]
N−1∑
n=0

f (xn) cos
(

πk
(2n + 1)

2N

)
,

k =0, . . . ,N − 1, (6)

where f̂k are the DCT coefficients. Here we use DCT
type 2, which is the most common form of DCT [4]. The
normalization factors β[ k] are given by

β[ k]=
⎧⎨
⎩

√
1
N k = 0√
2
N k = 1, . . . ,N − 1.

Given the N DCT coefficients {f̂k}N−1
k=0 , the signal f (xn)

is obtained through the inverse DCT expansion as follows:

f (xn) =
N−1∑
k=0

β[ k] f̂k cos
(

πk
(2n + 1)

2N

)
,

n =0, . . . ,N − 1. (7)

Reconstructing the signal using only the first Nd DCT
coefficients results in the signal fNd (xn):

fNd (xn) =
Nd−1∑
k=0

β[ k] f̂k cos
(

πk
(2n + 1)

2N

)
,

n = 0, . . . ,N − 1 (8)

which suffers from the spurious oscillations. Instead,
by substituting f (xn) in Equation 6 with f m(xn) from
Equation 5, we have

f̂k = β[ k]
N−1∑
n=0

Ns∑
i=1

mi∑
�=0

gi�C
λ
� (Xi(xn)) cos

(
πk

(2n + 1)
2N

)
,

k = 0, . . . ,Nd − 1,

= β[ k]
Ns∑
i=1

mi∑
�=0

gi�
bi∑

n=ai
Cλ

� (Xi(xn)) cos
(

πk
(2n + 1)

2N

)
,

k = 0, . . . ,Nd − 1. (9)

By defining the matrixWi for the ith sub-interval as

Wi =[Wi
k�] , k = 0, . . . ,Nd − 1 and � = 0, . . . ,mi,

(10)

with the matrix elementsWi
k� given by

Wi
k� = β[ k]

bi∑
n=ai

Cλ
� (Xi(xn)) cos

(
πk

(2n + 1)
2N

)
, (11)

Equation 9 becomes

f̂k =
Ns∑
i=1

mi∑
�=0

gi�W
i
k�. (12)

This equation can also be written in matrix form as
Ns∑
i=1

Wi.Gi = f̂, (13)

where the vectors Gi and f̂ are

Gi =[ g0, g1, . . . , gmi ] and f̂ =[ f̂0, . . . , f̂Nd−1] . (14)

The constraint
Ns∑
i=1

(1 + mi) ≤ Nd (15)

is necessary, in order for the system in Equation (13) not
to be under-determined [14]. To further simplify the rep-
resentation of Equation (13), we define the matrix W and
vector G as

W =[W1 | . . . | WNs ] , (16)

G =
⎡
⎢⎣

G1

...
GNs

⎤
⎥⎦ .

Thus, Equation (13) can be written as

f̂ = W.G, (17)

which can be solved for the vector of Gegenbauer coeffi-
cients G, through pseudo-inversion ofW

G = W†.f̂. (18)

Equation 18 defines the IPRM for the discrete cosine
transform. In addition to the condition in Equation (15),
since the signal is provided at a finite number of grid
points, an extra set of conditions must be met in order for
the matrixW not to be rank deficient:

1 + mi ≤ ni, i = 1, . . . ,Ns. (19)

This is due to the fact that if a sub-interval �i is chosen
too small and thus the number of grid points in �i is less
than the polynomial order, i.e. 1+mi > ni, the polynomial
coefficients cannot be determined uniquely.
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3 Polynomial order selection
When applying IPRM, assuming that f is a smooth sig-
nal, the higher the order of the polynomial, the more
accurate the reconstruction is. Specifically, if f is a poly-
nomial of degree M, with m ≥ M the reconstruction is
exact. As a consequence, choosing the polynomial order
sufficiently large will result in an accurate reconstruction.
However, one usually seeks the reconstruction of the sig-
nal using as few polynomial coefficients as possible within
an acceptable accuracy (e.g. in approximation problem).
Furthermore, when the signal samples are given in the
presence of noise (e.g. in denoising problem), increasing

the polynomial order causes over-fitting in the recovered
signal. In other words, the reconstructed signal follows the
random fluctuations, which are due to the noise present in
the signal. Therefore, practical implementation of IPRM
inmany applications requires the choice of the polynomial
order. We suggest employing two commonly used model
selection methods, namely MDL and CV, for making such
choices. Both model selection methods attempt to choose
the best estimate, according to a certain criterion, among a
given list ofmodels. In general, this criterion is devised so
as to make a compromise between a measure of goodness
of fit and that of parametric complexity. The two model

Figure 1 Comparison of the performance of different model selection methods at SNR= 10 to 20 dB for: (a) piecewise polynomial signal
f(x), and (b) Heavisine signal.
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selection methods have been chosen as they are known
to provide nearly-unbiased estimates of model parameters
and are effective in avoiding model over-fitting, which is
essential for the proper selection of polynomial orders in
the presence of noise.
In this section, we assume that each model Mj corre-

sponds to a combination of the polynomial orders {mi}Ns
i=1

for different intervals. We further assume that the polyno-
mial order in the ith interval is constrained by an upper
boundMi, i.e.mi ≤ Mi, i ∈ {1, . . . ,Ns}. As such, the num-
ber of polynomial order combinations (or models Mj) to
be chosen from is

∏Ns
i=1Mi.

3.1 Minimum description length
According to MDL principle the best model for a given
data set is the one that compresses the data the most and
produces the shortest code length of the data. Suppose the
noisy values of a piecewise smooth signal f (xn) are given:

yn = f (xn) + εn, n = 1, . . . ,N , (20)

where the errors εn are i.i.d. Gaussian random variables
with zero mean and unknown variance σ 2. The aim is
to select the polynomial orders {m̂i}Ns

i=1 with which IPRM
results in the best estimate (in MDL sense) ŷ = f m̂N of
f . By the Gaussian distribution with unknown variance
assumption, the MDL score of each model is given by [18]

MDL(Mj) = N log
(
RSS
N

)
+ log(N)K ,

where residual sum of squares (RSS) is calculated as fol-
lows:

RSS =
N∑

n=1
(yn − ŷn)2, (21)

and K represents the number of free parameters in the
model. Since in each interval there are mi + 1, i ∈
{1, . . . ,Ns} polynomial coefficients, so is the number of
free parameters. Therefore, the total number of free
parameters in the IPRMproblem is given by

∑Ns
i=1(mi+1).

Subtracting the constant term Ns from the summationb
yields K = ∑Ns

i=1mi. Hence, the MDL score for IPRM can
be written as

MDL(Mj) = N log
(
RSS
N

)
+ log(N)

Ns∑
i=1

mi. (22)

Given a data set, competing models Mj, j ∈
{1, . . . ,∏Ns

i=1Mi} can be ranked according to their MDL
scores, with the one having the lowest MDL being the best
in MDL sense [15].
In addition, if the data is available in terms of DCT coef-

ficients, instead of time domain data points, we can apply
the MDL directly to the DCT coefficients to determine
the polynomial orders. This will lead to the same results

as in the time domain case, when all the DCT coefficients
are employed. This is due to the fact that the DCT matrix
is unitary and preserves �2-norm of the data. In this case,
the value of RSS in terms of DCT coefficients is

RSS =
N∑

n=1
(an − ân)2, (23)

where ai and âi designate the DCT coefficients of the
noisy and reconstructed signals, respectively. If only the
first Nd terms of the DCT representation are employed
in the reconstruction procedure, the MDL score can be
obtained by

MDL(Mj) = Nd log
(
RSS
Nd

)
+ log(Nd)

Ns∑
i=1

mi. (24)

In this case, the RSS value is written as

RSS =
Nd∑
n=1

(an − ân)2. (25)

3.2 Cross-validation
Similar to the previous section, suppose y is the vector of
data and ŷ designates the reconstructed signal using IPRM
with a combination of the polynomial orders {mi}Ns

i=1. If
the estimate ŷ can be written in the form of

ŷ = H.y, (26)

where H is a matrix that does not depend on the data
y, the fitting method is called linear [16], and the matrix
H is referred to as hat matrix. In leave-one-out cross-
validation [17], for a linear fitting problem, the CV score
can be obtained using the following equation:

CV(Mj) = 1
N

N∑
n=1

(
yn − ŷn
1 − Hnn

)2
, (27)

where Hnn is the nth diagonal element of H. This score
is calculated for all the competing models Mj, j ∈
{1, . . . ,∏Ns

i=1Mi}, and the best model is the one minimiz-
ing the CV score. By replacing the quantity 1−Hnn in the
denominator with its average 1 − 1

N tr(H), one can obtain
the generalized cross-validation score [17]:

GCV(Mj) = 1
N

∑N
n=1(yn − ŷn)2(
1 − 1

N tr(H)
)2 . (28)

Since IPRM can be expressed in the form of a linear fit-
ting model, we can take advantage of Equations (27) and
(28) to calculate CV andGCV scores, respectively. The hat
matrix of IPRM is given by

H = P.W†.D, (29)

where W is the transformation matrix of IPRM from
Equation (16); D and P are the DCT and polynomial
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Figure 2 Effect of the number of DCT coefficients used in IPRM for signal f1(x). (a) Signal f1(x). (b) DCT coefficients of f1(x).

basis matrices, respectively. The polynomial basis matrix
P is the direct sum of the polynomial basis matrices of
sub-intervals Pi, i.e.

P =
Ns⊕
i=1

Pi (30)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

0
P2

. . .
0

PNs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (31)

The rationale behind derivation of the hat matrix of
IPRM in the form given in Equation (29) is as follows.
From Equation (18) the polynomial coefficients are related
to DCT coefficient via G = W† · f̂. Replacing f̂ by D · y

results in G = W† · D · y. Finally, left matrix multipli-
cation of both sides by the polynomial basis matrix given
in Equation (30) results in the time domain reconstructed
signal ŷ, i.e. ŷ = P · G = P · W† · D · y.
Similar to MDL, if the signal is provided in terms of its

DCT coefficients, by making use of the unitary property
of the DCT matrix, it is feasible to find the GCV scorec as
follows:

GCV(Mj) = 1
N

∑N
n=1(an − ân)2(
1 − 1

N tr(H)
)2 . (32)

Moreover, if only a part of DCT coefficients (first Nd-
terms) are used for the reconstruction, D is the first Nd
rows of the DCT matrix. In this case, the GCV score is
given by

GCV(Mj) = 1
Nd

∑Nd
n=1(an − ân)2(
1 − 1

Nd
tr(H)

)2 . (33)

Figure 3 Effect of the number of DCT coefficients used in IPRM. (a) RMSE of the reconstructed signal from signal f1(x) versus the number of
coefficients Nd . (b) RMSE of the reconstructed signal from signal f2(x) versus the number of coefficients Nd .
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Figure 4 Effect of the number of DCT coefficients used in IPRM for signal f2(x). (a) Signal f2(x). (b) DCT coefficients of f2(x).

3.3 Numerical experiments
In this section, we assess and compare the performance of
the order selectionmethods introduced above. Root mean
square error (RMSE) is used as a quantitative measure for
comparison purposes:

RMSE = ‖ f m̂N (xn) − f (xn) ‖2. (34)

Here we use two test signals; a piecewise polynomial and
a piecewise smooth signal. The first test signal is given by

f (x) =
{ −1 − x x ≤ 0

(1 − x)5 x > 0.

The sample size is set at N = 256. The signal-to-noise
ratio (SNR) is changed from 10 to 20 dB (which in lin-
ear scale corresponds to SNR = 3.16 to 10) with step
size of 1 dB. For each SNR, 100 sets of noisy data were
simulated and for each SNR, RMSE is averaged over all
the data sets. The polynomial order in each interval is

iterated from mi = 1 to 10. For each combination of
orders, we perform IPRM to reconstruct the signal. For
each reconstructed signal, we calculate the RSS given in
Equation (21). The values of RSS and polynomial orders
are used to compute the MDL and CV scores given in
Equations (22) and (28), respectively. In each case, the
minimizer of the resulting score is chosen as the com-
bination of estimated orders, which is used to compute
RMSE of the reconstructed signal. The plot of varia-
tions of the RMSE values versus SNR is depicted in
Figure 1a, in which we compare the RMSE performance
of MDL and CV with that of the “oracle”, which is basi-
cally the IPRM reconstruction with the optimal orders so
as to minimize the RMSE criterion. The orders employed
in the oracle method are obtained using the original
signal f.
We repeat the same experiment for the heavisine sig-

nal, using the same set of parameters. As demonstrated
in Figure 1b, at low SNR values MDL outperforms CV,
whereas at higher SNR values (larger than around 12 dB)
CV exhibits a better performance compared to MDL.

Figure 5 Effect of the number of DCT coefficients used in IPRM in the presence of noise. (a) RMSE of the reconstructed signal from signal f1(x)
with SNR = 10 dB versus the number of coefficients Nd . (b) RMSE of the reconstructed signal from signal f2(x) with SNR = 10 dB versus the
number of coefficients Nd .



Dadkhahi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:133 Page 8 of 23
http://asp.eurasipjournals.com/content/2012/1/133

Figure 6 Easy path algorithm: (a)without, and (b)with the proposedmodification.

The simulation results of this section suggest that the
performance of the two model selection methods differs
slightly depending on both the signal and SNR level.

4 Applications
In this section, we concentrate on denoising and linear
approximation as two main applications for which DCT
has been applied successfully.

4.1 Denoising
Applying the framework derived in Section 2, in this
section we show that inverse reconstruction method
offers excellent de-noising properties. As a result, a new
de-noising algorithm for piecewise smooth signals using
inverse method in the DCT domain is presented. This
de-noising algorithm is particularly applicable when the
signal is provided in terms of its firstNd DCT coefficients,
where recovering the signal using ordinary inverse DCT
would result in spurious oscillations in the reconstructed
signal.
Suppose f is a piecewise smooth discrete signal. The

problem is formulated as follows: one observes yn =
f (xn) + en where the errors ei are independent and iden-
tically distributed zero-mean Gaussian random variables.
Alternatively, the observation may be available in terms of
the first Nd DCT coefficients of a noisy signal. The origi-
nal signal is supposed to be deterministic and independent
of the noise. Our goal is to find an estimate of the orig-
inal signal using the DCT IPRM framework derived in
Section 2.
The proposed de-noising algorithmworks in the follow-

ing way:

(1) Compute the DCT coefficients of the noisy signal y.
(This step is omitted in the case the noisy signal is
given in terms of its DCT coefficients).

(2) Find the regions of smoothness in the signal. Here we
employ edge detection techniques based on
concentration factors for noisy data [19], which
works on Fourier coefficients of the signal. The
Fourier coefficients are found from either the noisy
signal or through a transformation on the DCT
coefficients of the signal.

(3) Find the best polynomial orders for each interval
using the order selection techniques introduced in
Section 3.

(4) Reconstruct the signal using DCT-based IPRM with
the polynomial orders calculated in step 3.

The performance and accuracy of this algorithm
depends on the following factors: the number of DCT
coefficients utilized in IPRM procedure, precise knowl-
edge of the intervals of smoothness in the signal (i.e. edge
detection), and the polynomial orders determined as a
result of order selection techniques. In the sequel, we
investigate the effect of the number of DCT coefficients
used for reconstruction.
Let f be a piecewise smooth discrete signal of length N.

Taking DCT of f results in N DCT coefficients. We con-
sider applying IPRM on f when the first Nd (Nd ≤ N)
DCT terms of f are used for reconstruction. When the
signal is noise free, the number of DCT coefficients Nd
is required to satisfy the minimum requirement given by
inequality (15).
In order to examine the accuracy of the reconstruction,

as the number of DCT coefficients varies, we consider
two examples. The first example is a piecewise polynomial
signal of length N = 256 given by

f1(x) =
{ −1 − x x ≤ 0

(1 − x)6 x > 0,
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Figure 7 Comparison of different de-noising methods for Blocks signal (blue: original signal, red: reconstructed signal). (a) Noisy signal
with SNR = 16.91 dB. (b) Cycle-spinning de-noising. (c)Wavelet footprints de-noising. (d)Wavelet footprints de-noising with oracle. (e) Direct
method de-noising with oracle. (f) IPRM de-noising.
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which is illustrated in Figure 2a. The DCT spectrum of f1
is plotted in Figure 2b. Figure 3a depicts the RMSE of the
reconstructed signal as a function of the number of DCT
coefficientsNd. As can be observed in this figure, although
the signal f1 has more significant DCT coefficients than
the lower bound specified by inequality (15), the recon-
struction is exact (within machine accuracy) and RMSE is
of order 10−14, when the above constraint is met.
Next, we considerHeavisine signal f2 of the same length,

which is piecewise smooth and is depicted in Figure 4a.
From the RMSE graph of this piecewise smooth signal, it
is clear that the higher the number of DCT coefficients
used in IPRM, the more accurate the reconstructed signal
is. Note that since f2 is not a piecewise polynomial signal,
the error does not converge to zero.
Subsequently, we examine the RMSE performance of

the above signals in the presence of noise at different
number of DCT coefficients. We assume the signal-to-
noise-ratio of the signals to be SNR = 10 dB. For each
signal, we conduct a Monte Carlo experiment of 100 sets
of noisy data, and average the RMSE result over all data
sets. The resulting RMSE for signals f1(x) and f2(x) are
demonstrated in Figure 5.
For the piecewise polynomial signal f1(x), when Nd is

equal or close to the minimum requirement, the RMSE
of the reconstruction is high compared to the case where
higher number of DCT coefficients is used. Above this
range, including more DCT coefficients in IPRM, does
not improve the reconstructed signal. For the piecewise
smooth signal f2(x), we virtually encounter the same sce-
nario as in the noise free case. In other words, as we
increase the number of DCT coefficients used for IPRM,
we achieve a more accurate reconstruction.

4.2 Approximation
In [13], the extension of the one-dimensional (1D) inverse
method to images has been studied, where they have
shown that when using the tensor product of the 1D case,
the transformation matrix in the two-dimensional (2D)
case, even for sub-domains with a simple geometry, easily
becomes singular. Therefore, they have suggested to

Table 1 Comparison of de-noising algorithms for blocks
signal

Method RMSE

Cycle-spinning 7.7701

Direct method + Oracle 8.2528

Wavelet footprints 21.5279

Wavelet footprints + Oracle 7.2656

IPRM 4.1078

IPRM + Oracle 4.1078

instead apply IPRM on images in a slice-by-sliced manner
[13], which is not efficient for approximation purposes.
One way to overcome the restriction of IPRM in 2D sce-

narios, is to convert the image into a 1D signal. The aim
is to find a path through all data points of the image such
that the resulting signal is as smooth as possible, while
considering the costs required for storing the path data.
In this way we can apply IPRM on the resulting 1D signal
efficiently and achieve a sparse DCT representation of the
image.
Recently, an adaptive wavelet transform, referred to as

Easy Path Wavelet Transform (EPWT),e was proposed in
[20] for a sparse representation of images. The EPWT
works along pathways of image data points and exploits
the correlations among neighboring pixels. In a nutshell,
it consists of two parts: first, finding the pathways accord-
ing to the difference in value among the neighboring pixels
and second, applying a 1D wavelet transform along the
resulting pathways. Here, we refer to the first part as easy
path algorithm.
The EPWT algorithm is shown to be highly efficient for

representation of real-world images, outperforming the
tensor-product wavelet transform. However, in this article
we show that applying IPRM on the result of the easy path
algorithm can improve the approximation performance
for piecewise smooth images, significantly.
The easy path algorithm works as follows. Let f (i, j) be a

discrete image of size N1-by-N2 and I = {(i, j) : i = 1, . . . ,
N1, j = 1, . . . ,N2} be the corresponding index set. We are
interested in forming the path vector p, which is a per-
mutation of the 1D representation of the index set, i.e.
(1, . . . ,N1N2). Having determined one point of the image
as an element of the path vector p(�), we seek the neigh-
borhood of this point for the neighbor that minimizes the
absolute difference |f (p(�)) − f (p(� + 1))| of the function
values. The neighborhood of an index (i, j) ∈ I is defined
by

N(i, j) = {(i1, j1) ∈ I−{(i, j)} : |i− i1| ≤ 1, |j− j1| ≤ 1}.
(35)

According to this definition, the indices located at a ver-
tex and at a boundary but not a vertex, have three and
five neighbors, respectively. Otherwise, N(i, j) comprises

Table 2 Comparison of de-noising algorithms for signal
f(x)

Method RMSE

Cycle-spinning 2.6876

Direct method + Oracle 1.2733

Wavelet footprints 1.2859

IPRM 0.1236

IPRM + Oracle 0.1236
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Figure 8 Comparison of different de-noising methods for a piecewise polynomial signal (blue: original signal, red: reconstructed signal).
(a) Original signal. (b) Noisy signal with SNR = 16.91 dB. (c) Cycle-spinning de-noising. (d)Wavelet footprints de-noising. (e) Direct method
de-noising with oracle. (f) IPRM de-noising.
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Table 3 Comparison of de-noising algorithms for
Heavisine signal

Method RMSE

Cycle-spinning 9.0905

Direct method + Oracle 6.7298

IPRM 4.9491

IPRM + Oracle 4.9491

eight elements. However, considering that the path passes
through every point exactly once, it is necessary to exclude
the indices that already have been used in the path.
We carry on this procedure as long as the set of admissi-

ble neighbors is not empty. This sequence of neighboring
points is referred to as a pathway, and the union of path-
ways forms a path through the index set. Moreover, the
transition from one pathway to the next in the path is
called an interruption.
In the case of an interruption, we need to pick the next

index p(� + 1) from the remaining free indices in the
index set. Among different possibilities to start the next
pathway [20], we select the index minimizing the absolute
difference of the function values.
In addition, it can happen that we encounter multiple

choices for the next index in the sense that more than one
neighbor attain the minimum cost given by the absolute
difference criterion. In [20], it is suggested to fix a favorite
direction in advance to find a unique pathway. However,
we propose a modified procedure to not only avoid the
occurrences of interruptions the most, but also to reduce
the number of edges in the path substantially. The latter
consequence is particularly important in IPRM, since we
shall rely on the edge locations in the reconstruction
process.
The proposed modification in the easy path algorithm is

as follows. Suppose the recent element of the path is p(�)

and the easy path algorithm is to choose the next element
of the path p(�+ 1) out of K potential indices {(ik , jk)}Kk=1,
tied at the minimum of the absolute difference criterion.
For each of such indices, we count the number of choices
for p(� + 2), if it were chosen as the next index p(� + 1)
in the path. In other words, we find the number of degrees
of freedom for the path element p(� + 2). Obviously, the
index withminimum degrees of freedom ismore suscepti-
ble to interruption in the future, if not selected in the path
at this step of the algorithm. For instance, indices located
at a boundary or the vicinity of an edge naturally have less
degrees of freedom and are more likely to form a singleton
pathway. As a result, we give priority to the index with the
least degrees of freedom, and choose it as element p(�+1)
of the path.

Example 1. Here we consider a toy example to illustrate
how the proposed modification of the easy path algorithm

works. We consider a lower triangle of a simple linear
image f of size 6 × 6. We use 1D numbering to show
the direction of the path. Applying the easy path algo-
rithm, without and with the modification of the algorithm
(as illustrated in Figures 6a and 6b respectively), the path
vector reads

p1={1,3,5,9,14,21,13,29,12,18,11,17,10,16,15|6,7,4,5,2|8},
p2={1,3,5,9,14,21,20,13,8,5,2,4,7,12,18,17,11,6,10,16,15},

where the sign | indicates interruption in the path.
Note that the path p1 not only has two interruptions but
also incorporates more edges along the pathways, since
it changes the gray level values more often compared to
the path p2. For instance, the transition 21 −→ 13 in
p1 is due to the fact that in the original version of the
easy path algorithm, when there are two options, the one
which is closer to the favorite direction is taken, where
the favorite direction is the same as the previous direc-
tion of the path, which is to the right. Since neither of the
options are on the right, starting from the favorite direc-
tion, the pixel which is first, turning clockwise, is chosen
as the next index in the path. On the other hand, in p2
the transition 21 −→ 20 is chosen, since if the index 20 is
chosen, it offers one option for the next index in the path,
i.e. index 13, whereas if the index 13 is chosen, it offers
two options for the next index in the path, i.e. indices 8
and 20.
Considering that the storage cost of the path vector is

not negligible in comparison with that of the approxima-
tion coefficients, efficient coding schemes are required to
reduce the cost of storing this vector. Here, we employ
the coding strategy introduced in [20]. Since each pathway
connects neighboring indices, one can store the direction
of the next element rather than the index itself. Obviously,
having eight neighbors at most, the direction of the next
index can be represented by three bits in the worst case.
The coding algorithm that maps the vector of path indices
p into the vector p̃ works in the following steps:

(1) Let p̃(0) = 0 since p(0) = 0 is the starting point.
(2) For finding p̃(1), look clockwise through the

neighbors of p(0) and insert

p̃(1) =
⎧⎨
⎩
0 p(1) = N1
1 p(1) = N1 + 1
2 p(1) = 1.

(3) Having found the path code p̃(�), the subsequent
path code p̃(� + 1) is zero if it follows the previous
direction of the path. More precisely, if

p̃(� + 1) = 2p̃(�) − p̃(� − 1), (36)
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Figure 9 Comparison of different de-noising methods for Heavisine signal (blue: original signal, red: reconstructed signal). (a) Original
Heavisine signal. (b) Noisy signal with SNR = 16.91 dB. (c) Cycle-spinning de-noising. (d) Direct method de-noising with oracle. (e) IPRM de-noising.



Dadkhahi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:133 Page 14 of 23
http://asp.eurasipjournals.com/content/2012/1/133

200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

a b

c d

e f
Figure 10 Comparison of different de-noising methods for Doppler signal (blue: original signal, red: reconstructed signal). (a) Original
Doppler signal. (b) Noisy signal with SNR = 16.91 dB. (c) Cycle-spinning de-noising. (d) Direct method de-noising with oracle. (e) IPRM de-noising.
(f) IPRM de-noising after one step of division.
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Table 4 Comparison of de-noising algorithms for Doppler
signal

Method RMSE

Cycle-spinning 17.5325

Direct method + Oracle 31.5494

IPRM 13.6757

IPRM + Oracle 13.6417

then p̃(� + 1) = 0. This direction is regarded as the
favorite direction in the path. On the other hand, if
the direction of the path is changed, then look
clockwise through the admissible neighbors (starting
with the favorite direction) and determine p̃
accordingly.

Due to the fact that each index appears only once in the
path, as we proceed with the algorithm, the number of
admissible neighbors decreases and the coding algorithm

Figure 11 Comparison of RMSE of IPRMwith other de-noising algorithms at different SNR values for: (a) blocks signal, and (b) piecewise
polynomial signal f(x).
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Figure 12 Approximation of the phantom image: (a)Original
phantom image, (b) Approximation using Haar wavelets
(Nd = 3300 coefficients).

tends to assign smaller codes to p̃ [21]. This in turn results
in a lower entropy of the path information.
From the coding strategy described above, it is clear

that for a better storage of the path vector, it is prefer-
able to continue the pathway in the direction which leads
to smaller values of the path code p̃. However, this is
in contrast with the procedure explained for the multi-
ple options scenario. In other words, there is a trade-off
between the entropy of the pathways and the number of
edges and interruptions in the path. This can be tackled
bymaking a compromise through setting a predetermined
upper bound θ on the number of degrees of freedom.

More precisely, if the minimum number of degrees of
freedom is lower than or equal to θ , the neighbor with
the minimum degrees of freedom is selected as p(� + 1).
Otherwise, the next index p(�+1) is the one closest to the
favorite direction.
The proposed approximation scheme using DCT-based

IPRM and the easy path algorithm works in the follow-
ing way. First, we apply the easy path algorithm with
the settings described above, in order to find the vec-
tor path p through the image. Having determined the
1D signal f (p), we compute the DCT expansion of f (p).
Next, we find the discontinuity locations, using the edge
detection from spectral data algorithm suggested in [22].
Specifically, we employ trigonometric concentration fac-
tors accompanied with the nonlinear enhancement algo-
rithm proposed in [23]. The Fourier coefficients are found
either from the time domain signal itself or through a
transformation from the DCT coefficients of the signal
[24]. TheK-term approximation is obtained by storing the
first K DCT coefficients, the path vector p and the edge
locations.
The reconstruction of f from {f̂k}Kk=1 is given in the

following steps:

(1) Find the polynomial orders using the model selection
methods explained in Section 3 (employing either
MDL or CV through Equations 24 and 33,
respectively).

(2) Apply DCT-based IPRM, with the polynomial orders
determined in step 1, to obtain the approximate
signal fp.

(3) Apply the permutation f (p) = fp in order to recover
the function f (i.e. reciprocate the operation of the
easy path algorithm).

In order to be able to compare the storage costs of our
scheme with that of EPWT, we need to review how its
algorithm works. In EPWT, after finding the complete
path vector p, a 1D wavelet transform is applied to the
vector of function values along the path. As a result of a
one-level decomposition, low-pass and high-pass wavelet
coefficients are derived. The down-sampled low-pass part
is used to form a low-pass filtered image with the same
size as the original image and consisting of pairs of iden-
tical data points. The easy path algorithm is applied to
the resulting image to find a path through the pairs of

Table 5 Effect of the parameter θ for the phantom image

θ Number of edges Entropy of p̃

1 251 0.19

2 86 0.36

5 6 0.89
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Table 6 Approximation results of DCT-based IPRM, EPWT and tensor product wavelet transform for the phantom image

Method L Nd SNR (dB) Entropy of p̃ Storage cost (bpp)

b = 8 b = 16

DCT IPRM – 175 68.39 0.36 0.40 0.43

EPWT Haar 9 650 35.59 0.38 0.54 0.61

EPWT db4 9 1500 35.73 0.38 0.71 0.89

EPWT 7/9 9 2700 35.56 0.38 0.94 1.27

tensor prod. Haar 5 3300 36.23 – 0.69 1.09

tensor prod. db4 5 9000 35.79 – 1.67 2.77

tensor prod. 7/9 5 8000 35.30 – 1.51 2.48

data points. The wavelet transform is again applied to the
resulting path vector. The same strategy is repeated in
further levels up to L decomposition levels, the extent of
which depends on the data. After a sufficient number of
iterations, a shrinkage procedure is applied to the wavelet
coefficients at different decomposition levels. In order to
reconstruct the image, one needs the wavelet coefficients,
location of the wavelet coefficients (since it is a nonlin-
ear approximation scheme), and the path vectors in each
iteration step. According to this algorithm, the length of
the path vector at decomposition level � is N1N2

2�−1 . As a
result, the cost of storing the path indices for the fur-
ther levels usually doubles that of the first decomposition
level [20].

5 Numerical experiments
5.1 Denoising
In this section, we analyze and assess the performance
of the de-noising algorithm, introduced in Section 4.
RMSE is used as a quantitative measure for comparison
purposes:

RMSE = ‖ f m̂N (xn) − f (xn) ‖2. (37)

Here, we use all the DCT coefficients of the signal for
reconstruction in IPRM, following the discussion on the
effect of the number of coefficients Nd, presented in the
previous section. Recall that for piecewise polynomial sig-
nals a wide range of Nd values produce identical results,
whereas for piecewise smooth signals, as we increase
the number of coefficients Nd, the reconstructed signal
improves gradually.
We compare the result of our algorithm with the follow-

ing de-noising methods:

(1) Translation-invariant (TI) wavelet de-noising
(cycle-spinning) [25]

(2) De-noising based on wavelet transform footprints
[26,27]

(3) Direct method [28,29]

The first test signal is a piecewise constant signal given
in Figure 7, which is known as Blocks in de-noising litera-
ture. We use the same specifications (length of the signal
N = 2048, SNR = 7) as those provided in Wavelab
[30]. For this signal, cycle-spinning gives the best result in
terms of RMSE, when Haar wavelet is employed. When
applying the wavelet footprints algorithm, it is assumed
that the signal is piecewise constant. We also consider the
case where polynomial orders are not known. Considering
the de-noising procedure for the direct method, in [28] it
is suggested to use the following formula:

λi = mi = εi β N , (38)

for the ith interval [ ai, bi], where β = 2π
27 ≈ 0.2327

and εi = bi−ai
2 . In case the result of this formula is not

an integer, 	mi
 is considered as the polynomial order
[9]. However, the polynomial orders obtained through this
formula do not result in an acceptable reconstruction of
the signal. Here, we assume that the signal is piecewise
constant (thus setting the polynomial orders to zero) and
find the parameters λi from Equation (38). In the case of
our algorithm, we consider two scenarios for the poly-
nomial orders: first, we use an oracle method, where an
oracle tells us which are the best polynomial orders (zero
order polynomials for Blocks signal). Second, we use one
of the model selection methods introduced in Section 3,
to find the polynomial orders automatically. Here, we use
MDL for polynomial order selection.
The simulation results in terms of RMSE for one sam-

ple noisy signal are given in Table 1. According to this
table, de-noising using IPRM significantly outperforms
other de-noising algorithms. Note that Table 1 indicates
the same RMSE values for IPRM with and without oracle.
This is attributed to the fact that the MDL has estimated
the correct polynomial orders. Figure 7 shows the recon-
structed signals using different de-noising algorithms.
The second test signal is a piecewise polynomial signal

given by

f (x) =
{ −1 − x x ≤ 0

(1 − x)2 x > 0.
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Figure 13 Approximation of the phantom image: (a)
Approximation using the EPWT with Haar (Nd = 650
coefficients), (b) Approximation using the easy path algorithm
and DCT-based IPRM (Nd = 175 coefficients).

The simulation results in terms of RMSE for one sam-
ple noisy signal are given in Table 2. Figure 8 illustrates
the reconstructed signals using different de-noising algo-
rithms.
The next test signal is a piecewise smooth signal,

referred to as Heavisine in de-noising literature. The
RMSE results of different de-noising algorithms are given
in Table 3. We use MDL for selecting the polynomial
orders, which are m1 = 6, m2 = 6, and m3 = 5. In
case of the direct method, we set the parameter λ = 1,

which was found by trial and error, since the values found
through the above formula do not lead to an acceptable
reconstruction of the signal. Figure 9 shows the recon-
structed signals using different de-noising algorithms at
SNR = 16.91 dB.
The last experimental signal is Doppler signal, as illus-

trated in Figure 10a. The simulation results in terms of
RMSE for a noisy signal with SNR = 16.91 dB are given
in Table 4. Figure 10 illustrates the reconstructed signals
using different de-noising algorithms. Here we use CV to
find the polynomial order. The resulting polynomial order

Figure 14 Approximation of a piecewise linear image: (a)
Original image, (b) Approximation using Haar wavelets
(Nd = 2800 coefficients).
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Table 7 Approximation results of DCT-based IPRM, EPWT and tensor product wavelet transform for the piecewise linear
image

Method L Nd SNR (dB) Entropy of p̃ Storage cost (bpp)

b = 8 b = 16

DCT IPRM – 40 34.58 0.14 0.15 0.16

EPWT Haar 9 200 35.25 0.33 0.39 0.41

EPWT db4 9 200 35.75 0.33 0.39 0.41

EPWT 7/9 9 500 35.18 0.33 0.46 0.52

tensor prod. Haar 5 2800 35.31 – 0.59 0.93

tensor prod. db4 5 3200 35.26 – 0.67 1.06

tensor prod. 7/9 5 1800 36.00 – 0.41 0.62

is m = 207 (oracle gives m = 203) which is relatively
high, and causes over-fitting at the low frequency section
of the signal. However, this is inevitable due to the nature
of Doppler signal, which requires a high polynomial order
for the high frequency part, and a low polynomial order
for the low frequency one. One way to further improve
the performance of IPRM algorithm for this signal is to
divide it into two parts successively and find the poly-
nomial orders for the resulting sub-intervals, separately.
After one step of such division, it is feasible to reduce the
RMSE of the recovered signal from 13.6757 to 11.1579. In
this case, the polynomial orders used in the IPRM pro-
cedure are m1 = 140, and m2 = 15, respectively. As
depicted in Figure 10f, the accuracy of the recovered sig-
nal is significantly improved in the right sub-interval of
the signal.
In order to investigate the performance of the denois-

ing algorithms over a wider range of SNR values, here
we present Monte Carlo experiments for the blocks and
f (x) signals at different values of SNR. In the case of
the blocks signal, 100 sets of noisy signals are simu-
lated, where we vary SNR from 10 to 20 dB by a step-size
of 2 dB. The graph in Figure 11a illustrates the average
RMSE results for different algorithms. For the de-noising
algorithm based on wavelet footprints, two scenarios are
considered: first, the signal is assumed to be piecewise
constant, i.e. polynomial orders are known in advance or
given by an oracle, and second, polynomial orders are not
known in advance. For de-noising based on the direct
method, we assume that the polynomial orders are known.
In the case of IPRM, we find the polynomial orders
using the MDL algorithm. In addition, Figure 11b demon-
strates the RMSE performance of the denoising algo-
rithms with the same set of parameters for the piecewise
smooth signal f (x).

5.2 Approximation
In this section we present some numerical examples of
the proposed approximation scheme applied to gray-scale
piecewise-smooth images. We compare the performance

of the DCT-based IPRM with the approximation results
of both EPWT and the tensor product wavelet transform
using Haar, Daubechies db4 and 9/7 bi-orthogonal filter
banks. This comparison is carried out in terms of the
number of the coefficients used for the sparse representa-
tion, storage costs and the SNR given by

SNR = 20 log
(

‖f ‖2
‖f − f̃ ‖2

)
, (39)

where ‖.‖2 denotes the �2-norm, and f and f̃ are the
original and reconstructed sparse images, respectively.
The storage cost of our algorithm consists of the costs

of storing the coefficients, edge locations and the path
information. The entropy of the path is composed of the
entropy of the pathways and the cost of storing the loca-
tion of interruptions. The entropy of the pathways is given
by

entropy = −
n−1∑
i=0

hi
N

log2
(
hi
N

)
, (40)

where n = 8 is the number of possible options in the
coded path vector p̃ and h0, . . . , hn−1 designate the fre-
quencies of their occurrence. N = N1 × N2 stands for the
total number of coefficients. Moreover, the cost of stor-
ing the location of either an edge or an interruption is
considered as log2 (N).
In order to roughly compare the storage costs of the pro-

posed approximation algorithm with that of EPWT and
the tensor product wavelet transform, the following sim-
plified scheme is assumed [20,31]. For the tensor product
wavelet transform, the cost of storing the non-zero coeffi-
cients as well as that of encoding their positions constitute
the storage cost. Here, we assume that the parameter b
represents the number of bits used for encoding of one
wavelet coefficient. In addition, the cost of encoding the
position of M non-zero wavelet coefficients is calculated
through −M

N log2
M
N − N−M

N log2
N−M
N . In the case of the
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Figure 15 Approximation of a piecewise linear image: (a)
Approximation using the EPWT with Haar (Nd = 200
coefficients), (b) Approximation using the easy path algorithm
and DCT-based IPRM (Nd = 40 coefficients).

EPWT, the storage cost of the path is also required to be
taken into account.
In the first example we consider the Shepp-Logan phan-

tom image of size 256 × 256, as depicted in Figure 12a.
To gain an insight into the effect of the parameter θ , in
Table 5, we have compared the number of edges in the
outcome of the easy path algorithm for different values
of θ . This table reflects the trade-off between the entropy
of the path and the number of edges that appear in the
resulting signal. Throughout this section, we favor the
choice θ = 2, so as to avoid the occurrence of singleton

pathways, while keeping the entropy of the path as small
as possible.
According to Table 6, as expected, the performance of

both DCT-based IPRM and EPWT is especially supe-
rior to tensor product wavelet transform for higher values
of the parameter b. In addition, the DCT-based IPRM
algorithm outperforms the wavelet-based algorithms, in
terms of the storage costs as well as the SNR of the
approximation result. Figures 12b and 13a illustrate the
approximation results of tensor product wavelet trans-
form and EPWT, respectively, using the Haar transform
with the specifications provided in Table 6. In addition,

Figure 16 Approximation of the disparity map image: (a) Color
texture image, (b)Original disparity map image corresponding
to (a).
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Table 8 Approximation results of DCT-based IPRM, EPWT and tensor product wavelet transform for the disparity map
image

Method L Nd SNR (dB) Entropy of p̃ Storage cost (bpp)

b = 8 b = 16

DCT IPRM – 130 30.16 0.54 0.57 0.60

EPWT Haar 9 500 30.29 0.57 0.69 0.76

EPWT db4 9 750 29.81 0.57 0.75 0.84

EPWT 7/9 9 900 29.89 0.57 0.78 0.89

tensor prod. Haar 5 3000 30.37 – 0.63 1.00

tensor prod. db4 5 5000 29.80 – 0.99 1.60

tensor prod. 7/9 5 3500 29.85 – 0.72 1.15

Figure 13b shows the reconstruction result of the pro-
posed DCT-based IPRM algorithm with 175 approxima-
tion coefficients.
In Table 6, we present some approximation results of

our algorithm, EPWT and tensor product wavelet trans-
form, for the phantom image. In this table, we have
obtained the storage costs for both b = 8 and b = 16,
and the number of iterations for EPWT and tensor prod-
uct wavelet transform are considered L = 9 and L = 5,
respectively, which usually results in the best approxima-
tion scenario for the phantom image. Please note that as
long as the number of both iterations and coefficients are
constant, cost of the path in EPWT is independent of the
choice of the wavelet transform.
For the second toy example, we consider the piecewise

linear image, shown in Figure 14a. Akin to the previ-
ous example, we compare the approximation results of
the proposed algorithm with EPWT and tensor prod-
uct wavelet transform, as depicted in Table 7. As can be
observed from this table, the DCT-based IPRM algorithm
significantly reduces the number of coefficients as well as
the storage costs of the approximation, at similar SNR val-
ues. The reconstruction results of this image using tensor
product wavelet transform and EPWT, using Haar filters,
are illustrated in Figures 14b and 15a, respectively. The 40-
term approximation of the piecewise linear image using
the proposed algorithm, is shown in Figure 15b.
Finally, we consider the approximation of disparity

map images. Such images encode the shifts between
stereoscopic views of the same scene and can serve for
determining the depth map associated with a certain view
[32]. The color view (Figure 16a) is augmented by dis-
parity map (Figure 16b) encoded in gray-scale levels. The
comparison of the approximation performance of the pro-
posed algorithm with that of EPWT and tensor product
wavelet transform is given in Table 8. In addition, the 130-
term approximation of the DCT-based IPRM (as depicted
in Figure 17) offers a similar SNR to 500-term and 3, 000-
term approximations using EPWT and tensor product
wavelet transform (using Haar), with less storage cost. The

approximation results of tensor product wavelet trans-
form and EPWT using Haar are depicted in Figures 18a
and 18b, respectively.

6 Conclusions
In this article, a mathematical formulation for the IPRM
in the DCT expansion has been derived. The proposed
framework aims at overcoming the oscillatory behavior
of a signal with discontinuities reconstructed from a lim-
ited number of its DCT coefficients. It also leads to a
sparser representation if the underlying signal is piece-
wise smooth. Assuming the discontinuity locations are
known and limiting the polynomial order for each smooth
piece, the framework essentially leads to the solution
of a linear approximation problem. Furthermore in the
article, denoising and linear approximation algorithms

Figure 17 Approximation of the disparity map image:
Approximation using the easy path algorithm and DCT-based
IPRM (Nd = 130 coefficients).



Dadkhahi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:133 Page 22 of 23
http://asp.eurasipjournals.com/content/2012/1/133

Figure 18 Approximation of the disparity map image: (a)
Approximation using Haar wavelets (Nd = 3000 coefficients), (b)
Approximation using the EPWT with Haar (Nd = 500
coefficients).

for piecewise-smooth signals based on their DCT-based
IPRMs have been developed. Simulation results have
demonstrated significant improvements over wavelet-
based methods, namely, TI wavelet denoising, denoising
based on wavelet transform footprints, as well as recently
introduced EPWT based method.
The linear approximation problem of re-projection of

a signal represented in one basis onto another basis as
addressed in this article, correlates with the problem con-
sidered in the compressive sensing (CS) literature [33].
As the CS theory postulates, if a signal is known to

be sparse with respect to a certain dictionary of atoms,
it can be reconstructed exactly from measurements in
another dictionary, incoherent with the first one. In our
case, the sparse representation is sought based on the
(Gegenbauer) polynomials while the measurements are
taken with respect to the dictionary of DCT atoms. The
CS formalism may lead to more general results, i.e. when
the discontinuity locations are not given or when the DCT
coefficients used for reconstruction are selected arbitrary
rather than taking the first K terms. Such results might be
quite beneficial for e.g. compression and are object of our
future research.

Endnotes
a According to the notation used here, each transition

from xbi to xai+1 corresponds to an edge.
b This operation is permissible since the constant term

appears in the MDL score of all the competing models.
c We employ GCV (which is a close approximation of

CV) instead of CV, in order to make use of unitary
property of the DCT matrix and extend the result to the
case where the signal is provided in terms of its DCT
coefficients.

d In the slice-by-slice approach, the 1D IPRM is applied
to each row and each column of the image independently.
In other words, the image is considered as a collection of
independent 1D signals.

e Here we use the so-called rigorous version of EPWT,
since we are seeking a 1D representation of the image,
which is as smooth as possible. This, in turn, will reduce
the number of edges in the resulting signal.

f In other words, the hypotenuse is assumed to be
adjacent to an edge. This toy example is chosen just to
show the effectiveness of the proposed modification in
the vicinity of edges and boundaries of an image.
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