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Abstract

The latest developments in Markov models’ theory and their corresponding computational techniques have opened
new rooms for image and signal modeling. In particular, the use of Dempster–Shafer theory of evidence within
Markov models has brought some keys to several challenging difficulties that the conventional hidden Markov
models cannot handle. These difficulties are concerned mainly with two situations: multisensor data, where the use
of the Dempster–Shafer fusion is unworkable; and nonstationary data, due to the mismatch between the estimated
stationary model and the actual data. For each of the two situations, the Dempster–Shafer combination rule has
been applied, thanks to the triplet Markov models’ formalism, to overcome the drawbacks of the standard Bayesian
models. However, so far, both situations have not been considered in the same time. In this article, we propose an
evidential Markov chain that uses the Dempster–Shafer combination rule to bring the effect of contextual
information into segmentation of multisensor nonstationary data. We also provide the Expectation–Maximization
parameters’ estimation and the maximum posterior marginal’s restoration procedures. To validate the proposed
model, experiments are conducted on some synthetic multisensor data and noised images. The obtained
segmentation results are then compared to those obtained with conventional approaches to bring out the efficiency
of the present model.

Keywords: Hidden Markov chains, Triplet markov chains, Multisensor Markov chains, Data fusion, Theory of evidence,
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Introduction
Hidden Markov chains (HMCs) have been used to
solve a wide range of inverse problems occurring in
many application fields. They allow one to take con-
textual information within data into account. Their
success is mainly due to the existence of efficient
Bayesian techniques that allow achieving the different
estimation procedures with reasonable computational
complexity. Hence, HMCs have successfully been ap-
plied in signal and image processing [1-3], biosciences
[4], econometrics and finance [5], ecology [6], and
communications [3]. Let us also mention [7-9] as pio-
neering articles.
Let X = X1..N be an unobservable process that takes its

values from a finite set of classes Ω ¼ ω1; . . . ;ωKf g and
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let Y = Y1..N be an observable process that takes its
values in ℝ and that can be seen as a noisy version of X.
The problem is then to estimate X from Y. According to
the HMC formalism, the hidden process X has a Markov
distribution, and this is why the model is qualified by
“hidden Markov”. The interest of considering X Marko-
vian relies in the possibility of embedding the dependen-
cies existing within Y into X. The observations Yn are
then assumed to be independent conditionally on X and
the contextual information are considered only through
X, which provides a well-designed formalism that per-
mits to consider the data contextual information while
keeping the model simple and the necessary estimation
procedures workable. Explicitly, according to HMCs, the
joint distribution of (X, Y) is given by

p x; yð Þ ¼ p x1ð Þp y1ð jx1Þ
YN
n¼2

p xnð jxn�1Þp ynð jxnÞ ð1Þ

To estimate the hidden process of interest, one may
use the Bayesian maximum posterior marginal’s (MPM)
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estimator that allows to minimize the ratio of errone-
ously assigned sites and that is given by

x̂n ¼ arg max
ω2Ω

p xn ¼ ωð jyÞ ð2Þ

The posterior distributions p xn ¼ ωð jyÞ are computable,
thanks to the recursive Forward an xnð Þ ¼ p y1::n; xnð Þ and
Backward βn xnð Þ ¼ p ynþ1::Nð jxnÞ probabilities that can be
computed iteratively as follows

α1 x1ð Þ ¼ p x1; y1ð Þ
αn xnð Þ ¼ P

ω2Ω αn�1 xn�1 ¼ ωð Þp xnð jxn�1 ¼ ωÞp ynð jxnÞ
�

ð3Þ

βN xNð Þ ¼ 1
βn xnð Þ ¼ P

ω2Ωβnþ1 xnþ1 ¼ ωð Þp xnþ1 ¼ ωð jxnÞp ynþ1 ¼ ωð Þ
�

ð4Þ

The estimator in Equation (2) can then be derived

x̂n ¼ argmaxω2Ωαn xn ¼ ωð Þβn xn ¼ ωð Þ ð5Þ

Notice that each x̂n is estimated using the whole ob-
servation y1...n and here relies the interest of the HMCs:
they establish a link between all the variables Y1::N ;X1::N

in such a way that each x̂n is estimated using all the
y1. . .n while keeping the computation linear with the data
size N. Moreover, when the model parameters are un-
known, they can be estimated, thanks to some algo-
rithms such as Expectation–Maximization (EM) [10]
and Iterative Conditional Estimation (ICE) [11].
However, HMCs may become unworkable when the data

to be modeled come from many heterogeneous sensors.
Indeed, the conventional approaches involving Dempster–
Shafer fusion (DS fusion) do not support Markov models,
since such a fusion destroys Markovianity. Furthermore,
standard HMCs have been shown to be inefficient when
applied to nonstationary data when unsupervised proces-
sing is concerned. Let us mention, for instance, the situ-
ation when the distributions p xnþ1 ¼ ω0ð jxn ¼ ωÞ depend
on n.
Example 1: Let us consider the problem of satellite or

airborne optical image segmentation into two classes
Ω ¼ ω1;ω2f g where ω1 is “forest” and ω2 is “water”. Let
1; . . .Nð Þ be the set of a line pixels of such an image.
The problem is then to estimate the class-map x1...N
given the observed image line y1...N . The link between a
pixel observation and its corresponding class is given by
the likelihood probability p ynð jxn ¼ ωÞ , and the prior
knowledge is modeled by a transition distribution
p xnþ1 ¼ ωð jxn ¼ ω0Þ . MPM estimation of x1...N is then
workable according to Equation (5). Let us assume now
that p xnþ1 ¼ ωð jxn ¼ ω0Þ depends on n. The use of
standard HMCs in unsupervised segmentation in such a
situation (nonstationary hidden process) provides poor
results [12]. This is due to the mismatch between the
estimated stationary model and the data.
The Dempster–Shafer theory of evidence [12-23] over-

comes these drawbacks; thanks to the rich triplet Mar-
kov chains’ (TMC) formalism. In fact, the computation
of posterior distribution p xð jyÞ, crucial for Bayesian res-
toration, can be seen as the DS fusion of the prior know-

ledge given by p xð Þ ¼ p x1ð ÞQN
n¼2p xnð jxn�1Þ with the

observation knowledge given by q xð Þ / p yð jxÞ ¼
ΠN

n¼1p ynð jxnÞ . The result of such a fusion being linked
with a TMC, the estimation algorithms remain workable.
Let us suppose now that we deal with more than one

sensor, and that there are some clouds in the image pro-
vided by one of the sensors. The possible presence of
clouds can be modeled by a probability measure on
P Ωð Þ ¼ ϕ;ω1;ω2;Ωf g, which is a mass function [24].
The theory of evidence can then be utilized in the fol-

lowing situations where the use of conventional HMCs
poses difficulties:

(1) When the prior distribution p(x) is not known with
precision (for instance, when p xnð jxn�1Þ depends on
n), it can be replaced by a belief function obtained
from p(x) to model the uncertainty or lack of
accurate knowledge of p(x). It can then be merged
with q(x) defined above via DS fusion. The result of
this fusion gives a Bayesian probability on Ωn that
can be seen as a generalization of the posterior
probability. Even if this latter is not necessarily
Markovian, it is a marginal of a Markov chain and,
thus, a Bayesian restoration remains workable [14].

(2) When the prior distribution is known with precision
but one of the sensors is very noisy and its
probabilistic noise densities are unreliable, or when
both of the prior and noise distributions are exactly
known, but there is an extra class in the data
provided by one of the sensors.

Let us mention some previous studies that tackled
the problem of using the theory of evidence in the
Markovian context. The authors in [12] use evidential
priors to deal with a strongly nonstationary prior dis-
tribution. The mass function extends then the Bayesian
priors and the MPM restoration remains feasible;
thanks to the TMC formalism. The resulting model is
called evidential hidden Markov chain (EHMC). In
[24], DS fusion is achieved in hidden Markov fields’
context to merge images from more than one sensor,
with some unreliable one. The aim of this article is to
extend the previous results of the application of theory
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of evidence in Markovian context to the situations
when p(x) is nonstationary and when one of the sen-
sors is unreliable at the same time. Hence, the use of
the DS rule has two purposes: on the one hand, non-
stationary data are modeled through an evidential
model that considers uncertainty of the data distribu-
tion via evidential priors. On the other hand, the sen-
sors’ data are fused in Markovian context to improve
the segmentation accuracy.
The remainder of the article is organized as follows:

The following section summarizes the pairwise and trip-
let Markov chains formalisms. Section “Markov models
and Dempster–Shafer theory of evidence” deals with the
new trends in using the Dempster–Shafer theory of evi-
dence in Markovian context. In Section “Multisensor
nonstationary hidden Markov chains”, we define the
multisensor nonstationary HMC model and provide its
corresponding MPM restoration and parameters estima-
tion procedures. Experimental results are presented and
discussed in Section “Experimental results”. Finally, con-
cluding remarks and some possible future improvements
end the article.

Pairwise and triplet Markov chains
In this section, we briefly describe the pairwise Markov
chains (PMCs) and the TMCs that are more general
than the conventional HMCs defined in the previous
section. In fact, PMCs in which the hidden process is
not Markovian exist and are therefore more general.
Similarly, TMCs form a family which is strictly more
general than PMCs since TMCs which are not PMCs
exist and have been used to deal with numerous situa-
tions that neither HMCs nor PMCs can support [25].

PMCs
Let Z = (X,Y). Z is said to be a PMC if Z is itself Markovian.
Therefore, Z is a PMC if and only if its joint distribution is
given by

p zð Þ ¼ p z1ð ÞΠN
n¼2p znð jzn�1Þ ð6Þ

An HMC defined by (1) can then be seen as a par-
ticular PMC in which p znð jzn�1Þ ¼ p xnð jxn�1Þp ynð jxnÞ ,
while in more general PMC, such a probability is given
by p znð jzn�1Þ ¼ p xnð jxn�1; yn�1Þp ynð jxn�1; yn�1; xnÞ . This
shows the greater generality of PMC over HMC at the
local level. At the global level, on the other hand, the
noise distribution p y xj Þð is of Markovian form in PMC
whereas it is given by the simple formula p yð jxÞ ¼
ΠN

n�1p ynð jxnÞ in conventional HMC. The posterior
margins p xnð jyÞ , needed for MPM restoration, are com-
putable like in HMC model; thanks to the same forward
functions αn xnð Þ ¼ p y1; . . . ; y1; xnð Þ and the extended
backward functions βn xnð Þ ¼ p ynþ1; . . . ; yNð jxn; ynÞ that
can be evaluated recursively as follows

α1 x1ð Þ ¼ p x1; y1ð Þ
αn xnð Þ ¼ P

ω2Ωαn�1 xn�1 ¼ ωð Þp znð jxn�1 ¼ ω; yn�1Þ
�

ð7Þ

βN xNð Þ ¼ 1
βn xnð Þ ¼ P

ω2Ωβnþ1 xnþ1 ¼ ωð Þp xnþ1 ¼ ω; ynþ1ð jznÞ
�

ð8Þ

Besides, when the model parameters are unknown,
they can be estimated via adapted variants of the same
algorithms used for HMCs. For further details, the
reader may refer to [26] where detailed related theoret-
ical developments and experiments are provided.

TMCs
Z is referred to as a TMC if there exists a third process
U ¼ U1...N where each Un takes its values from a finite
set Λ ¼ λ1; . . . ; λMf g such that the triplet T = (X, Y, U)
is a Markov chain. Let V = (U, X). T = (V, Y) is then a
PMC. This makes the computation of the distributions
p xnð jyÞ , required to perform MPM restoration, achiev-
able even when Z is not Markovian. This shows the
greater generality of TMC over PMC, which is itself
more general than the conventional HMC [25].
The underlying process U may be used in all the situa-

tions where Z is a marginal distribution of a Markov
chain. For instance, U is used to model the switches of
the hidden process X [25], which constitutes in some
manner, a way to deal with nonstationary aspect of X
discussed in the previous section. The resulting model is
called “switching hidden Markov chain”. Similarly, U has
been used to consider the switches of the noise distribu-
tions in [27] and the semi-Markovianity of the hidden
process in [28]. Another significant use of U is the one
used within the Dempster–Shafer theory of evidence to
permit the use of this latter in the Markovian context as
described in the following section.

Markov models and Dempster–Shafer theory of evidence
In this section, we briefly present the so-called theory of
evidence introduced by Dempster in the 1960s and
reformulated by Shafer in the 1970s [13]. Let Ω ¼
ω1; . . . ;ωKf g be a frame of discernment containing K

exclusives hypotheses and let us consider the set of all
the subsets of this frame P Ωð Þ ¼ ϕ; ω1f g; . . . ;Ωf g . To
understand the basics of the theory of evidence and to
establish a link with the aim of the present framework,
let us position ourselves in the satellite or airborne op-
tical image segmentation problem of Example 1. The
frame of discernment corresponds then to the set of hid-
den classes Ω ¼ ω1;ω2f g where ω1 and ω2 correspond
to “forest” and “water”, respectively. The exclusive
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hypotheses model the fact that one pixel of the image
belongs either to the class “forest” or “water”. By consid-
ering compound hypotheses, the Dempster–Shafer the-
ory of evidence offers an elegant formalism to model the
uncertainty, the lack of precision or even missing infor-
mation about the pixels classes using the so-called mass
function. A mass function m is a function from P(Ω) to
ℝ+ that fulfills the following conditions

m ϕð Þ ¼ 0P
A2P Ωð Þm Að Þ ¼ 1

�
ð9Þ

Notice that when the mass function m vanishes out-
side singletons, it becomes a probability, also called
“Bayesian” or “probabilistic” mass in contrast to “eviden-
tial” mass according to the theory of evidence. Hence, it
can be considered as a generalization of the probability
measure. This generalization is the key notion that will
be used to extend the conventional Bayesian models.
In the satellite segmentation problem, let us consider a

pixelwise classification, the prior knowledge of the
classes ω1 and ω2 may then be modeled by a Bayesian
mass m1 defined on Ω by m1 xn ¼ ωkð Þ ¼ p xn ¼ ωkð Þ .
On the other hand, the observation knowledge can be
modeled through a Bayesian mass m2 defined on Ω by
m2 xn ¼ ωkð Þ / p ynð jxn ¼ ωkÞ . The DS fusion gives
m xnð Þ ¼ m1�m2ð Þ xnð Þ ¼ p xnð jynÞ . Suppose now that
there are some clouds in the image provided by the sen-
sor [24,29]. We have then three observable classes: “for-
est”, “water”, and “clouds”. The concept of evidential
mass may be introduced here to model the fact that we
cannot see through clouds. Explicitly, we may use a mass
function m2 defined on {ω1, ω2, Ω} by m2 ω1ð Þ /
p ynð jω1Þ;m2 ω2ð Þ / p ynð jω2Þ , and m2 Ωð Þ / p ynð jΩÞ .
Similarly, the DS fusion of the two masses m xnð Þ ¼
m1�m2ð Þ xnð Þ gives a Bayesian mass that generalizes the
posterior probability p xnð jynÞ, where the DS combination
rule of a set of mass functions m1. . .r is given by the fol-
lowing formula

m Að Þ ¼ m1� . . .�mRð Þ Að Þ
/

X
\Bi¼A 6¼ϕΠ

R
i¼1mi Bið Þ ð10Þ

Let us bring up the following intuitive result: when one
of the mass functions is Bayesian (probabilistic), the DS fu-
sion result given by Equation (10) is also Bayesian [14].
Let us come back to the satellite or airborne optical

image segmentation and let us assume now that the
prior distribution of X is of Markovian form. The prior
knowledge is then given by a Bayesian mass m1 defined
on Ω as follows: m1 xð Þ / p x1ð Þp x2ð jx1Þ . . . p xNð jxN�1Þ .
On the other hand, the observation knowledge is mod-
eled through a Bayesian mass m2 defined on Ω as fol-
lows: m2 xð Þ / p y1ð jx1Þ . . . p yNð jxN Þ . The interesting
result is that the DS fusion of the two masses is the
posterior probability p xð jyÞ.

m xð Þ ¼ m1�m2ð Þ xð Þ ¼ p xð Þp yð jxÞP
x02ΩN p x0ð Þp yð jx0Þ

¼ p xð jyÞ ð11Þ

The next step is then to take advantage of both Markov
theory and theory of evidence by generalizing the Bayesian
masses to evidential ones and exploit the result presented
above. However, when at least one of the masses involved
in the DS fusion is evidential, the result of this latter may
no longer be a Markov chain, and thus, the Bayesian res-
toration is not directly applicable. The recent TMCs sur-
mount this difficulty through the introduction of the third
underlying process U as stated in the previous section. In
fact, it has been shown that the DS fusion of the masses’
functions defined above is a TMC and the calculation of
the posterior distributions, necessary to achieve the differ-
ent estimation procedures, remains possible.
As mentioned before, this result was used in [12] to

consider evidential priors to take into account the non-
stationary aspect of p(x). Therefore, the authors define
an “evidential HMC model” that extends the standard
HMCs to the monosensor nonstationary case. On the
other hand, the authors in [24] define a multisensor hid-
den Markov field that can resolve the problem of the
image segmentation in presence of clouds discussed in
this section. The aim of this article is to consider the
problem where we have both situations simultaneously.
Hence, the Dempster–Shafer theory of evidence is used,
for one hand, to model the lack of precision in the prior
distribution and, on the other hand, to consider more
than one sensor with some unreliable one like the sensor
with cloudy image.

Multisensor nonstationary hidden Markov chains
In this section, we describe our new model that will be
called the multisensor nonstationary hidden Markov
chain (MN-HMC), and we give its corresponding MPM
restoration and EM parameters estimation procedures.

Model definition
Let X ¼ X1...N be a hidden process that takes its values
from a finite set of classes Ω ¼ ω1; . . . ;ωKf g and that is
to be estimated from a family of observable processes
Y ¼ Y 1...R provided by R independent sensors S1. . .R
where Y r ¼ Y r

1N and where each Y r
n takes its values from

ℝ. Let us assume now that the realization of X is gov-
erned by a nonstationary Markov chain in the sense that
the distributions p xnþ1 ¼ ωð jxn ¼ ω0Þ are not known
with precision (or depend on n). Let us also suppose that
at least one of the sensors S1. . .R is Bayesian. Without
loss of generality, let S1 be such a sensor. The MPM
Bayesian restoration using the whole observable process
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Y ¼ Y 1...R is then workable and the number of elemen-
tary operations required for its evaluation is linear with
the size of the data N (the proof can be found in [14]).
The model Z= (X, Y) is then called an MN-HMC. The
MPM restoration of the hidden process of an MN-HMC
can then be achieved; thanks to the DS fusion of the dif-
ferent mass functions involved in the model.

m xð Þ ¼ m0�⋯�mRð Þ xð Þ ¼ p xð jyÞ ð12Þ

Although the result of this fusion is not necessarily a
Markov chain, it is a marginal of a TMC [14] and hence,
the posterior marginal distributions p xn yj Þð are
computable.
Let us now demonstrate how the data are modeled

according to this model.
First, the nonstationary Markov chain governing the

hidden process X is replaced by a stationary evidential
Markov chain m0. Let U0 ¼ U0

1...N be a hidden process
that takes its values in P Ωð Þ ¼ ϕ; ω1f g; . . . ;Ωf g , m0 is

then defined on P Ωð Þ½ �N .
Second, the sensor S1 being Bayesian, its mass m1 is then

defined on Ω as follows: m1 xð Þ / p y11
� ��x1Þp y12

� ��x2Þ
. . . p y1N

� ��xNÞ.
For each sensor, we derive the corresponding observation

mass. For example, let us suppose that sensor S2 is only
sensitive to class ω1. The corresponding evidential mass is

then defined on Λ2½ �N with Λ2 ¼ ω1f g; ω2; . . . ;ωKf gf g .
For this purpose, we consider an underlying process U2 ¼
U2

1...N that takes its values in Λ2.
Finally, for some sensors, we may consider more than

one mass function. Let us consider the sensor of Ex-
ample 1 and let us assume that there are some clouds in
the image that it provides. The possible presence of
clouds can then be modeled by a probability measure on
P Ωð Þ ¼ ϕ;ω1;ω2;Ωf g , which is a mass function. More
explicitly, we consider an underlying process U2 ¼ U3

1...N

that takes its values in ω1;ω2;Ωf g. Furthermore, we can
consider an additional mass function to model the prior
knowledge of cloud presence regardless of the sensor
observation. This shows again the greater generality of
evidential models over Bayesian ones.
Let M ¼ m0...S be the set of masses that model the

data under consideration. For one hand, we know that
the DS fusion result of all these mass functions is a
TMC, and on the other hand, the result of this fusion is
the posterior probability p xð jyÞ. Hence, the posterior dis-
tributions p xnð jyÞ necessary to achieve MPM restoration
are computable.

Unsupervised segmentation of MN-HMCs
Let us consider the following image segmentation prob-
lem that extends the one given in Example 1.
Example 2: Let us consider the problem of satellite or
airborne optical image segmentation into two classes
Ω ¼ ω1;ω2f g where ω1 corresponds to “forest” and ω2

to “water”. Let S1 and S2 be two sensors, where S1 is a
RADAR sensor and S2 is an optical one. Let (1,. . .,N) be
the set of a line sites of the ground truth image X. The
problem is then to estimate the class-map x1. . .N given
the observations y11...N and y21...N provided by S1 and S2,
respectively.

Sensor 1: The digital image observations y11...N are
related to the hidden classes through the noise
probability density functions (pdfs) p y1n

� ��xn ¼ ω1Þ and
p y1n
� ��xn ¼ ω2Þ.

Sensor 2: Let us assume that there are some clouds in
the image y21...N provided by S2. We have then three
possibilities: “forest”, “water”, and “clouds”. The
observation at each pixel is related to its class through
the noise pdfs p y2n

� ��xn ¼ ω1Þ, p y2n
� ��xn ¼ ω2Þ, and

p y2n
� ��xn ¼ }clouds}Þ, respectively.

The problem consists then in how to estimate the
class-map x1. . .N using both sensors images in Markovian
context in such a way that nonstationary aspect of p(x) is
taken into account. For this purpose, we use our proposed
model. First, we have to gather all the information that can
be fused lately to achieve the MPM restoration.
Data modeling
First, the nonstationary Markov chain governing X is
replaced by a stationary evidential Markov chain m0. Let
U1 ¼ U1

1...N be a hidden process that takes its values in
P Ωð Þ ¼ ϕ; ω1f g; ω2f g;Ωf g and that models the lack of

knowledge of X priors, m0 is then defined on P Ωð Þ½ �N by
m0 u1ð Þ ¼ m0 u11

� �
ΠN

n¼2m0 u1n
� ��u1n�1Þ.

The first sensor being Bayesian, the observation know-
ledge may then be modeled through a probabilistic mass
function m1 defined by m1 xð Þ ¼ ΠN

n¼1m1 xnð Þ /
ΠN

n¼1p y1n
� ��xnÞ. Accordingly, the MPM restoration may be

done based on this sensor alone.
The possible presence of clouds may be modeled by a

probability measure on P Ωð Þ ¼ ϕ;ω1;ω2;Ωf g which is a
mass function given by m2 u2ð Þ / ΠN

n¼1m2 u2n
� �

where

u2 2 P Ωð Þ½ �N and m2 ω1ð Þ / p y2n
� ��u2n ¼ ω1Þ , m2 ω2ð Þ /

p y2n
� ��u2n ¼ ω2Þ, and m2 Ωð Þ / p y2n

� ��u2n ¼ ΩÞ. For this par-
ticular sensor, we may use another evidential Markov
mass to model the contextual information correspond-
ing to the presence of clouds. In fact, neighboring
clouds’ pixels belong more likely to cloud class than
other pixels do. Let m3 be such a mass defined on

P Ωð Þ½ �N by m3 u2ð Þ ¼ m3 u21
� �

ΠN
n¼2m3 u2n

� ��u2n�1Þ.
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MPM restoration of hidden data
We have defined a family of four masses m0, m1, m2,
and m3 that represent all the knowledge we have about
the data. Let T ¼ X;U ;Yð Þ ¼ V ;Yð Þ be a TMC where

X ¼ X1...N with each xn 2 Ω, U = U1, U2 with each un 2
P Ωð Þ½ �2 and Y = (Y1, Y2) with each yn 2 R2. The distribu-
tion of T is then given by

p t1; . . . ; tnð Þ / q1 t1; t2ð Þq2 t2; t3ð Þ . . . qN�1 tn�1; tNð Þ
ð13Þ

where

q1 t1; t2ð Þ ¼ 1 x12u11\u21½ �1 x22u12\u22½ ��
m0 u11

� �
m0 u12

� ��u11Þm1 x1ð Þm1 x2ð Þm2 u21
� �

m2 u22
� �

m3 u21
� �

m3 u22
� ��u21Þ

qn tn; tnþ1ð Þ ¼ 1 xnþ12u1nþ1\u2nþ1½ �
m0 u1nþ1

� ��u1nÞm1 xnþ1ð Þm2 u2nþ1

� �
m3 u2nþ1

� ��u2nÞ

8>>>>>>><
>>>>>>>:

ð14Þ

Then, the DS fusion result m ¼ m0�m1�m2�m3ð Þ is
the posterior distribution p xð jyÞ defined by the joint dis-
tribution p(x, y) which is itself the marginal distribution
of the TMC defined above. Hence, the posterior mar-
ginal distributions p xn;unð jyÞ are computable and so are
the interesting probabilities p xnð jyÞ.
Finally, to achieve the MPM restoration of the hid-

den process, we either use the theorem giving a gen-
eral definition of a Markov chain [12] or the well-
known forward αn vnð Þ ¼ p y1; . . . ; yn; vnð Þand backward
βn vnð Þ ¼ p ynþ1; . . . ; yNð jvnÞ recursive functions that
have been adapted to the multisensor nonstationary
context. In this article, we chose to adopt the latter
option. For the use of the Markov chain theorem,
the reader may refer to [12].
The forward and backward functions can be calculated

in the following iterative ways:

α1 v1ð Þ ¼ p v1; y1ð Þ
αn vnð Þ ¼ P

vn�1αn�1 vn�1ð Þp vnð jvn�1Þm1 xnð Þm2 u2n
� ��

ð15Þ

βN xNð Þ ¼ 1
βn vnð Þ ¼ P

vnþ1βnþ1 vnþ1ð Þp vnþ1ð jvnÞm1 xnþ1ð Þm2 u2nþ1

� ��

ð16Þ

Where p vnþ1ð jvnÞ / 1 xn2u1n\u2n½ �1 xnþ12u1nþ1\u2nþ1½ �m0 u1nþ1

� ��u1nÞ
m3 u2nþ1

� ��u2nÞ and p v1; y1ð Þ / 1 x12u11\u21½ �m0 u11
� �

m1 x1ð Þ
m2 u21

� �
m3 u21

� �
.

The posterior marginal distributions p vnð jyÞ and
p xnð jyÞ can then be computed as follows

p vnð jyÞ ¼ αn vnð Þβn vnð Þ ð17Þ
p xnð jyÞ ¼

X
vn3xnp vnð jyÞ ð18Þ

On the other hand, the posterior transitions and mar-
ginal distributions necessary for the parameters estima-
tion can be calculated according to

ψ vn; vnþ1ð Þ ¼ p vn; vnþ1ð jyÞ
¼ αn vnð Þp vnð jvn�1Þm1 xnþ1ð Þm2 u2nþ1

� �
βn vnþ1ð Þ

ð19Þ
ξ vnð Þ ¼ p vnð jyÞ ¼

X
vn�1ψ vn�1; vnð Þ ð20Þ

Model parameters estimation
To estimate the model parameters, we either use the well-
known EM algorithm, its stochastic version SEM or the
ICE algorithm. Let us mention that all these latter have
been used in the triplet Markov models context [25,28].
Let us also mention [30] where a brief comparative study is
conducted between EM and ICE algorithms in the hidden,
pairwise, and triplet Markov models contexts. As we deal
with a particular TMC model, we only need to adapt each
one to the situation addressed in this article.
In this article, we propose to adapt the EM algorithm to

the MN-HMC case. For this purpose, let us consider the
TMC T = (X, U, Y) = (V, Y) defined above. For the sake of
simplicity, we consider the Gaussian case where the noise
pdfs p ynð jxnÞ and p ynð ju2nÞ are of Gaussian form. According
to Example 2 (where Ω = {ω1, ω2}, we have to estimate the
following parameters: the evidential mass mij ¼ m0 u1n ¼

�
λi; u1nþ1 ¼ λjÞ defined on [P(Ω)]2, the K = 2 means μ11...K
and σ11...K standard deviations of the Gaussian pdfs govern-
ing m1, the K+1=3 means μ21...Kþ1 and standard deviations
σ11...Kþ1 of the Gaussian densities governing m2 and the evi-

dential transition mass cij ¼ m3 u2n ¼ λi
� ��u2nþ1 ¼ λjÞ

defined on [P(Ω)]2. The parameters estimation process is
accomplished iteratively as follows:

(1) Consider an initial set of parameters Θ0 ¼ m0
ij; c

0
ij;

�
μ11::K ; μ

1
1::K ; σ

2
1::K ; σ

2
1::K

� �0Þ.
(2) For each iteration q, calculate Θq + 1 from Θq and Y

in two steps:
a. Step E: compute αqn vnð Þ and βqn vnð Þ and then
derive ψq vn; vnþ1ð Þ and ξq(vn).

b. Compute Θq + 1 as follows.

μ1k
� �qþ1 ¼

PN
n¼1

P
unξ

q xn ¼ ωk ; unð Þy1nPN
n¼1

P
unξ

q xn ¼ ωk ; unð Þ ð21Þ



μ
�

�h

�h

mqþ
ij
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2
k

�qþ1 ¼
PN

n¼1

P
vn=u2n¼λk ξ

q vnð Þy2nPN
n¼1

P
vn=u2n¼λk ξ

q vnð Þ
ð22Þ

σ1k
�qþ1

i2
¼

PN
n¼1

P
unξ

q xn ¼ ωk ; unð Þ y1n � μ1k
� �qþ1

� �2

PN
n¼1

P
unξ

q xn ¼ ωk ; unð Þ
ð23Þ

σ2k
�qþ1

i2
¼

PN
n¼1

P
vn=u2n¼λk ξ

q vnð Þ y2n � u2k
� �qþ1

� �2

PN
n¼1

P
vn=u2n¼λk ξ

q vnð Þ
ð24Þ

1 ¼ 1
N � 1ð Þij

XN

n¼1

X
vn;vnþ1=u1n¼λi;u1nþ1¼λjψ

q vn; vnþ1ð Þ

ð25Þ

cqþ1
ij ¼

PN
n¼1

P
vn;vnþ1=u2n¼λi;u2nþ1¼λjψ

q vn; vnþ1ð ÞPN
n¼1

P
vn=u2n¼λiξ

q vnð Þ
ð26Þ
where #i is the cardinal of the set λi.

Experimental results
This section is devoted to the application of the MN-
HMC, described above, to the segmentation of multisen-
sor nonstationary signals.
For this purpose, let us consider the following situation:

Let S1 and S2 be two sensors providing two different
observable signals y1 ¼ y11...N and y2 ¼ y21...N that can be
seen, in some manner, as noisy versions of a ground
truth x ¼ x1...N with the following difficulties: X, which
is hidden and to be estimated in some way from
Y= (Y1, Y2), is a realization of an unknown Markov
chain that may be strongly nonstationary. Moreover,
the signal Y2 presents an extra class which may
correspond to clouds in a SPOT image or even missing
observation at some signal sites. This class represents
then the ignorance attached with the fact that we
cannot decide whether such a site belongs to any of the
classes. Let B be the process corresponding to the
presence of this extra class. In this study, such a
process is assumed to be Markovian.
Thereafter, we consider two series of experiments: in
the first one, we deal with synthetic multisensor
nonstationary data, whereas in the second one, we
consider two nonstationary class-images that we noise
in some manner to fit the multisensor nonstationary
context. To assess the efficiency of the proposed model,
MPM restoration is also achieved according to some
conventional models.
Unsupervised segmentation of MN-HMCs
In this experiment, we deal with sampled multisensor
nonstationary HMCs. Let T = (X, U2, Y) be such a model
with Ω = {ω1, ω2} and N= 5000 and the following matri-
ces

M1 ¼ 0:98
0:02

0:02
0:98

� 	
;M2 ¼ 0:6

0:4
0:4
0:6

� 	
; and J ¼ 0:98

0:01
0:02
0:99

� 	
:

The hidden process X = X1. . .N is nonstationary in the
following way: given the two matrices M1, M2, and a
value of s ¼ 1; 2; . . . ;Xi ¼ X i�1ð Þsþ1;X i�1ð Þsþ2; . . . ;Xis

� �
.

The realization of X fulfills the following

▪ The distribution of X1 is (0.5, 0.5).
▪ M1 is the transition matrix in X1, X3,. . .
▪ M2 is the transition matrix in X2, X4,. . .

A realization of X is then sampled. On the other hand,
the realization of B, modeling the presence of the extra-
class in the second sensor signal, is sampled as a Markov
chain with transition matrix J. Accordingly, the corre-
sponding realization of U2 can be derived as follows

u2n ¼ Ω if bn ¼ 1
u2n ¼ xn elsewhere

�
ð27Þ

Given the realizations of X and U2, the observed sig-
nals are then sampled in the following manner

▪ Sensor 1: y1 ¼ y11...N is sampled according to
p y11
� ��x1Þp y12

� ��x2Þ . . . p y1n
� ��xNÞ where p y1n

� ��xn ¼ ω1Þ is
Gaussian with mean 0 and standard deviation 1, and
p y1n
� ��xn ¼ ω2Þ is Gaussian with mean 1 and standard

deviation 1.
▪ Sensor 2: y2 ¼ y21...N is sampled according to
p y21
� ��u21Þp y22

� ��u22Þ . . . p y2Nu
2
N

� �
where p y2n

� ��u2n ¼ ω1f gÞ is
Gaussian with mean 0 and standard deviation 1,
p y2n
� ��u2n ¼ ω2f gÞ is Gaussian with mean 1 and standard

deviation 1, and p y2n
� ��u2n ¼ ω1;ω2f gÞ is Gaussian with

mean 2 and standard deviation 1.

As these experiments aim at assessing the proposed
model against the conventional ones, MPM restoration
of the hidden process of interest is also achieved accord-
ing to the following family of approaches (with increas-
ing degree of complexity):

▪ The segmentation is accomplished based on the first
sensor signal using: K-Means, standard HMC, and
evidential HMC.
▪ Then, we achieve MPM segmentation based on both
sensors images using the multisensor stationary HMC
(MS-HMC) as the one proposed in the Markov fields’
context [24], and the MN-HMC formalism, proposed
in this article.
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Hundred experiments are carried out for each value of
s. The obtained segmentation results are summarized in
Table 1.From the obtained segmentation error ratios, we
can mention the following remarks:

▪ The segmentation error ratios obtained by the
application of K-Means and HMCs do not depend on
the value of s.
▪ As the value of s is higher, as the data nonstationarity
is stronger. Since we deal with unsupervised
segmentation, the evidential HMC outperforms the
conventional HMC. This is due to the fact that the
evidential HMC takes into account the nonstationary
aspect of the data. Similarly, the multisensor
nonstationary HMC outperforms the multisensor
stationary HMC for high values of s.
▪ Both multisensor models outperform the standard
HMC. This difference is due to the fact that they utilize
more data than the conventional HMC does. This also
shows that the EM procedure yields better parameters
estimates in the unsupervised context when more data
are available.
▪ The importance of considering data nonstationarity
against the importance of the amount of data used to
achieve the segmentation can be evaluated by
comparing error ratios of both the EHMC with the
MS-HMC. When the data are strongly nonstationary
(high values of s), the EHMC provides better results
than the MS-HMC since this latter does not take
nonstationarity into account. On the other hand, for
low values of s, the MS-HMC yields better results than
the EHMC.
▪ Overall, the proposed MN-HMC outperforms the
previous models. In fact, the proposed model utilizes
more than one observed signal while it takes into
account the nonstationary aspect of the hidden process.
Table 1 Error ratios (%) of unsupervised segmentation of
synthetic multisensor nonstationary data

s τK-Means τMPM
HMC�EM τMPM

EHMC�EM τMPM
MS�HMC�EM τMPM

MN�HMC�EM

2 30.6 26.7 26.7 22 22

4 32.3 25.7 25.6 19.7 19.7

8 31.5 23.6 24 20 19.7

16 30.3 22.5 22.3 19.2 17.7

32 31.6 24.5 22.2 20.4 17.5

64 30.9 23.1 21.6 19.7 17.2

128 30.7 22.4 19.6 18.4 15.5

256 29.9 25.7 19.2 19.1 15.4

512 32.4 23.5 18.2 21.5 15.3

1024 31.6 22.9 17.7 20.7 15.3

2048 31 25.3 17.1 17.9 14.1
It benefits on one hand, from the advantages of the
contextual information through the use of Markov
theory and, on the other hand, from the benefits of the
theory of evidence that permits to consider uncertainty
in hidden classes priors and data fusion in the same
time.

Unsupervised segmentation of multisensor noisy
nonstationary images
In this experiment, we propose to apply our model to
multisensor noisy nonstationary images. To make our
chain model applicable on images, these latter are con-
verted from and to 1D signals using the Hilbert-Peano
scan [31].
For this experiments set, we consider two nonstation-

ary class images: the “Nazca bird” image (Figure 1a) and
the “squares” image (Figure 2a).
Let us consider, for instance, the “Nazca bird” nonsta-

tionary image which is a 128 × 128 class-image with
K= 2 classes that will serve as a ground truth image.
Then, we noise the image in two different manners to
have two observed images that can be lately fused using
the proposed MN-HMC. Hence, we have Ω= {ω1, ω2}
and N= 16384.
For the first observed image, y1 ¼ y11...N is sampled

according to p y11
� ��x1Þp y12

� ��x2Þ . . . p y1N
� ��xN Þ where

p y1n
� ��xn ¼ ω1Þ is Gaussian with mean 0 and standard de-

viation 1 and p y1n
� ��xn ¼ ω2Þ is Gaussian with mean 1

and standard deviation 1.
For the second observed image, let us assume that

some of the image pixels are corrupted (or even miss-
ing). We have then, three classes: ω1, ω2, and an extra-
class where we cannot decide whether the given pixel
belongs to either of the two classes. Let B be the process
that governs the presence of the third class (that we call
“corrupted”). In this experiment, we assume this latter to
be Markovian. The realization of this latter was sampled
according to the following transition matrix defined on
the set {1, 2} where ‘1’ corresponds to “corrupted” and ‘2’
corresponds to “ �corrupted”.

J ¼ 0:998 0:002
0:001 0:999


 �
:

Accordingly, the corresponding realization of U2can
be derived as follows

u2n ¼ Ω if bn ¼ 1
u2n ¼ xn elsewhere

�
ð28Þ

y2 ¼ y21...N is then sampled according to
p y21
� ��u21Þp y22

� ��u22Þ . . . p y2N
� ��u2N Þ where p y1n

� ��u2n ¼ ω1f gÞ is
Gaussian with mean 0 and standard deviation 1,
p y1n
� ��u2n ¼ ω2f gÞ is Gaussian with mean 2 and standard



Figure 1 (See legend on next page.)
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Figure 1 Unsupervised segmentation of multisensor noisy image 1. (a) Original class image X= x. (b) First sensor observed image Y1 = y1.
(c) Second sensor observed image Y2 = y2. (d) Image restoration using K-Means, error ratio τK-Means = 39.4%. (e) Image MPM restoration using
HMCs, error ratio τHMC = 16.5%. (f) Image MPM restoration using evidential HMCs, error ratio τEHMC = 11.1%. (g) MPM estimation of the auxiliary
process U1 according to evidential HMCs. (h) Image MPM restoration using multisensor stationary HMCs, error ratio τMS-HMC = 12%. (i) Estimation
of the underlying U2 process according to multisensor stationary HMCs, error ratio τMS-HMC = 0.1%. (j) Image MPM restoration using multisensor
nonstationary HMCs, error ratio τMN-HMC = 7.9%. (k) MPM estimation of the auxiliary process U1 according to multisensor nonstationary HMCs.
(l) Estimation of the underlying U2 process according to multisensor nonstationary HMCs, error ratio τMN-HMC = 0.1%.
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deviation 1, and p y1n
� ��u2n ¼ ω1;ω2f gÞ is Gaussian with

mean 4 and standard deviation 1.
Notice that the contrast between the two classes ω1

and ω2 is higher in the second image. However, the reli-
ability of the corresponding sensor (presence of a third
class) makes the direct application of conventional hid-
den Markov models unworkable. The same thing hap-
pens when the observation is missing in some pixels
(which can be seen as a particular case of the present
one). This challenging difficulty can be surmounted;
thanks to the evidential model proposed in [24] and the
one proposed in this framework.
The MPM restoration of the class-image is then

achieved using the following approaches:

▪ The segmentation is carried out based on the first
sensor signal only, using: K-Means, standard HMC, and
EHMC.
▪ Then, we achieve MPM segmentation using both the
MS-HMC and the MN-HMC.

The MPM segmentation results are shown in Figure 1.
When applying K-Means clustering algorithm, the only

information used to restore data are the direct observa-
tions whereas no prior information about classes are
considered. Consequently, this model is too sensitive to
noise and the segmentation error ratio is relatively high
τK-Means = 39.4%.
In conventional HMCs, the neighborhood of each site

is taken into account. However, nonstationary aspect of
the hidden data makes the restoration results poor
τHMC = 16.5%. Indeed, as can be seen in the original
class-image, the two classes are not distributed in the
same manner along the image; there are some regions
with a lot of details (wings and tail of the bird), whereas
the image background is characterized by only one class
(white). This particular aspect of the class-image has
misled the segmentation through HMC since all their
corresponding estimation procedures consider the hid-
den process X as stationary.
The application of the EHMC permits to overcome

the difficulty discussed above (τEHMC= 11.1%) through
the introduction of a mass function that generalizes the
Bayesian prior probabilities and takes into account the
uncertainty attached to the prior distribution of X, due
to the heterogeneous aspect of the two classes along the
signal. However, it would be interesting to make use of
the second image where the contrast between the two
classes is higher, even if some pixels are hidden with an
extra-class.
Conversely, the MS-HMC exploits all the observed data,

and provides then better results than the conventional
HMC. Nevertheless, it does not take the nonstationary as-
pect of the data into account, and provides then compar-
able results with the evidential HMC τMS-HMC=12%.
Finally, the MN-HMC yields the best result among all

the considered models (τMN-HMC= 7.9%). This is due to
the fact that this model takes advantages of two
observed images while it takes the nonstationarity of the
data into account. The evidential HMC can then be seen
as a particular case of the MN-HMC, when only one
sensor is available, whereas the MS-HMC can be consid-
ered as a particular case of the MN-HMC where the
data to be modeled are actually stationary.
In the image corresponding to the estimation of the

process U2 (Figure 1k), the region in white corresponds
to the sub-set Ω where the confusion between the two
classes is too high. In fact, this region of the image (that
corresponds to the wings and tail of the bird) is charac-
terized by a lot of details. Let us mention that for such a
region, K-Means may provide comparable, and may be
even, better segmentation results than standard HMC
and MS- HMC. This is due to the fact that the
regularization in both HMC and MS-HMC misleads the
classification process in this region when considering
p(x) not depending on n. The aim of the use of the
EHMC relies in weakening the prior knowledge about
hidden classes in such regions to consider rather obser-
vation knowledge. In the same region of interest (wings
and tail of the bird), our MN-HMC model provides also
the best result because it uses more information than
the other models do (two sensors rather than one) while
it takes into account the nonstationarity of the data.
The EM-estimated parameters according to all the

Markov models are also provided in Table 2. The real
Gaussian noise pdfs parameters being known ( μ11 ¼
0; μ12 ¼ 1; μ21 ¼ 0; μ22 ¼ 2; μ21;2 ¼ 4 and all σsk ¼ 1), we can
check that the EM-estimated parameters according to
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Figure 2 Unsupervised segmentation of multisensor noisy image 2. (a) Original class image X = x. (b) First sensor observed image Y1 = y1.
(c) Second sensor observed image Y2 = y2. (d) Image restoration using K-Means, error ratio τK-Means = 30.9%. (e) Image MPM restoration using
HMCs, error ratio τHMC = 16.4%. (f) Image MPM restoration using evidential HMCs, error ratio τEHMC = 15.9%. (g) MPM estimation of the auxiliary
process U1 according to evidential HMCs. (h) Image MPM restoration using multisensor stationary HMCs, error ratio τMS-HMC = 9.1%. (i) Estimation
of the underlying U2 process according to multisensor stationary HMCs, error ratio τMS-HMC� 0%. (j) Image MPM restoration using multisensor
nonstationary HMCs, error ratio τMN-HMC = 7.6%. (k) MPM estimation of the auxiliary process U1 according to multisensor nonstationary HMCs.
(l) Estimation of the underlying U2 process according to multisensor nonstationary HMCs, error ratio τMN-HMC� 0%.
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the proposed MN-HMC are closer to the real ones. Let
us focus on the EM-estimated parameters according to
the different considered Markov models:
Table 2 EM-estimated parameters of the “Nazca bird” noisy
multisensor image according to different Markov models

HMC parameters estimated by EM

μ σ
Noise densities parameters ω1 0.3593 1.0331

ω2 1.1189 0.9526

ω1 ω2

Transition matrix ω1 0.7328 0.2672

ω2 0.1525 0.8475

Evidential HMC parameters estimated by EM

μ σ

Noise densities parameters

ω1 −0.0652 0.9498

ω2 1.0284 0.9676

ω1 ω2 Ω

Transition mass ω1 0.0105 0.0403 0.0008

ω2 0.0402 0.6726 0.0008

Ω 0.0008 0.0008 0.2332

Multisensor stationary HMC parameters estimated by EM

μ1 μ2 σ1 σ2

Noise densities parameters ω1 0.2964 0.6025 1.0745 1.3182

ω2 1.0061 1.9891 0.9831 1.0092

Ω – 4.0104 – 0.9929

ω1 ω2

Transition mass ω1 0.2081 0.0219

ω2 0.0219 0.7481

Multisensor nonstationary HMC parameters estimated by EM

μ1 μ2 σ1 σ2

Noise densities parameters ω1 0.0046 −0.0356 0.9994 0.9644

ω2 0.9928 1.9893 0.9843 0.9941

Ω – 4.0099 – 0.9927

ω1 ω2 Ω

Transition mass ω1 0.0074 0.0108 0.0022

ω2 0.0106 0.7096 0.0016

Ω 0.0024 0.0014 0.2540
▪ According to the standard HMC, the data provided
by the first sensor are considered stationary. Hence, the
HMC regularization misleads the parameters
estimations process. The same thing happens in the
MS-HMC context: even if both sensors images are
used, there is a mismatch between the data and the
EM-estimated stationary model, which leads to
unsuitable estimated parameters set.
▪ The evidential HMC model takes into account the
nonstationary aspect of data but only considers the
image provided by the first sensor. Therefore, the
estimated parameters are close to the real ones, but the
MPM segmentation is based only on one image and
hence the segmentation results are relatively limited.
▪ The parameters estimated based on the proposed
model are the closest to the genuine ones. Besides, we
can measure the difference between the parameters
estimated according to the two multisensor models:
since the MS-HMC is a particular MN-HMC where
the transition mass vanishes outside the singletons {ω1}
and {ω2}, the relatively high probability 0.2540
attributed to m({ω1, ω2}, {ω1, ω2}) by the proposed
MN-HMC, can be seen as an inadequacy measure of
the multisensor stationary HMC.

The segmentation results of the “squares” nonstation-
ary image confirm the previous comments with the fol-
lowing slight difference: the segmentation error ratio
based on the evidential HMC model (τEHMC= 15.9%) is
significantly higher than that of the multisensor station-
ary HMC (τMS-HMC = 9.1%). This is due to the fact that
the considered “squares” image is moderately nonsta-
tionary. In such cases, the effect of the amount of data
used to achieve the MPM segmentation is more import-
ant than the effect of taking nonstationarity into ac-
count. The same concluding remark has been
mentioned in the synthetic experiments set for low
values of s. Let us mention that, for such kind of data,
the gain in segmentation accuracy by using the proposed
model is also restrained (τMN-HMC= 7.6% against τMS-

HMC = 9.1%).

Conclusions
In this article, we proposed a new approach to model
multisensor nonstationary signals in the Markovian
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context. The proposed model allows one to benefit sim-
ultaneously from both the Markov theory and theory of
evidence. Accordingly, Dempster–Shafer combination
rule was used for two purposes: to take into account the
nonstationary aspect of the hidden data of interest, and
to fuse the different sensors’ signals in the Markovian
context to boost up the segmentation accuracy. The ex-
perimental results demonstrated the interest of such a
modeling with respect to the conventional ones. As fu-
ture improvement, we may investigate the use of eviden-
tial pairwise Markov models to consider more complex
model structures. A further generalization of the present
approach may also consist in adapting the proposed for-
malism to Markov trees models in order to model
multi-resolution images [32].
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