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Abstract

The electroencephalogram (EEG), used to noninvasively monitor brain activity, remains the most reliable tool in the
diagnosis of neonatal seizures. Due to their nonstationary and multi-component nature, newborn EEG seizures are
better represented in the joint time—frequency domain than in either the time domain or the frequency domain.
Characterising newborn EEG seizure nonstationarities helps to better understand their time-varying nature and,
therefore, allow developing efficient signal processing methods for both modelling and seizure detection and
classification. In this article, we used the instantaneous frequency (IF) extracted from a time—frequency distribution to
characterise newborn EEG seizures. We fitted four frequency modulated (FM) models to the extracted IFs, namely a
linear FM, a piecewise-linear FM, a sinusoidal FM, and a hyperbolic FM. Using a database of 30-s EEG seizure epochs
acquired from 35 newborns, we were able to show that, depending on EEG channel, the sinusoidal and
piecewise-linear FM models best fitted 80-98% of seizure epochs. To further characterise the EEG seizures, we
calculated the mean frequency and frequency span of the extracted IFs. We showed that in the majority of the cases
(>95%), the mean frequency resides in the 0.6-3 Hz band with a frequency span of 0.2—-1 Hz. In terms of the frequency
of occurrence of the four seizure models, the statistical analysis showed that there is no significant difference

(p = 0.332) between the two hemispheres. The results also indicate that there is no significant differences between
the two hemispheres in terms of the mean frequency (p = 0.186) and the frequency span (p = 0.302).

Introduction

Seizures tend to happen more frequently in the neona-
tal period than at any other stage in life [1]. The reported
incidence of seizure ranges from 1 to 3 per 1 000 live
births in term infants and 10 to 15 per 1 000 live births
in preterm infants [2]. Seizures usually arise as the result
of excessive, synchronous electrical discharge, of neurons
within the central nervous system [3,4]. Although not a
disease in themselves, seizures are the most prominent
manifestation of neurological dysfunction in the new-
born [4]. They often suggest underlying disease processes
which may cause irreversible damage to the developing
neonatal brains and have demonstrated association with
infant mortality and long term morbidity [5]. The under-
lying brain conditions associated with seizures in the
neonates include hypoxic-ischemic encephalopathy, brain
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haemorrhage, stroke and meningitis [6,7]. It is therefore
critical to recognise neonatal seizures in their early stages
to allow timely medical intervention. Clinical assessment
of seizures in the neonates is difficult and unreliable as
many neonatal seizures occur either in the absence of any
clinical signs or accompanied by only subtle ones [8,9].
The clinical diagnosis is further hampered by the fre-
quent administration of sedative or paralytic agents to the
newborn patients in neonatal intensive care units.

Recorded via electrodes attached to the scalp, electroen-
cephalogram (EEG) noninvasively measures the electrical
activities of the brain and provides useful information
about its state. In the neonates, EEG is often the first test
to reveal clinically unsuspected seizures and remains the
only reliable method for the identification and diagno-
sis of subclinical seizures [10]. Besides being an effective
tool for diagnosis, newborn EEG also correlates with long-
term neurodevelopment outcome [11]. EEG analysis can
also assist in the design of automated methods for seizure
detection, classification, and source localisation among
other numerous applications [12].

© 2012 Mesbah et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Seizures appear in EEG as sudden, repetitive, evolving,
stereotyped waveforms that last at least 10s and have a
definite beginning, middle, and end [13]. Their frequency-
content varies with time [14-16] and is, therefore, best
represented in the joint time—frequency domain instead
of either the time domain or the frequency domain. Time—
frequency methods, such as quadratic time—frequency
distributions (TFDs) [17], facilitate the analysis of EEG
seizure signals by exploiting their spectral energy variation
with time.

Electroencephalogram patterns in neonatal seizures are
highly variable with complex and varied morphology, fre-
quency, and topography [18]. In this study, we analysed
newborn EEGs using a quadratic TFD with separable
kernel to characterise seizures in the time—frequency
domain. We extracted the instantaneous frequency (IF)
from the TFD to determine its modulation law; an
important descriptive characteristic of EEG seizure [14-
16,19,20]. The IFs were extracted using a method designed
specifically for multi-component signals [21] and applied
to a separable kernel TFD with optimised parameters.
These extracted IFs were fitted to the four frequency mod-
ulated (FM) models previously linked with newborn EEG
seizure [14,21]. To further characterise the extracted IFs,
we computed their mean frequency and frequency span.
Characterisation of newborn EEG seizures is an essential
step in a number of applications such as modelling [16,22]
and detection/classification [15,19,20].

Time-frequency signal processing

Time—frequency signal processing arose due to the need
for accurate representation and efficient analysis and pro-
cessing of nonstationary signals [17]. Nonstationary sig-
nals are very common natural phenomena. They are char-
acterised by their time-varying frequency content which
make them unsuitable for analysis by traditional methods,
such as Fourier transform, that assume stationarity. Time—
frequency signal analysis uses TFDs to represent signals
in the joint time—frequency domain and is, therefore,
capable of tracking signals’ spectral change over time.

Quadratic time—frequency distributions

Quadratic TFDs have been extensively used in the anal-
ysis and processing of nonstationary signals in a number
of practical applications. They can be mathematically for-
mulated as [17]:

pz(t,f) = W(t.f) ** y(t.[) 1)
()]

where p,(¢,f) denotes the TED, W, (¢, f) the Wigner—Ville
distribution (WVD), y(t,f) the time—frequency kernel,
and * the linear convolution operation. The above formu-
lation can also be given in any of the other three joint
domains [time-lag (¢, 7), Doppler-frequency (v,f), and
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Doppler-lag (v, t)] that are linked to the time—frequency
domain via the Fourier transform [17]. With a time—
frequency kernel defined by y (t,f) = 8(£)§(f), where § is
the Dirac delta function, the WVD is the most basic mem-
ber of the quadratic class. For a real-valued signal s(¢£), the
WVD is defined as [17,23]:

o0

2t + D)2t — D) Y dr (2)
LTS

W.(t.f) = /

where z(t) is the analytic associate of s(¢) and z is its
complex conjugate. WVD possesses many desirable math-
ematical properties and provides the best joint time—
frequency resolution among all quadratic TFDs for linear
FM (frequency-modulated) signals [17]. However, being
quadratic in nature, WVD introduces artefacts, or cross-
terms, in the case of multi-component signals and nonlin-
ear FM signals. The presence of these artefacts can mask
the true signal components and make the interpretation
of the TFD a difficult task.

Other members of the quadratic TFD class can be rep-
resented as filtered versions of the WVD, where their
kernels act as two-dimensional smoothing filters [see (1)].
By carefully choosing the kernel, a quadratic TFD will
be able to attenuate the cross-terms while maintaining
some of the desirable properties of the WVD. As such,
the proper selection of the TFD kernel and its parame-
ters is an essential step in any TFD-based analysis and
processing. There is a special class of kernels, referred to
as separable kernels [24], whose members are expressed
as the product of two single-variable functions; that is,
as y(t,f) = g(®)H(f). This formulation makes the kernel
design process easier and allows the smoothing in time
and frequency directions to be independently performed.

Instantaneous frequency
Instantaneous frequency is an important feature char-
acterising nonstationary signals. For a mono-component
signal s(¢), with z(¢) = a(t)e?® as its analytic associate,
the IF is defined as [25]:

1 do(®)

fO == (3)
where a(¢) is instantaneous amplitude and ¢(¢) is the
instantaneous phase. Many IF estimating techniques have
been proposed in the literature and an extensive review
can be found in [26]. As most TFDs exhibit a peak about
the IF, one way to estimate the IF of mono-component
signals is through the detection of these TFD peaks.

For a multi-component signal, consisting of a sum of
two or more mono-component signals, the notion of
a single IF becomes inappropriate. To characterise this
type of signals, each mono-component is assigned its
own IF. Among several IF estimation methods specifically
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designed for multi-component signals that were previ-
ously proposed by some of the authors of this article in
[21,27], the method in [21] is selected; it estimates IFs
of multi-component signals by detecting and linking the
local peaks of the TFD. This method has the advantage
of not requiring prior knowledge about the signal under
analysis except that its components are clearly separated
in the time—frequency (TF) domain; a condition often
satisfied by newborn EEG signals. The method has been
successfully applied to biomedical signals such as EEG
and ECG [20,28,29]. As seizure signals mostly have a high
signal-to-noise (SNR) ratio [16,22], we decided to use this
more established method for IF estimation rather than,
for example, using the more recently proposed method for
extracting IF from signals with low SNR [27]. More details
on the IF estimation method is given in Section “Methods”.

Modelling of newborn EEG seizure in TF domain
Given an IF parametrised by f(¢, ¥), where W is an M-
dimensional parameter vector, a class of single component
nonstationary signals can be defined as [30]:

s(t) = a(t)e? Lot V)T “

In the present study, we used four classes of IF laws
to characterize newborn EEG seizures. Besides the three
classes previously identified [14,21], we added a new
class, namely the hyperbolic FM class, as we observed
some hyperbolic IF laws for newborn EEG seizures in
our database. The IF models, f(¢, V), along with the set
of parameters, W, for these classes are given in Table 1
[16,21,31]. For the LFM class, fj is the start (base) fre-
quency and f; is the frequency slope. For the SFM class, f;
is the carrier frequency, m is the amplitude of the cos com-
ponent, and @ is the phase of the cos component. For the
PWLFM class, ag, or1/2, 02 /2 are slope values for the three
pieces and By, By, fi, relate to the length of the pieces. For
the HFM class, f, is the starting (base) frequency and f;
is the slope of the pieces. More details can be found in
[21,31].

Table 1 Frequency modulated (FM) classes: linear FM
(LFM), sinusoidal FM (SFM), piecewise linear FM (PWLFM),
and hyperbolic FM (HFM)

Name IF law, f'(¢) Parameter set, ¥

LFM fo+fit [fo, ]

SFM fe + mcosQufmt + 6) [fe,m, fm, 6]

PWLFM (a1 — )|t — By| + (@ — )|t — By| [a,a1,00,B7,B7, ]
+ai(t—B1) +ax(t—By) +fm

HFM fo/ (1 +1r0) [fo, 7]
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Methods

We classified the newborn EEG seizure components based
on their parametric IF models using the following pro-
cess. First, IFs of seizure components were obtained using
an IF estimation method specifically designed for nonsta-
tionary multi-component signals [21]. This method starts
by mapping the time-domain EEG signals into the time—
frequency domain using a suitably chosen quadratic TFD
and followed by TFD local peak detection and component
linking operations. Each extracted IF is then fitted to the
above four parametric models using a large scale nonlin-
ear least squares algorithm [32,33]. The seizure pattern
is finally assigned to the class represented by the para-
metric IF model that best fits, in the least mean squared
error sense, the IF extracted from the seizure component.
The following gives more details about this three-stage
process.

Step 1: TF transformation

A suitable choice of a TFD depends on the application.
To account for the nonstationary and multi- component
nature of newborn EEG, the selected TFD should provide
high spectral resolution and have good cross-term reduc-
tion capability. In this study, we chose a separable kernel
TED defined by the following time—frequency kernel:

Y (@&.f) = gH(f)

where g(t) is the smoothing window, whose window
length controls the trade-off between time resolution and
cross-term reduction. And H(f) is the Fourier trans-
form of the analysis window /(7) whose length controls
the trade-off between frequency resolution and inner-
artefacts reduction [30].

We used the separable kernel in this study to: (1) sup-
press cross-terms and localise the signal components in
the time—frequency domain [21,24] and (2) obtain an
accurate IF estimation [21]. This kernel-type was previ-
ously shown to be particularly suitable for newborn EEG
signals [19,34]. In this study, we tested three separable
kernel TFDs to select the best one for representing the
newborn EEG. The discrete-time versions of these kernels
in the Doppler-Lag domain are given in in Table 2, where
g(n) is the discrete Fourier transform of g(¢) and h(m) is
the discrete-time version of k(7). Also, I' is the gamma
function, B is a smoothing parameter, and o is a mea-
sure of the spread of the Gaussian window. The lengths of
the Hann and Hamming windows are N + 1 and M + 1,
respectively.

Step 2: TFD local peaks detection and component linking

The TFD can be regarded as a two-dimensional image
with time and frequency as its row and column coor-
dinates. Local maxima (with respect to frequency) are
identified using both the first and second derivative tests.
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Table 2 Separable kernels used in the TFD selection process
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Kernel g(n)
Hann-Hamming 0.54 4 0.5 cos (£%2)
Hann-Gaussian 054 4 0.5 cos (£82)
2
Modified-B-Hamming I

h(m) Parameters (a,b)
0.54 + 046 cos (£42) (N, M)
exp (52) o)
0.54 4 046 cos (£42) B.M)

Only those local maxima that satisfy the condition of
n max p,(¢,f) where 7 is a prefixed threshold, are consid-
ered as valid peaks. By assigning value 1 to the locations
of valid peaks and value O to all others, the TF image is
transformed into a binary image B(t,f) [21]:

1 if {2590 = o} and {2260 < o]

and {p:(¢,f) > nmax ps(t,/))
0, otherwise.

B(t,f) =

Ideally, the IF of a signal component along which the sig-
nal energy concentrates is presented in the TFD as a ridge.
The component linking algorithm detects a linked compo-
nent in B(t,f) by examining the pixel connectivity and the
number of connected pixels. Among the sets of connected
pixels, only those with number of pixels exceeding a pre-
set threshold are identified as true linked components of
seizure IFs. To eliminate IFs of non-seizure components,
this threshold is set to the minimum time duration of a
seizure component in samples. For this study, we set this
minimum threshold to 10s [13].

Step 3: fitting and classifying the IF models

Each IF parametric model was fitted to the extracted IF.
The parameters for each model were optimised to give
the lowest mean squared error. We used the trust-region-
reflective algorithm to solve the nonlinear least-squares
problem [32,33]. This algorithm is a subspace iterative
trust region method for solving large scale nonlinear least
squares problems. Trust region methods are robust opti-
misation methods with strong convergence properties. To
guarantee that the iterates stay within the strictly feasi-
ble (trust) region, an interior-reflective technique is used.
The resulting method, which can be considered as a nat-
ural generalization of the trust region method for uncon-
strained optimization, overcomes the problem and has
relatively good computational performance. The IF model
with the lowest mean squared error was considered the
best fit for the estimated IF.

Data acquisition

The EEG data used in our study were collected from 35
newborns, admitted to the Royal Brisbane and Women’s
Hospital, Brisbane, Australia, using the MEDELEC Pro-
file system (Medelec, Oxford Instruments, UK). The 20-
channel EEG recordings were obtained using the standard
10-20 International System of Electrode Placement [35]

with a bipolar montage (see Table 3). The EEG was filtered
with a [0.5-70] Hz band-pass filter prior to sampling at a
rate of 256 Hz. The periods of newborn EEG with seizure
activities were identified by a neurologist from the Royal
Children’s Hospital, Brisbane, Australia. All the record-
ings were acquired in the presence of a trained technician
who recorded the different behaviours that may affect the
interpretation of the EEG such as degree of comfort (com-
fortable, irritable), apparent mental status (sleep, awake,
alert, nonresponsive), feeding (type and route), physical
behaviour (body position) and medical treatments (limb
restraints, intubation). Previous studies [36] showed that
over 95% of the spectral energy of newborn EEG resides
in Delta (0.5—4 Hz) and Theta (4—8 Hz) frequency bands.
Therefore, the EEG data was further filtered with a 13 Hz
low pass filter and then down-sampled to 32 Hz to reduce
computational cost. In this study, we used a total of 649
artefact-free EEG seizure epochs of 30-s duration each.
We chose to use 30s as a compromise between a good
discriminating power of the IF feature and the compu-
tational cost. Longer epochs tend to give more complex
IF morphology and, therefore, may require more complex
FM laws and computational power. These epochs were
extracted from multiple EEG channels, the specifics of
which are given in Table 3. As harmonic components in
newborn EEG seizure may be present [14], only the most
energetic (fundamental) was considered in our analysis.
We did not include the harmonic components as we found

Table 3 Distribution of the 649 seizure epochs from the
20-channel dataset

Left hemisphere Right hemisphere

Channel Number of epochs Channel Number of epochs
4 (F3-T3) 20 1 (F4-T4) 28
5(T3-T5) 37 2 (T4-Te) 23
6 (T5-01) 24 3(T6-02) 27
0(F3-C3) 26 7 (F4-C4) 21
1(C3-P3) 29 8 (C4-P4) 34
2 (P3-01) 35 9 (P4-02) 42
5(Cz-C3) 39 3(T4-C4) 36
6 (C3-T3) 28 4(C4-C2) 50
9 (Pz-P3) 44 7 (T6-P4) 22
20 (P3-P5) 39 18 (P4-P2) 45
Total 321 Total 328
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that, in more than 75% of the cases, the energy of the fun-
damental component was more than twice as large as the
first most energetic harmonic. Also, the energy ratio of
the fundamental component to the second most energetic
harmonic was larger than 3 in more than 87% of the cases.

Results and discussion

Figure 1 shows three different representations of a 30s-
epoch of newborn EEG seizure obtained with the TESA
package [17], a toolbox for MATLAB. Compared to the
time domain (left plot) and the frequency domain (bot-
tom plot), the TFD (centre plot) provides a more infor-
mative description of the EEG seizure by revealing the
temporal variation of its frequency content. Visual exami-
nation of the TFD suggests that there are one fundamental
component and a number of harmonics, which supports
previous findings about newborn EEG seizure [14,16].
Results of IF estimation are presented in Figure 2. The
best IF model/class that characterizes the fundamental
component is determined to be SEM as shown in Figure 2.

Selecting the optimal separable TFD

To select the best separable TFD to represent the EEG
in the time—frequency plane, we had to select the opti-
mal kernel parameters that give the most accurate IF
estimate. As there is no way to access the true IFs of the
real newborn EEG, the second best option was to run the
optimization test on a simulated newborn EEG signals
with known IFs. The most adequate and realistic EEG
model for this task was the one previously proposed by
some of the current authors [16]. The model consists of
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background and seizure sub-models. The background
model is based on the short-time power spectrum with a
time-varying power law. The seizure model was designed
to address most of the significant time—frequency charac-
teristics of newborn EEG seizure such as multiple compo-
nents (fundamental and harmonics), nonlinear IF FM law,
and amplitude modulation. More details can be found in
[16]. Most of the parameters of EEG models were shown
to behave like random variables with beta or log-normal
distributions. The EEG epoch is obtained by linearly
combining the simulated seizure and background; that is

eeg(n) = back(n) + SBR X seiz(n)

where back(n) stands for EEG background, seiz(n) for
EEG seizure and SBR for seizure to background ratio; a
parameter that plays a similar role to the SNR in the case
of noisy signals. To select the optimal parameters of the
three separable kernels, we performed a Monte Carlo sim-
ulation using the above model to generate 30-s realistic
newborn EEG epochs with known IFs. As the parameters
of the seizure IF model are mostly random variables and,
therefore, change from iteration to another, we were not
able to use the conventional criteria for the accuracy of
an estimator, namely the bias and variance. We have used
instead the following mean square error as a criterion to
judge the performance of the TFD-based IF estimators

11 & 2
mse(a, b) = ﬁ ,(2:; I ; Lfk(n; a, b) — fi(n)

A A

TIME SIGNAL 1

[¥]
e

Figure 1 Example of newborn EEG seizure. Time plot, frequency plot (power spectral density, PSD), and TFD of 30-s newborn EEG.

4 5 6 7 8 9 10
FREQUENCY (Hz)
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(a) IF estimation fundamental, on the left and first haronic, on the right
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(b) Fitted IF model, blue line, to the fundamental IF, red line

Figure 2 Extracting and fitting the IF for the TFD in Figure 1.

where (a,b) are the parameters of the kernel (see Table 2),
P is the total number of Monte Carlo iterations, fk(n; a,b)
is the estimated IF of length Ly computed using the mul-
ticomponent IF estimator at the k-th iteration for given
parameters (a,0) and fx(n) is the true IF of the simu-
lated seizure at the k-th iteration. The optimal kernel
parameters were selected such that

(@opt bopt) = argmin{mse(a, b)}
(a,b)

In this study, the following parameters have been used:

EEG model: Sampling frequency = 32Hz, EEG epoch
length = 30s, and SBR = 10dB.

IF estimation: Peak threshold = 0.01 and minimum
length of IF = 10s. We studied different values of  larger
than 0.01 but most of them failed to extract valid IFs.
Monte Carlo simulation: 50 iterations.

Separable kernels: 40 discrete kernel parameters values
for both a and b.
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The results of the Monte Carlo simulation are shown
Figure 3 and the minimum mean-MSE values are in
Table 4.

Although the Hann-Gaussian kernel gives the best
overall performance, the results of the three kernels are
very close. We have also noticed that the IF estimators are
not very sensitive to changes in the kernel parameters in
the neighbourhood of the optimal values as can be seen
in Figure 3. Based on these results, we chose the Hann—
Gaussian separable kernel with parameters (77,0.058) to
perform the IF estimation for the newborn EEG seizure
characterisation.

Fitting FM signal models

The bar chart in Figure 4a displays the results of IF classifi-
cation. Out of the 649 seizure epochs, 392 (60.4%) epochs
have IFs that are best modelled by a piece-wise linear FM,
211 (32.51%) by a sinusoidal FM law, 43 (6.63%) by hyper-
bolic FM and only 3 (0.46%) by a linear FM law. Because
the 649 seizure signal components were collected from
multiple channels of both left and right hemispheres, we
examined the distribution of the IF classes related to each
EEG channel and for the two hemispheres to check if there
is any preferential tendencies. As shown in Figure 4b,
the IF class distributions are quite similar in the two
hemispheres.

The results of IF class distributions related to each
EEG channel are shown in Figure 4c. Visual examina-
tion suggests that there are notable differences among
channels. Piecewise-linear FM is still the class with the
highest percentage in all channels followed by the sinu-
soidal FM. But in channel 12 (P3-0O1) and channel 20
(P3-P5), the percentages of these two classes are close. In
this channel, piecewise-linear FM class account for over
50% while sinusoidal FM class occupies about 45%. The
percentage of piecewise-linear FM class and sinusoidal
FM class in channel 20 (P3—-P5) are approximately 44 and
41%, respectively. In other channels, the percentages of
piecewise-linear FM class ranges from 55 to 68% while
that of sinusoidal FM class is between 25 and 40%. Chan-
nel 7 (F4—C4) has the highest percentage (around 19%) of
hyperbolic FM signal components among all the channels.
Channels 2 (T4-T6), 8 (C4—P4), 16 (C3-T3), 17 (T6—P4)
and 20 (P3-P5) also have a relatively high percentage (over
10%) of hyperbolic FM components compared to the rest
of the channels. The linear FM signal components were
only found in Channels 1 (F4-T4), 3 (T6-02), 9 (P4-02)
and 10 (F3-C3) at low percentages. For objective com-
parisons, we used a pair-wise Fisher’s exact test between
the two hemispheres. At a significance level of 0.05, left
and right hemispheres were not found to be significantly
different.

Another finding worth mentioning is that when check-
ing the intermediate results of IF class distributions, we
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Table 4 Distribution of the 649 seizure epochs from the
20-channel dataset

Kernel Optimal parameters Minimum
(@opt> bopt) mean-MSE
Hann-Hamming (77,265) 7.205 x 10~/
Hann-Gaussian (77,0.058) 7.093 x 10~/
Modified-B-Hamming (0.06,215) 9.061 x 1077/

found that in all the cases where the EEG seizure compo-
nent was assigned to the linear FM class, the mismatch
errors (MSE) resulting from selecting the linear FM model
and the piecewise linear FM model were very close. This
is expected as the piecewise linear FM model is flexi-
ble enough to account for the simple LFM case. Also,
the infrequent occurrence of linear FMs is because of the
complexity of the EEG seizure behaviour over relatively
long windows; a factor that was found to limit the per-
formance of automatic seizure detection when using EEG
epochs larger than 12s. Also, but to a lesser degree, we
found that when the hyperbolic FM model was selected
as the best fit, the difference between MSE associated
with hyperbolic FM and sinusoidal FM were small. These
observations suggest that EEG seizure epochs can be prac-
tically characterized by two classes, namely piecewise
linear FM and sinusoidal FM.

Quantifying the IF

The characteristics of newborn EEG seizure components
were further studied by analysing their mean frequencies
and frequency spans over the 30s epochs. The mean fre-
quency was calculated as the average frequency of the
estimated fundamental IF and frequency span as the dif-
ference between the maximum frequency and minimum
frequency of this estimated IF. Box-and-whisker plots
were used to provide a visual summary of their distribu-
tions. The results are shown in Figures 5 and 6.

Figures 5a and 6a present the distributions of mean
frequencies and frequency ranges extracted from all the
649 signal components. The mean frequencies of the EEG
seizure components range from about 0.6 to 6.5 Hz (mean:
1.58, standard deviation: 0.72), with most of epochs’ mean
frequency in the Delta frequency band (0.5-4 Hz). They
are, however, not evenly spread across the entire range,
with the first 25% between 0.6 and 1.1 Hz, the second 25%
grouping more closely in the range 1.1-1.4 Hz, the third
25% between 1.4 and 1.9 Hz and the rest spreading more
sparsely towards the higher frequencies.

Most of the EEG seizure epochs’ IF components have
frequency span in the range of 0.15-1 Hz, and a few have
larger frequency spans beyond 1 Hz. Similar to the mean
frequency, the distribution of frequency span is slightly
skewed towards the right, with the lower adjacent value
at around 0.15Hz, the first quartile at about 0.38 Hz,
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the median at 0.5 Hz, the third quartile at approximately
0.65Hz and the upper adjacent value at about 1Hz.
These mean frequency and frequency span results agree
with previous findings, such as studies in [14,16], which
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constrains seizure energy to the first 5Hz frequency
band. The difference in the higher frequency end (that
is, 3-5Hz) can be explained by the fact that we have
ignored the relatively low energy harmonics that reside in
frequencies higher than 3 Hz.

To find out if there are differences among different brain
regions in terms of mean frequency and frequency span
distributions, we performed the same analysis as before
but this time grouping the channels in hemispheres. In
Figures 5b and 6b the distributions of the mean frequen-
cies and the frequency spans were plotted for compar-
isons between hemispheres and among channels. These
results suggest that the left and right hemispheres are
quite similar in terms of both mean frequency distribu-
tions and frequency span distributions. The distributions
of both mean frequencies and frequency spans from both
hemispheres are slightly skewed towards the high fre-
quency, though slightly more in the right hemisphere and
in the case of mean frequency distributions. An objective
comparison between hemispheres using Mann—Whitney
U-tests [37] showed that there was no significant dif-
ference for mean frequency (p = 0.1860) and the fre-
quency span (p = 0.3022), applying a significance level of
0.05.

The mean frequency and frequency span distributions
of seizure signal components in each channel are pre-
sented in Figures 5c¢ and 6c¢. Similar to the combined
distributions in Figures 5a and 6a, all the channels have a
mean frequency mostly within the Delta frequency band,
and frequency spans within a 0.15-1 Hz range.

It is not accurate to do the comparisons among channels
just by means of visual inspection. But some channels
do stand out from the rest. Each of the channels 2
(T4-T6), 5 (T3-T5), 7 (F4-C4), 8 (C4—P4), 14 (C4—Cz),
16 (C3-T3) and 17 (T6-P4) has no more than three
seizure components of higher mean frequencies within
the theta frequency band, which are marked as outliers.
Ignoring outliers in the distributions, the mean frequen-
cies of signal components in Channels 3 (T6-02) and 16
(C3-T3) are tightly grouped in much smaller frequency
bands compared to others, while the mean frequencies in
Channel 8 (C4—P4) spread across the widest range among
all the channels. Compared to other channels, the fre-
quency ranges of seizure signal components in Channel
2 (T4-T6) are restricted in a much small range when
disregarding the two outliers.

Quantifying the mean- and frequency-span parame-
ters is important for improving existing, and developing
new, seizure detection methods. For example, a time—
frequency matched filter approach builds a template set
from a model of seizure IF; knowing the type of IF signal
model, and the distribution of seizure IF frequencies, will
help to build more accurate template sets for this method
[15,19].
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Conclusions
In this study, we characterised newborn EEG seizures
using the fundamental IFs extracted from the UQCCR
database of 35 newborns. Among the identified four IF
law classes of newborn EEG seizures, the piecewise FM
and the sinusoidal FM classes appeared to be the most
frequent. Depending on the brain region, the two classes
accounted for about 80 to 98% of all the seizure compo-
nents. For the frequency of occurrence of the different
classes, no significant difference was found between dif-
ferent brain regions. The mean frequencies and frequency
spans of about 95% of seizure components from the new-
born EEG seizure dataset were found to be in the range of
0.6—3 Hz and 0.2—1 Hz, respectively. Similar to the case of
class distributions, no significant differences were found
between the two hemispheres in terms of mean frequen-
cies and frequency spans of the EEG seizure components.
In the attempt to characterize newborn EEG seizures,
we focused the study on modelling the fundamental IF
and extracting mean frequency and frequency span val-
ues for the estimated fundamental IFs, all within a 30-s
epoch. This information will be useful when constructing
new nonstationary methods for automatic detection and
classification of seizure or for improving existing meth-
ods such as [19,20]. This study was not exhaustive as there
are other aspects of the seizure components that can be
investigated as potential discriminating features. Some of
these are the amplitude modulation, ratio of energy of the
fundamental to the harmonic components, the time dura-
tion, the number of harmonic components, and coherence
of IF laws across channels. Also, the effect of different
epoch lengths on the seizure characterization will need to
be studied. The investigation of these features will be the
subject of future work that aims at gaining more under-
standing about the different characteristics of newborn
EEG seizures.
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