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Abstract

In this article, a learning-based target decomposition method based on Kernel K-singular vector decomposition
(Kernel KSVD) algorithm is proposed for polarimetric synthetic aperture radar (PolSAR) image classification. With new
methods offering increased resolution, more details (structures and objects) could be exploited in the SAR images,
thus invalidating the traditional decompositions based on specific scattering mechanisms offering low-resolution SAR
image classification. Instead of adopting fixed bases corresponding to the known scattering mechanisms, we propose
a learning-based decomposition method for generating adaptive bases and developing a nonlinear extension of the
KSVD algorithm in a nonlinear feature space, called as Kernel KSVD. It is an iterative method that alternates between
sparse coding in the kernel feature space based on the nonlinear dictionary and a process of updating each atom in
the dictionary. The Kernel KSVD-based decomposition not only generates a stable and adaptive representation of the
images but also establishes a curvilinear coordinate that goes along the flow of nonlinear polarimetric features. This
proposed approach was verified on two sets of SAR data and found to outperform traditional decompositions based
on scattering mechanisms.

Introduction
Synthetic Aperture Radar (SAR)[1] has become an impor-
tant tool for a wide range of applications, including in
military exploration, resource exploration, urban devel-
opment planning and marine research. Compared with
single-polarized SAR, polarimetric SAR (PolSAR) can
work under different polarimetric combinations of trans-
mitting and receiving antennas. Since combinations of
electromagnetic waves from antennas are sensitive to the
dielectric constant, physical characteristics and geometric
shape, PolSAR gives birth to a remarkable enhancement
on capabilities of data application and obtains rich target
information with identification and separation of full-
polarized scattering mechanisms. As an important com-
ponent of PolSAR image interpretation, target decom-
position[2] expresses the average mechanism as the sum

*Correspondence: chuhe@whu.edu.cn
1School of Electronic Information, Wuhan University, Wuhan, 430079, P. R.
China
2The State Key Laboratory for Information Engineering in Surveying, Mapping
and Remote Sensing, Wuhan University, Wuhan, 430079, P. R. China

of independent elements in order to associate a physi-
cal mechanism with each pixel, which allows the iden-
tification and separation of scattering mechanisms for
purposes of classification[3,4].
Many methods for target decompositions have been

proposed for the identification of scattering character-
istics based on the study of polarimetric matrixes. At
present, twomain camps of decompositions are identified,
namely coherent decompositions or incoherent decom-
positions. The coherent decompositions express the mea-
sured scattering matrix by radar as a combination of sim-
pler responses, mainly as the Pauli, the Krogager and the
Cameron decompositions. These decompositions are pos-
sible only if the scatters are points or pure targets. When
the particular pixel belongs to distributed scatters with the
presence of speckle noise, incoherent approaches must
be chosen for data post-processing in order to use the
traditional averaging and statistical methods. Incoherent
decompositions deal with polarimetric coherency matrix
or covariance matrix, such as the Freeman, the OEC, the
FourComponent, the Huynen, the Barnes and the Cloude
decompositions. However, these traditional methods aim
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to associate each decomposition component with a spe-
cific scattering mechanism, invalidating their applications
for different kinds of PolSAR images. For instance, the
component of the Pauli decomposition denotes water
capacity, in which only crops, which contain water, can be
targets, and decomposition on such a basis represents how
much water the targets comprise. The four-component
scattering model proposed by Yamaguchi et al. [5] often
appears in complex urban areas whereas disappears in
almost all natural distributed scenarios. In addition, with
improved resolution of SAR images, targets in the images
become clearer and clearer, and a pixel no longer purely
consists of several kinds of scattering mechanisms—the
limited scattering mechanisms being explored currently
may be unable to satisfy pluralism.
In the recent years, there has been a growing interest

in the study of learning based representation of signals,
which approximates an input signal y as a linear com-
bination of adaptive atoms di instead of adopting bases
corresponding to known scattering mechanisms. Sev-
eral methods are available for searching sparse codes
efficiently and include efficient sparse coding algorithm
[6], KSVD algorithm [7] and online dictionary [8]. The
KSVD algorithm shows stable performance in dictionary
learning as an iterative method that alternates between
the sparse coding of signal samples based on the learned
dictionary and the process of updating the atoms in the
dictionary. Although KSVD algorithm has been widely
used for linear problems with good performance, for the
nonlinear case, which widely exists in actual problems,
KSVD algorithm has the limitation that a nonlinearly
clustered structure is not easy to capture. It is empirically
found that, in order to achieve good performance in clas-
sification, such sparse representations generally need to
be combined with some nonlinear classifiers, which leads
to a high computational complexity. In order to make
KSVD applicable to nonlinear structured data, kernel
methods [9] have been introduced in this article. The
main idea of kernel methods is to map the input data into
a high-dimensional space in order to nonlinearly divide
the samples into arbitrary clusters without the knowledge
of nonlinear mapping explicitly and increasing compu-
tational complex. The combinations of kernel function
with other methods also give birth to various kernel-
based algorithms, including Kernel Principal Component
Analysis (KPCA) [10], Kernel independent component
analysis (KICA) [11] and Kernel Fisher discriminant
analysis (KFDA) [12].
Towards a general nonlinear analysis, we propose a

learning-based target decomposition algorithm for the
classification of SAR images, called Kernel K-singular
vector decomposition (Kernel KSVD). The algorithm
presented not only maintains the adaptation of KSVD
algorithm for dictionary learning but also exploits the

nonlinearity in kernel feature space for SAR images. The
Kernel KSVD-based target decomposition method has
been tested in the experiments of PolSAR image classi-
fication, which demonstrated better performance than
traditional decomposition strategies based on scattering
mechanisms.
The remainder of the article is organized as follows.

We describe the current target decompositions based on
scattering mechanisms in Section “Target decomposition
based on scattering mechanisms” and present the frame-
work of our proposed Kernel KSVD algorithm for the
learning-based decomposition in Section “A novel learn-
ing-based target decomposition method based on Kernel
KSVD for PolSAR image”. Then, we show experimental
results in the comparisons of traditional decomposition
methods in Section “Experiment”. Finally, we conclude the
article in Section “Conclusion”.

Target decomposition based on scattering
mechanisms
Many target decomposition methods have been proposed
for the identification of the scattering characteristics
based on polarimetric matrixes, including the scattering
matrix [S], the covariance matrix [C] and the coherency
matrix [T]. A PolSAR measures microwave reflectivity at
the linear quad-polarizations HH, HV, VH and VV to
form a 2 × 2 scattering matrix.

[ S]=
[
SHH SHV
SVH SVV

]
(1)

where Sab represents the complex scattering amplitude for
transmitting a and receiving b, in which a or b is hori-
zontal or vertical polarization, respectively. SHH and SVV
describe the cooperative polarimetric complex scattering
amplitudes, while SHV and SVH are the cross-polarimetric
complex scattering matrixes. For a reciprocal medium in
a monostatic case, the reciprocity theory [13] ensures that
SHV equals SVH , thus the matrix [S] is symmetric. In a
general situation, it is difficult to make a direct analysis
on the scattering matrix, and then it is always expressed
as the combination of scattering responses [ S]i of simpler
objects.

[ S]=
k∑

i=1
ci[ S]i (2)

where ci indicates the weight of [ S]i in the combination.
The decomposition proposed in (2) is not unique in the
sense that it is possible to find a number of infinite sets
{[ S]i , i = 1, . . . , k} in which the matrix [S] can be decom-
posed. However, only in some of the sets, it is convenient
to interpret the polarimetric information contained in
matrix [S], for instance, the Pauli, the Krogager and the
Cameron decompositions.
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Decompositions of the scattering matrix can only be
employed for characterizing the coherent or pure scatters.
For distributed scatters, due to the presence of speckle
noise, only second polarimetric representations or inco-
herent decompositions based on covariance or coherency
matrix can be employed. The objective of incoherent
decompositions is to separate matrix [C] or [T] as a
combination of second-order descriptors [C]i or [T]i
corresponding to simpler objects:

[C]=
k∑

i=1
pi[C]i (3)

[T]=
k∑

i=1
qi[T]i (4)

where pi and qi denote the responding coefficients for
[C]i and [T]i. Since the bases {[C]i , i = 1, . . . , k} and
{[T]i , i = 1, . . . , k} are not unique, different decompo-
sitions can be presented, such as the Freeman, the Four-
Component, the OEC, the Barnes, the Holm, the Huynen
and the Cloude decompositions.
Put it simply, the ultimate objective of target decompo-

sitions is to decompose a radar matrix into the weighted
sum of several specific components, which can be used
to characterize the target scattering process or geometry
information, as shown in (2)–(4).

A novel learning-based target decomposition
method based on Kernel KSVD for PolSAR image
This section reviews the decomposition based on KSVD
algorithm and introduces our Kernel KSVDmethod in the
kernel feature space.

KSVD algorithm
Let Y be a set of N-dimensional samples extracted from
an image, Y =[ y1, y2, . . . , yM]∈ RN×M, used to train an
over-complete dictionary D =[ d1, d2, . . . , dK ]∈ RN×K

(K > N), and the element di is called an atom. The pur-
pose of KSVD algorithm is to solve the following objective
function:

min
D,X

‖Y − DX‖2F , s.t.‖xi‖ ≤ T0, ∀i = 1, . . . ,M (5)

where ‖ · ‖2F denotes the reconstruction error. X =
[ x1, x2, . . . , xM] is the set of sparse codes representing the
input samples Y in terms of columns of the learned dic-
tionary D. The given sparsity level T0 restricts that each
sample has fewer than T0 terms in its decomposition. The
KSVD algorithm is divided into two stages:

(1) Sparse coding stage:
Using the learned over-complete dictionary D, the
given signal Y can be represented as a linear
combination of atoms under the constraint of (5). It

is often done by greedy algorithms such as matching
pursuit (MP) [14] and orthogonal matching pursuit
(OMP) [15]. In this article, we choose the OMP
algorithm due to its fastest convergence.

(2) Dictionary updating stage:
Given the sparse codes, the second stage is
performed to minimize the reconstruction error and
search a new atom dj under the sparsity constraint.
The performance of sparse representation depends
on the quality of learned dictionary. The KSVD
algorithm is an iterative approach for improving
approximation performance of sparse coding. It
initializes the dictionary through a K-mean
clustering process and updates the dictionary atoms
assuming known coefficients until it satisfies the
sparsity level. The updating of atoms and sparse
coefficients is done jointly, leading to accelerated
convergence. Despite its popularity, KSVD algorithm
generates a linear coordinate system that cannot
guarantee its performance when applied to the case
of nonlinear input.

Kernel KSVD in the kernel feature space
Let X =[ x1, x2, . . . , xM]∈ RK×M denote nonlinear sam-
ples and M the number of samples. The K-dimensional
space f : xi belongs to is called ‘input space’. It requires
a high computational complexity to accomplish classifica-
tion on such samples with a nonlinear classifier. Assuming
xi to be almost always linearly separated in another F-
dimensional space, called ‘feature space’, new linear sam-
ples xFi = ϕ(xi) ∈ RF can be generated after a nonlinear
mapping function ϕ. With such a nonlinear transform, the
original samples are linearly divided into arbitrary clusters
without increasing the computational complex. However,
the dimension of F space required is generally much high
or possibly infinite. It is difficult to perform the gen-
eral process of inner products in such a high-dimensional
space.
The main objective of kernel methods is that, without

knowing the nonlinear feature mapping function or the
mapped feature space explicitly, we can work on the fea-
ture space through kernel functions, as long as the two
properties are satisfied: (1) the process is formulated in
terms of dot products of sample points in the input space;
(2) the determined kernel function satisfies Mercer con-
straint, and the alternative algorithm can be obtained by
replacing each dot product with a kernel function κ . Then
the kernel function can be written as:

κ(xi, xj) = 〈
ϕ(xi),ϕ(xj)

〉
, i, j = 1, 2, . . . ,M (6)

where 〈, 〉 is an inner product in the feature space trans-
formed by ϕ. By replacing inner products with kernel
functions in linear algorithms, we can obtain very flexi-
ble representation for nonlinear data. Choosing the kernel
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function κ is similar to choosing the mapping function ϕ.
Several kernel functions are widely used in practice:

(1) Polynomial:

κ(xi, xj) = (xi · xj + b)d, d > 0, b ∈ R (7)

(2) Gaussian radial basis function (GRBF):

κ(xi, xj) = exp
(

−‖xi − xj‖
2δ2

)
, δ ∈ R (8)

(3) Hyperbolic tangent:

κ(x1, x2) = tanh(v(x1 · x2) + c), v > 0, c < 0
(9)

In this article, we introduce the kernel function into
KSVD algorithm and the adaptive dictionary is learned in
the feature space F instead of the original space. Let Y be
a set of N-dimensional samples extracted from an image,
Y =[ y1, y2, . . . , yM]∈ RN×M, used to train an initial over-
complete dictionary D ∈ RN×K (K > N). Assuming
X =[ x1, x2, . . . , xM]∈ RK×M to be the sparse matrix via
the OMP algorithm, the kernel trick is based on the map-
ping f : xi → F : κ(x, ·), which maps each element of
input space to the kernel feature space. The replacement
of inner product 〈xi, xj〉 by the kernel function κ(xi, xj) is
equivalent to changing a nonlinear problem in the orig-
inal space into a linear one in a high-dimensional space
and looking for the dictionary in the converted space. The
construction of kernel feature space based on the sparse
codes of training samples provides promising implement
of curvilinear coordinate system along the flow of nonlin-
ear feature. Let K = ϕ(X)Tϕ(X) be the responding kernel
matrix:

K =

⎡
⎢⎢⎢⎣

κ(x1, x1) κ(x1, x2) · · · κ(x1, xM)

κ(x2, x1) κ(x2, x2) · · · κ(x2, xM)
...

κ(xM, x1) κ(xM, x2) · · · κ(xM, xM)

⎤
⎥⎥⎥⎦ (10)

Through performing a linear algorithm on the ker-
nel matrix, we can get a new sparse matrix X̃ =
[ x̃1, x̃2, . . . , x̃M]∈ RP×M. Then, the objective function of
the Kernel KSVD algorithm is described as follows:

min
D̃,X̃,K

‖Y − D̃X̃‖2F s.t.‖̃xi − T(κ(xi, xj)) · K‖ ≤ T0, ∀i = 1, · · · ,M

(11)

where D̃ ∈ RN×P(P > N) is the new dictionary in fea-
ture spaceT(κ(xi, xj)) represents a linear transform on the
kernel function κ(xi, xj).
The construction of a kernel feature space can be con-

cluded as the following steps:

(1) Normalize the input data.

(2) Map the nonlinear features to a high-dimensional
space and compute the dot product between each
feature.

(3) Choose or construct a proper kernel function to
replace the dot products.

(4) Translate the data to kernel matrix according to the
kernel function.

(5) Perform a linear algorithm on the kernel matrix in
the feature space.

(6) Generate the nonlinear model of the input space.

The flow of the above steps is shown in Figure 1.
Given the sparse matrix X̃, the process of dictionary

learning is described as:

min
D̃

‖Y − D̃X̃‖2F s.t.‖̃xi‖ ≤ T0, ∀i = 1, . . . ,M (12)

Let Ep = Y − ∑P
j 	=p d̃j̃x

j
R indicate the representation

error of samples after removing the pth atom, and let x̃pR
denote the pth row in X̃.

‖Y − D̃X̃‖ = ‖Y −
P∑
j=1

d̃j̃x
j
R‖2F

= ‖
⎛
⎝Y −

P∑
j 	=k

d̃j̃x
j
R

⎞
⎠ − d̃p̃x

p
R‖2F

= ‖Ep − d̃p̃x
p
R‖2F (13)

Once Ep is done, SVD decomposition is used to decom-
pose Ep = U�VT ; the updated pth atom d̃p and the
corresponding sparse coefficients x̃pR are computed as:

d̃p = U(:, 1);
x̃pR = V (:, 1) · �(1, 1) (14)

In the kernel methods, the dimension of a kernel matrix
is determined by the number of training samples instead
of the dimension of input samples. Hence, the kernel func-
tion enables efficient operations on a high-dimensional
linear space and avoids ‘dimension disaster’ in the tradi-
tional pattern analysis algorithms. As a result, the pro-
posed Kernel KSVD approach deals with nonlinearity
without having to know the concrete form of the nonlin-
ear mapping function. As shown in Figure 2, we analyzed
the target decomposition performance based on (a) scat-
tering mechanisms, (b) KSVD and (c) Kernel KSVD.

Flowchart of the proposed learning-based target
decomposition method using Kernel KSVD algorithm
The framework of learning-based target decomposition
using Kernel KSVD algorithm is shown in Figure 3. In this
article, we apply the KPCA algorithm to deal with nonlin-
earity in the proposed algorithm. The basic idea of KPCA
is mapping the original dataset into a high-dimensional
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Figure 1 General model of kernel methods.

feature space where PCA is used to establish a linear rela-
tionship. The kernel function used in KPCA is GRBF,
and the corresponding feature space becomes a Hilbert
space of infinite dimension. As shown in Figure 3, we will
perform the proposed algorithm on three polarimetric
matrixes, namely scattering matrix [S], covariance matrix
[C] and coherency matrix [T], to generate the respective
sparse codes. The codes of eachmatrix is pooled by Spatial
Pyramid Machine (SPM) [16], and a linear SVM classifier
[17] is finally used to give classification accuracy.

Task: Find the nonlinear dictionary and sparse compo-
sitions to represent the data samples Y ∈ RN×M in the
kernel feature space, by solving:

min
D̃,X̃,K

‖Y − D̃X̃‖2F s.t.‖̃xi − T(κ(xi, xj)) · K‖ ≤ T0, ∀i = 1, . . . ,M

Set J = 1. Repeat until convergence:

• Sparse coding on the kernel feature space:

(1) Perform the OMP algorithm.
(2) Compute the kernel matrix

Kij = {κ(xi, xj), i, j = 1, 2, . . . ,M}, where
κ(xi, xj) = 〈

ϕ(xi),ϕ(xj)
〉
.

(3) Compute the Eigenvalue component of the kernel
matrix Kα = λα, where λ is the Eigenvalue of the
matrix, and α is the corresponding Eigenvector.

(4) Normalize the Eigenvector αT
i αi = 1

λ
; all

Eigenvalues are sorted in descending order; λ is
the minimum non-zero Eigenvalue of matrix K.

(5) Extract the principal component of test point
x̃p = ∑M

j=1 αp,jK(xi, xj), p = 1, . . . ,P, where αk,j is
the jth element of the Eigenvector, and generate
the sparse matrix X̃ =[ x̃1, x̃2, . . . , x̃M].

• Dictionary update: For each atom dp, update it by

min
D̃

‖Y − D̃X̃‖2F s.t.‖̃xi‖ ≤ T0, ∀i = 1, . . . ,M

(1) Compute the overall representation error matrix
Ep = Y − ∑P

j 	=p d̃j̃x
j
R.

(2) Apply SVD decomposition Ep = U�VT , update
the pth atom d̃p, and compute the corresponding
sparse coefficients x̃pR.

• Set J = J + 1.

Figure 2 Decomposition performance based on scatteringmechanisms, KSVD and Kernel KSVD. The blue, green and yellow points represent
the nonlinear feature in the input space. The〈x, y, z〉 is some fixed coordinate system based on scattering me chanisms and 〈d1, d2, d3〉 is the learned
coordinate system based on KSVD and Kernel KSVD algorithm. The red arrows represent the projections of the yellow points on different
decomposition bases. (a) Decomposition based on scattering mechanisms, 〈x, y, z〉 is orthogonal. (b) Decomposition based on KSVD algorithm,
〈d1, d2, d3〉 is linear towards the direction of feature points. (c) Decomposition based on proposed the Kernel KSVD algorithm,〈d1, d2, d3〉 is a
curvilinear coordinate that goes along the flow of feature points.
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Figure 3 Framework of learning-based target decomposition method using Kernel KSVD algorithm.

Experiment
Experimental setup
Two sets of experimental data adopted were derived from
the airborne X-Band single-track PolSAR provided by the
38th Institute of China Electronics Technology Company.

Rice data
The photograph (Figure 4a) is an image of rice field of
Lingshui County, Hainan Province, China. The original
picture is 2, 048 × 2, 048 pixels and 1 × 1 resolution.
We manually labeled the corresponding ground-truth
image (Figure 4b) using ArcGIS software with five classes,
namely rice1, rice2, rice3, rice4 and rice5, according to dif-
ferent growth periods after investigation by the author.
In our experiment, we sampled the data in 683 × 683
pixels.

Orchard data
The photograph (Figure 5a) is an image of an orchard
of Lingshui County, Hainan Province, China. The origi-
nal piture is 2, 200 × 2, 400 pixels. The ground objects we
are interested in are mango1, mango2, mango3, betelnut
and longan, which are identified by different colors in the
labeling image (Figure 5b). The three different types of
mango represent different growth periods. In our experi-
ment, we sampled the data in 440 × 480 pixels.

Experimental process
The proposed learning-based algorithm aims to perform
Kernel KSVD decomposition on the scattering matrix [S],

Figure 4 Experimental results of rice dataset. (a) Original image;
(b) Ground truth; (c) Classification results based on Barnes
decomposition; (d) Classification results based on Kernel KSVD[S]

decomposition.
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Figure 5 Experimental results of orchard dataset. (a) Original
image; (b) Ground truth; (c) Classification results based on
FourComponent decomposition; (d) Classification results based on
Kernel KSVD[S] decomposition.

covariance matrix [C] and coherency matrix [T]. In gen-
eral, the scattering intensity of four different channels,
namely HH , HV , VH and VV , is treated as the compo-
nent of scattering matrix [S]. When the reciprocity theory
ensures scattering intensity of HV channel equals that of
VH , we can represent the scattering matrix of each pixel
as a three-dimensional vector. Covariance matrix [C] and
coherency matrix [T] can also be represented as a nine-
dimensional matrix under the reciprocity theory. In this
article, we only take the amplitude information of the
matrix [S], [C] and [T] into consideration owing to the
complication of the proposed decomposition method.
In the experiment, we first treat each pixel of the image

as a vectormade of three or nine elements, based onwhich
the proposed Kernel KSVD algorithm performs decom-
position and generates an over-complete dictionary of
certain size. Then, we combine the sparse codes with spa-
tial information using a three-level SPM to get the final
spatial pyramid features of the image. Finally, a simple
linear SVM classifier is used to test the classification per-
formance. The grid size of SPM is 1 × 1, 2 × 2 and 4 × 4.
In each region of the spatial pyramid, the sparse codes are
pooled together to form a new feature. There are three
kinds of pooling methods, namely the max pooling (Max)
[18], the square root of mean squared statistics (Sqrt), and

the mean of absolute values (Abs). Due to the presence of
speckle noise in the SAR image, this article chooses Abs
as the pooling function.

Max : u = max(̃x1, x̃2 . . . , x̃M)

Sqrt : u =
√

1
M

∑M
i=1 x̃i

Abs : u = 1
M

M∑
i=1

|̃xi|

The proposed Kernel KSVD algorithm is a nonlinear
extension of KSVD algorithm by introducing a kernel
method between sparse coding and atom updating stages.
We choose the KPCA approach using Gaussian kernel
function as our method. The covariance of kernel func-
tion is 0.5 and the training ratio in KPCA is 10% of sparse
coefficient matrix. All the experiments are averaged over
a ratio of 10% training and 90% testing in linear SVM.

Comparison experiment
To illustrate the efficiency of Kernel KSVD algorithm, we
devised a comparison experiment of SAR target decompo-
sitions based on different scattering mechanisms, includ-
ing the Pauli, the Krogager, the Cameron, the Freeman,
the Four-Component, the OEC, the Barnes, the Holm, the
Huynen and the Cloude decompositions. In the compar-
ison experiment, the decomposition coefficients of each
polarimetric matrix are processed with SPM and a linear
SVM classifier is also used to generate the classifica-
tion result. The comparison features of Kernel KSVD and
other physical decompositions are shown in Table 1.

Experimental results
Experimental results on rice data
We followed the common experiment setup for rice data.
Table 2 gives the detailed comparison results of target
decomposition based on Kernel KSVD and other scat-
tering mechanisms under different polarimetric matrixes.
Figure 4c,d shows the classification results based on
Barnes and Kernel KSVD[S] decomposition. As shown in
Table 2, for matrix [S], the improvements in Kernel KSVD
are 20.9, 3.6 and 1.5% than other three traditional decom-
positions. For matrix [C], Kernel KSVD cannot achieve a
higher classification result than the FourComponent and
the Freeman decompositions, particularly for rice2 and

Table 1 Comparison features

Matrix Matrix [S] Matrix [C] Matrix[T]

Pauli(3) Freeman(3) Barnes(3)

Krogager(3) FourComponent(4) Holm(3)

Feature(Dim) Cameron(3) OEC(3) Huynen(3)

Cloude(3)

Kernel
KSVD[S](5)

Kernel
KSVD[C](10)

Kernel KSVD[T ](10)
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Table 2 Classification accuracy of Kernel KSVD and other decompositionmethods based on different polarimetric
matrixes for rice data (the bolded value represents themaximum accuracy among Kernel KSVD and the responding
comparisonmethods for each ground object and each polarimetric matrix)

Matrix Feature rice1 rice2 rice3 rice4 rice5 Accuracy

Kernel KSVD[S] 98.64 94.08 95.05 95.65 90.76 96.49

Coherency 89.95 53.76 65.95 66.05 71.73 75.55

Matrix [S] Krogager 96.73 91.31 89.76 89.64 85.34 92.91

Pauli 98.35 92.02 92.09 93.07 90.18 95.02

Kernel KSVD[C] 98.67 90.09 91.01 92.55 86.91 94.48

OEC 96.27 93.42 89.62 87.11 86.58 92.53

Matrix [C] FourComponent 97.87 94.37 93.76 93.73 90.12 95.55

Freeman 97.90 92.37 92.39 93.22 90.66 94.97

Kernel KSVD[T ] 98.90 92.47 92.47 94.19 87.01 95.78

Cloude 94.16 84.43 84.29 84.63 69.29 88.24

Matrix [T ] Huynen 97.26 90.63 90.93 91.82 88.89 93.85

Holm 96.97 92.14 90.88 90.83 82.34 93.44

Barnes 98.37 94.06 94.06 95.40 90.56 96.13

rice5. For matrix [T], the classification accuracy of Kernel
KSVD is 0.4% lower than the Barnes decomposition.

Experimental results on orchard data
We also tested our algorithm on orchard data. Table 3
demonstrates the classification accuracies based on Ker-
nel KSVD and scattering mechanisms under different
matrixes, and Figure 5c,d shows the classification results
based on FourComponent and Kernel KSVD[S] decom-
position. From Table 3, the decomposition based on Ker-
nel KSVD again achieves much better performance than
decompositions based on scattering mechanisms under

matrix [S], [C] and [T], respectively. Compared with the
best physical decomposition on each polarimetric matrix,
improvements in Kernel KSVD are 7.3, 7.6 and 6.1%,
respectively. From Tables 2 and 3, we find that Coherency
and Cloude decompositions are not able to achieve a sat-
isfactory classification for both sets of data. The reason
may be that the responding scatteringmechanisms are not
associated with categories in rice and orchard data. As we
can see, it is necessary to take such an association into
account in traditional decompositions. However, Kernel
KSVD can always show an acceptable accuracy for differ-
ent ground objects without considering this relationship

Table 3 Classification accuracy of Kernel KSVD and other decompositionmethods based on different polarimetric
matrixes of orchard data (the bolded value represents themaximum accuracy among Kernel KSVD and the responding
comparisonmethods for each ground object and each polarimetric matrix)

Matrix Feature mango1 mango2 mango3 betelnut longan Accuracy

Kernel KSVD[S] 97.37 97.29 99.69 98.16 97.01 98.40

Coherency 75.54 76.46 91.23 78.23 89.96 85.52

Matrix [S] Krogager 92.03 95.20 96.25 94.61 93.44 94.98

Pauli 91.72 88.58 94.22 94.51 84.16 91.18

Kernel KSVD[C] 95.67 96.56 99.75 97.30 96.11 97.88

OEC 94.63 89.30 95.24 91.34 95.72 93.81

Matrix [C] FourComponent 95.84 93.63 96.61 93.31 94.20 95.23

Freeman 93.06 85.94 94.06 87.63 85.07 90.24

Kernel KSVD[T ] 95.61 96.82 99.84 96.51 94.88 97.66

Cloude 71.74 64.45 93.00 91.87 82.39 83.80

Matrix [T ] Huynen 91.33 89.85 95.26 93.79 92.17 93.21

Holm 90.30 70.99 91.25 77.73 85.02 85.04

Barnes 93.78 88.56 94.14 91.55 86.88 91.54
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due to its adaptive learning-basedmethod. In addition, we
can also find that the classification based on the proposed
algorithm can achieve better results on matrix [S] than
matrix [C] and [T].

Conclusion
This article presents a learning-based target decomposi-
tion method based on the Kernel KSVD model for the
classification of SAR images. Experimental results on the
two sets of SAR data indicate that the proposed method
has better performance than traditional decompositions
based on scattering mechanisms in the classification of
SAR images.
The success of the proposed kernel KSVD algorithm is

largely due to the following reasons: first, Kernel KSVD is
an extension of KSVD method with inheritance of adap-
tive characteristics for dictionary learning; second, KPCA
is used to capture nonlinearity via projecting the sparse
coefficients into a kernel feature space, in which the zero
coefficients will be eliminated through inner product.
finally, Kernel KSVD constructs a curvilinear coordinate
for target decomposition that goes along the flow of non-
linear feature points.Wewill further apply this method for
different land covers classification as a future work.
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