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Abstract

We address p-shift finite impulse response optimal (OFIR) and unbiased (UFIR) algorithms for predictive filtering

(p > 0), filtering (p = 0), and smoothing filtering (p < 0) at a discrete point n over N neighboring points. The
algorithms were designed for linear time-invariant state-space signal models with white Gaussian noise. The OFIR filter
self-determines the initial mean square state function by solving the discrete algebraic Riccati equation. The UFIR one
represented both in the batch and iterative Kalman-like forms does not require the noise covariances and initial errors.
An example of applications is given for smoothing and predictive filtering of a two-state polynomial model. Based
upon this example, we show that exact optimality is redundant when N >> 1 and still a nice suboptimal estimate can

fairly be provided with a UFIR filter at a much lower cost.
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Introduction

There is a class of estimation problems requiring opti-
mal filtering at a discrete-time current point » employing
measurement on an averaging interval (horizon) of pre-
ceding or/and succeeding neighboring but not obligatorily
nearest N points. To solve such problems, filtering is usu-
ally organized employing the finite impulse response (FIR)
structures. Because the averaging interval can be placed
with an arbitrary time shift p with respect to #, there can
be recognized three kinds of p-shift FIR filters as shown in
Figure 1, namely the p-step predictive filter (p > 0), filter
(p = 0), and |p|-lag smoothing filter (p < 0).

Predictive FIR filtering is fundamental for discrete-time
feedback systems and required in signal processing when
measurement is temporary unavailable in the nearest past
of p points. The one-step predictive filter known as the
receding horizon filter has been put into the concept of
the receding horizon (or model predictive) control [1,2].
For polynomial signals, an unbiased predictive FIR filter
was proposed by Heinonen and Neuvo in [3]. Further, this
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filter was investigated by many authors [4] and developed
in state-space to p-step predictive filtering [5].

Smoothing FIR filtering is a key solution whenever
denoising of signals is required with highest efficiency.
Savitzky-Golay smoothing filter [6] is one of the most
popular here. In recent decades, we meet a few new sub-
stantial results. Linear FIR smoothers were developed and
used by Zhou and Wang in the FIR-median hybrid filters
[7]. In state space, order-recursive FIR smoothers were
proposed by Yuan and Stuller in [8]. Most recently, the
general receding horizon FIR smoother theory has been
developed in [9,10] and, for polynomial signals, the |p|-lag
smoothing FIR filter theory addressed in [11].

It follows from the above-given short survey that the
authors prefer solving the problems of filtering, smooth-
ing, and prediction employing different algorithms. In
[12,13], a universal scheme has been proposed for the p-
shift FIR estimators (filters, predictors, and smoothers).
Still no universal solution has been addressed in state
space for FIR filtering with smoothing and prediction
properties.

In this article, we follow the approach developed in
[12] and address universal p-shift optimal FIR (OFIR)
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Figure 1 FIR filtering at a discrete point n. (a) p-step predictive filtering (p > 0), (b) filtering (p = 0), and (c) |p|-lag smoothing filtering (p < 0).
Measurement is organized on an interval of N points fromm — pton — p,wherem =n— N+ 1.

and unbiased FIR (UFIR) filters for predictive filtering
(p > 0), filtering (p = 0), and smoothing filtering (p < 0)
at a current point # of linear discrete-time-invariant state-
space models with white noise. The rest of the article
is organized as follows. In Section ‘Signal model and
problem formulation, we describe the model and formu-
late the problem. The p-shift OFIR filter is derived in
Section ‘p-Shift OFIR filter with predictive and smooth-
ing properties. Here, we also find its gain and estimate
the initial mean square state function. The UFIR filter is
considered in detain in Section ‘p-shift UFIR filter with
predictive and smoothing properties’ along with the esti-
mation error. An application to the two-state model is
given in Section ‘Applications’ and concluding remarks
are drawn in Section ‘Conclusion’

Signal model and problem formulation

Consider a class of discrete time-invariant linear signal
models represented in state space with the state and
observation equations, respectively,

X; = Ax,_1 + Bwy, (1)
Yn = Cx; + Dvy, (2)

where x,, € RX and y, € RM are the state and observa-
tion vectors, respectively,

Xp = [X1nXoy ... xKn]T ) (3)
Y = [inyon - yam) " (4)

Here, A € RE*K, B ¢ REXP, C e RM*K, and
D € RM*M The system noise vector w, € R’ and the
measurement noise vector v, € RV, respectively,

wpal” (5)

. VMVI] T ) (6)

Wy =[w1 wa ..

Vi =[Vinvou ..

are white Gaussian with zero mean components, E{w,} =
0 and E{v,} = 0. It is implied that w,, and v,, are mutually
uncorrelated, E{wiva} = 0 for all i and j, and have the
covariances, respectively,

R = E{w,w!}, (7)

Q = E{vyvl}. (8)

The problem now formulates as follows. Given the
model (1) and (2), we would like to derive a p-shift OFIR
filter covering the problems of predictive filtering (p > 0),
filtering (p = 0), and smoothing filtering (p < 0) as shown
in Figure 1. We also wish to find its unbiased version, rep-
resent it in the iterative Kalman-like form, and investigate
errors based on a typical example.

p-Shift OFIR filter with predictive and smoothing
properties

A p-shift OFIR filter can be derived following Figure 1, if
to represent (1) and (2) on a horizon of N points, similarly
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to [11], with recursively computed forward-in-time solu-
tions [14] as follows, respectively,

Xn—pm—p = AN=1Xm—p + BN-1Wy—pm—p, 9)
Yopm—p = CN-1Xm—p + GN-1Wi—pm—p
+ DN—lvn—p,m—p ’ (10)

where X,.,, € R’N, Y, ,, e RMN, W,,, € RPN, and
Vum € RMN are given by, respectively,

Xn—pm—p = [XZ—p Xp i e xrj;l—pjl ) (11)
T T T r

Y”‘—PJV’_P = [yn—p Yu-1—p --- Ym—p] ) (12)

Wopm—p = [WZ—p W;{qu qu—p ] ) (13)
T T T

V”*P m—p — [Vn—p Vi-1-p Vin—p ] (14)

The matrices Ay_; € RENXK By | e RENxPN

CN71 (S RMNXK, GN71 S RMNXPN, and DN71 S
RMNXMN are specified with, respectively,
, . T
A= [(A‘)T(Al_l)T ATI] , (15)
BAB ... A"!B AB
0 B ...A?BA"!B
Bi=1:": : : ) (16)
00 B AB
00 0 B
G =CB;, (18)
D; = diag(D D ... D), (19)
i+1
where we have assigned C; = diag(C C ... C).
——

i+1
In this model, the initial state x,,_, is supposed to be
known exactly and w,,_, is thus allowed to have zero

components.

Optimal gain

One can now assign the gain matrix H(p) £ H(p, n,m) €
RI*MN implementing the convolution principle and find
the filtering estimate® of x,, as

Xnin—p = HO)Yn—pm—p (20)
= H(p)[CNflxmfp + GNflwn,p,mfp
+DN-1Vi—pm—pl - (21)
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For H(p) to be optimal in the minimize mean square
error (MSE) sense, the following cost function needs to be
minimized,

J®) = E{(Xn — Xnjn—p) % — Xnju—p) ")
=E{[x; —H@) (Cn-1Xn—p + GN-1Win—pm—p
+Dn-1Vi—pm—p)] [ X — HP)(Cn_1Xm—p
+ GN-1Wu—pm—p + DN-1Vipm—p)]" },

(22)

where E(x) means an average of x. The minimization can
be provided employing the orthogonality condition [14] in
the form of [12],

0=E{[x,— l:l(p)(CN—lxm—p + GN-1Wu—pm—p
+ DN—lvn—p,m—p)] (CN—lxm—p

+ GN—IWn—p,m—p + DN—lvn—p,m—p)T} ’ (23)

to produce the optimal gain matrix H(p). In doing so, one
needs substituting x,, with the first vector row? in (9);
that is,

Xp = AN71+pxm7p + EN*Ianp,mfp, (24)

where By_; is the first vector row in (16).

Substituting (24) to (23) and supposing that the initial
state and measurement noise are mutually uncorrelated
for all p, we provide the averaging in (23) and arrive at the
optimal gain matrix

H(p) = AN"1PR,,_,CL_ | +Z,)

X Zm—p+Zw+2,)7", (25)
in which Z,, = ]_BN_l\I’GIE_l,

Zm—p = CN—IRm—pCJZ\;,l ’ (26)
Z,=Gn_1VG]_,, (27)
Z,=Dy 19Dy ,, (28)

the mean square initial state is specified by

_ T

Ryip = E {xm-px, | (29)
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and the signal and measurement white noise covariance
functions are formed as, respectively,

V=L {W"—P:m—lﬂwzz;p,mfp]

_ diag(R R .. R), (30)
N
® = E{Vn_p,m_p ,{_p,m_p}
- diag(Q Q... Q). (31)

M
By multiplying R;,_, in (25) from the left-hand side with

the identity matrix (CmeCn,m)’lcgfan,m, we have
finally

Hp) =[H@)Zn—p + Z) Zin—p + Zoy + Z,)", (32)

where, by n — m = N — 1, the unbiased gain attains two
equivalent forms of

H(p) = AN-"r«cl_, c,..n7'cl_,, (33)
= AN"Mrcl eIk . (34)

Note that H(p) satisfies the unbiasedness condition
E{Xpjn—p} = E{xn} (35)

and has an important applied property: it does not depend
on noise and initial errors, although it is p- and N-
dependent.

As shown in Appendix, matrix Z,, , representing in
(32) the mean square initial state R,,_, on an averaging
interval of N points can optimally be estimated by solving
the discrete algebraic Riccati equation (DARE)

0= Zm—p(zw + Zv)_lzm—p + zzm—p + Zw + Zv

Yoy Yy pmp @+ 2)  Zinyy,  (36)
whose analytic solution can be found following [15]. We
notice that this equation also serves for filtering out all of
the noise components [12].

Optimal filtering estimate

Determined Z,,_, by (36), the p-shift OFIR filtering esti-
mate X,),—p can now be generalized as follows. Given (1)
and (2) with uncorrelated zero-mean white noise vectors
w,, and v,. Then p-step OFIR predictive filtering (p > 0),
filtering (»p = 0), and |p|-lag smoothing filtering (p < 0)
can be provided at # employing data taken from m — p to
n—pby
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)A(nln—p = I:I(p)Yn—p,m—p (37)

= [H(p)szp + ZW] (mep + Zw + z1/)71

X Ynfp,mfp (38)

=[AN"P (L Cyon) T Ch Zyy + Z,)

X (mep + zw + Zv)ilYnfp,mfp ’ (39)

where Y,,_,, . p is the data vector (12), C; is given by (17),
and Z,,, Z,,, and ZV are specified for (25). The algorithm
should be applied to any N > K, in order to avoid prob-
lems with singularities. Note that K is typically not larger
in state space modeling.

p-shift UFIR filter with predictive and smoothing
properties
There are at least two cases when exact optimality is
redundant and OFIR can fairly be substituted with UFIR
at much lower price to produce still a nice near optimal
estimate [12]. In fact, if Z,,_, substantially dominates Zw,
Z,, and Z, in the order of magnitudes for all p, we have
H(p) = H(p). The same effect is achieved with N >> 1.
Thus, the UFIR filter should also be generalized. Given
(1) and (2) with uncorrelated zero-mean white noise com-
ponents w, and v,. Then p-step UFIR predictive filtering
(p > 0), filtering (p = 0), and |p|-lag smoothing filtering
(p < 0) can be provided at n employing data taken from
m—pton—pby

inln—p = H(p)Yn—p,m—p (4'0)
= AV )l Yo
(41)

Note that both (40) and (41) follow from (38) and (39)
straightforwardly if to refer to the unbiasedness condition
(35) and neglect Z,,, Z,,, and Z,.

Kalman-like UFIR filtering algorithm

Noticing that the UFIR filter (41) ignoring the noise
covariances and initial error is highly attractive for engi-
neering applications, one also notes that the computa-
tional problem may arise in its batch form when N > 1.
To circumvent this problem, a fast iterative Kalman-like
form has been addressed in [13] for filters, predictors, and
smoothers. If to introduce a time shift p to X;,1 |, stated
by Theorem 2 in [13] for time-invariant models and take
into consideration that initial F; is time-invariant, then the
iterative Kalman-like form of (41) appears as follows:
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Y=« c_ .71, (42)

F, = AS ey s (43)

Xojsp = AS"PYCL Yo oy, (44)

F,=[C'C+ (AF,,AT) 77, (45)
Xlji—p = AXj—1)1—p-1 + Ki(y1—p

— CA' X1y p), (46)

where K; £ K;(p) = APF,CT is the bias correction gain,
m =n—N+1,s = o —1, and an iterative variable / ranges
from ¢ = max(m + K,m + 2,m + 2 — p) to n. The true
estimate corresponds to [ = n.

As well as in the case of UFIR estimator [13], the gain
K; in (46) also does not depend on noise and initial errors.
In this algorithm, we have two batch forms, (43) and (44),
which can be computed fast for typically small K. To avoid
singularities, the computation starts with / = « and fin-
ishes at [ = n. This last value is used as true and the
procedure repeated iteratively for each new measurement.
The iterative p-shift Kalman-like algorithm (42)—(46) is
listed in Table 1 in a convenient computation form.

Estimation error
Although the estimation error is not involved to the algo-
rithm (42)—(46) that is its extremely remarkable property,
the MSE may be required to characterize the filter perfor-
mance.

The MSE in the p-shift FIR filtering estimate can be
evaluated by the matrix

P, = E{(x; — Xy—p) s — Xy—p) T} . (47)
Substituting X;;—, with (46), assigning X; e Xji—p and

&1 = X; — X;, and employing (1) and (2), we first write

Table 1 Iterative p-shift Kalman-like UFIR filtering
algorithm

Stage

Given: KNpl=«a..., ns=a—1
a=max(m+Km+2,m+2—p),
Set: T = (CgT_mcs—m)_1

F, = As—m+py As—mpT

Xjs—p = AT PYCL Y pmop

Update: F/ =[C'C+ (AF_1AD)~]"]
Xfjj—p = AX/_1|j—p-1
+APFCT (y_p — CA'™PR/_1)_p_1)
Remark: Use X)—p as the output when/ = n
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Py = E{(xy — AX—1 — Kiyr—p + KICAPX;1)
x (xp — AX_y — Kiyi_p + K,CA 7%, )T}
= E{(Ae;_1 + Bw; — KiCx;, — K/Dv;_,
+ K. CA' P%;_1)(Ags_1 + Bw; — K/Cx;_)y
— K;Dv_, + K,CA' Px,_1)T}. (48)

As a next step, it needs to express x;_, via x;_1. That
can be done if we write (1) forward and backward in time
for different p and provide the transformations in order to
have finally

Xi_p =A"Pxi1 + B, (49)
where
Y P AP Bw,;,  p<O
B = 0, p=1 (50)
- 25:11 A"PBw,;, p>1

By substituting (49) with (50) to (48), taking into con-
sideration that E{sl_lﬂIT} and E{,BISIT,l} have zero com-
ponents, and providing the averaging, we finally come up
with

P, = E{[ (1 — K,CA™?)A¢;_; + Bw; — K,.CB;

— KDv;_,] [ (1 — K,CAP)A¢;_1 + Bw,
— K,CB — K;Dv,_,]" )
= (1 —-KCAP)AP,_ATd - K,CA /)T
+BRB? — BRCTK! — K,CRB”
+ K,CRC'K] + K,DQD’K/, (51)
where R = E{w;8]}, R = E{g;w]}, and R = E{B,8] } are

given with, respectively,

_ [rBTAPT,  p<o
R = , (52)
0, p>0

A APFIBR, p<o0

R = 0, p=0" (53)
y Pl AlP=BRBTAP-T,  p <0

R = 0, pr=1_ (54)
Y APBRBTA P!, p>1

By (51), the estimation error can thus be computed iter-
atively along with the estimate (46). As can be seen, P,
inherently diminishes in smoothing filtering (p < 0), by
R and R. It rises with higher rate in predictive filtering
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(p > 0) owing to the effect of P. In the case of filtering
(p = 0), P, is computed by

P; = (I - K,C)(AP;,_;AT + BRBT)(I — K,C)T

+KDQD'K . (55)

In all of the cases, P,, becomes zero if the model is deter-
ministic and the filter order is exactly that of a system.

Note that P,, computed in such a way ranges upper the
true value due to the accumulating effect caused by the
noise covariances. Alternatively, P,, can be well bounded
with the error bound (EB) specified in [16] in the three-
sigma sense via the noise power gain (NPG) as

Bi(wg) N, p) = 30k,/ Gk(vg) N, p)

to characterize the noise standard deviation in the v-
to—g filter channel via measurement of the kth state in
the presence of white noise having the variance akz. The

(56)

NPG coefficient gi(,g) = &kvg) (N, p) is defined here as a
components of the NPG matrix Ky £ K (N, p)

Ki = HeHT (57)
gka1) --- 8kak) --- 8kAK)
= | k1) --- Zk(kk) --- k(kK)
8k(K1) -+ Zk(Kk) - - - k(KK)

= AN (@ Cy_)TtANPT L (s8)

where the thinned gain H; = _l:[(p)k e RN js com-
posed with the K'th columns of H(p) given by (42) starting
with the kth one as

Hy = AN (L Cyv-)ICE (59)

and C; 2 (C))x is the kth row of C;.
To avoid the computational problem with N > 1, the

NPG Ky can be computed iteratively [12] as

]71 AT

1-pT AT A 1— -1
Ky = A[A P C'CA p+Kk(j—1)

by changing an iterative variable j from j = y > K, to
N — 1. The initial value KCt(, —1) is provided by (58), if to
substitute N with y, and the true Ky is taken when [ =
N-—1.

(60)

Applications

A comparison of errors in the FIR and Kalman filters has
been provided in many articles [2,9,10,12,13]. Much lesser
attention has been paid to the trade-oft between the OFIR
and UFIR filter outputs. To investigate errors in the pro-
posed p-shift OFIR and UFIR filters and thereby learn
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their facilities, below we exploit a two-state model repre-

sented with (1) and (2) having A = [(1) ; ], C=[10],B,
and D identity, xo = 1,50 = 0.01s7}, 7 = 1,0, = 0.1,
and oy = 1073/s. The covariances (7) and (8) of zero
mean noise components, w, and v,, are allowed to be

o 0 ) |
R=10 o’yz and Q =[o;], respectively.

Measurement has been provided in the presence of the
zero-mean noise v, uniformly distributed from —2 to 2
with the variance o, = 2/+/3.

Both the OFIR algorithm and UFIR one (Table 1) have
been tested and the filtering errors evaluated in the first
state at a current point # for different p and fixed N. Errors
were bounded with EB B(p) £ Bi1a1 (N, p) calculated by
(56).

Errors in predictive FIR filtering
Supposing that the estimate is required at » = 50 and
assuming that measurement may not be available in the
nearest past points (as it sometimes occurs in wireless sys-
tems), we let 0 < p < 30 and find the predictive filtering
estimate for N = 10 and N = 20. Figure 2 sketches errors
in OFIR and UFIR estimates as functions of p.

Here, we also show the bounds +8(p) for each N as
functions of p. Note that for the model in question, EB can
also be calculated via NPG g; (N, p) found in [5] as

,31(11)(N:P) = 3UVV gI(N:P) (61)

05
+ 12p(N — 1 + p)] } . (62)
Observing Figure 2, one infers that the estimates are
closely related and that the errors range well within EBs
stretched by growing p. Inherently, the prediction error is
reduced by increasing N that can be seen by comparing
Figure 2a,b.

Errors in smoothing FIR filtering

In the second experiment, we change p from zero to —N +
1 and evaluate errors in the smoothing filters at n = 30.
Figure 3 illustrates the results for N = 10 (Figure 3a) and
N = 20 (Figure 3b).

The first conclusion that can be made is that errors
reach a minimum at a center of the averaging horizon with
p = —N/2. This should not be surprising, since the ramp
impulse response associated with linear models reduces
at this point to the uniform one associated with simple
averaging [11] producing noise minimum among all other
filters [6]. It can also be seen that the difference between
the optimal and unbiased estimates exists but it is not
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Errors in predictive FIR filtering
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Figure 2 Errors in OFIR (circle) and UFIR (cross) predictive
filtering estimates at # = 50 as functions of p > 0. (a) N = 10 and

(b) N = 20. EBs are dashed.

large, in view of the scale in Figures 2 and 3. And we notice
again that errors in the smoothing filter range well within
a gap between the EBs.

Conclusion

In this article, the p-shift OFIR and UFIR algorithms with
the properties of predictive filtering (p > 0), filtering
(p = 0), and smoothing filtering (» < 0) have been
addressed for linear discrete time-invariant state-space
models. The OFIR filter is shown to self-determine the
mean square initial state function by solving the DARE.
The UFIR filter represented both in the batch and iterative
Kalman-like forms ignores covariances and initial errors,
unlike the Kalman filter. As an example of applications, we
have exploited the two-state polynomial model and inves-
tigated errors in the OFIR and UFIR filters. Based upon,
we have confirmed the statement made earlier for FIR
filters, predictors and smoothers: the UFIR estimate con-
verges to the OFIR one by increasing N and the estimation
errors are well bounded with EB. That means that exact
optimality may be redundant with N > 1 and still a nice

T0.8
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o4
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) —0.6

Buiiayiy Hi4 Buiyioows ul sioug

1+-0.8
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2. P e N 0

. ‘
p o~ O +—+T+ 0.5 -0-
%Noj‘// 0-0-0°" O %00

T -

/2 5 04
+-0.6
(b)
Figure 3 Errors in OFIR (circle) and UFIR (cross) smoothing

filtering estimates at # = 50 as functions of p < 0. (a)N = 10 and
(b)N = 20. EBs are dashed.

Buiiayiy Hi4 Buiyloows ui siong

suboptimal estimate can be provided with UFIR filters at
much lower cost.

An importance of the OFIR and UFIR filtering algo-
rithms proposed resides in the fact that they are both
general for linear discrete time-invariant state-space mod-
els. The algorithms virtually generalize the well-known
Savitzky-Golay solution for smoothing and predictive fil-
tering in state-space. However, unlike the latter, both
OFIR and UFIR filters have the convolution-based forms
more familiar for electronics engineers. Moreover, the
convolution computation can efficiently be provided
in the frequency domain that is its another benefit.
Finally, engineers should certainly appreciate the iterative
Kalman-like algorithm. Paying attention to these advan-
tages, our current investigations are focused on several
applied problems associated with signal and image pro-
cessing.

Endnotes

 Xpk is the filtering estimate at # via measurement from
the past to k; X, x is optimal and X,,x unbiased.

b The case of filtering out all of the noise components is
considered in [12].
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Appendix
Mean square initial state function
Consider the estimate provided by (20) with gain (32),

Rnin—p =[ ANTHP(CY_ CN-1) T C 1 Znp + Z]

X (Zm—p + Zw + Zv)_lYn—p,m—p . (A1)

Following [12], find the smoothing estimate at the initial
point n — N + 1 of the averaging interval. By letting p =
—(n—m)=—(N —1),goto

)A(n\n+N—1 :[ (C£_1CN—1)_1C£[_1Zn + ZW]

X (Zn + zw + z1/)71Yn—i-N—l,n . (AZ)

Substitute # with m — p and find the estimate at m — p,
Rn—pimN-1-p = [(C_1CN-1) " C_1 Zm—p + Zu]
X Zin—p +Zw +2) " YosN1-pm—p
= Ry pCN 1 + Zw) Zim—p+Zy+Z,)""
X Yyt N—1—pym—p - (A.3)

Now, substitute the unknown x,,_, with its optimal
estimate X;—p|m+N—1—p and recall that x,,—, is supposed
to be known exactly. This allows providing the following
transformations:

Rm—n = E{xm—pxyTnfp} = xm—prTnfp (A4')

12

E{)A(mfplm+N717pﬁZ;,_p|m+N_1_p} (A»S)

~ A AT
= Xm—plm+N-1-pXy—p|m+N—-1—p - (A.6)

By employing (A.6) and taking into account that Ry,

Zy, Zyy—p, Ly, and Z, are all symmetric, transform (A.6)
to

Ry—p = im—plm+N—1—pirE—p\m+Nflfp (A7)
= RupCl1 +20)Zim—p+Zy+2Z,)""
X YN *1*Pvm*PYVIl:l+N—l—p,m—p
X (Zim—p + Zw + Z,) "N CN-1Rm—p + Zy).
(A.8)

A supposition that x;,;,, is deterministic makes both
R,,_, and Z,,_, singular. However, if we allow an equal-
ity in (A.7) and solve (A.8) for Z,, ,, these matrices will
be found approximately in the minimum MSE sense and
thus no longer be singular. Next, observe that the second
term in the first parenthesis on (A.8) represents the noise
variance on the averaging interval and is commonly much
smaller than the first term representing the initial state
gained. Then neglect Z,,, accept an equality in (A.7), mul-
tiply (A.8) with Cy_,, and CI_,, from the left-hand and
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right-hand sides, respectively, invoke (26), remove nonsin-
gular Z,,,_, from both sides, and substitute m+N —1 with
n. That leads to

I= (mep + zw + Zv)ilYnfp,mprT

n—p,m—p
X Zimp+ 2w +2) L. (A.9)

By rearranging the terms, (A.9) becomes the DARE
(36), whose solution with respect to Z,,_, can be found
following [15].
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