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Abstract

Multisensor data fusion is a powerful solution for solving difficult pattern recognition problems such as the
classification of bioelectrical signals. It is the process of combining information from different sensors to provide a
more stable and more robust classification decisions. We combine here data fusion with multiresolution analysis
based on the wavelet packet transform (WPT) in order to classify real uterine electromyogram (EMG) signals
recorded by 16 electrodes. Herein, the data fusion is done at the decision level by using a weighted majority voting
(WMV) rule. On the other hand, the WPT is used to achieve significant enhancement in the classification
performance of each channel by improving the discrimination power of the selected feature. We show that the
proposed approach tested on our recorded data can improve the recognition accuracy in labor prediction and has
a competitive and promising performance.
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Background
Bioelectrical signals express the electrical functionality of
different organs in the human body. The uterine electro-
myogram (EMG) signal, also called electrohysterogram
(EHG), is one important signal among all bioelectrical
signals. Recorded noninvasively from the abdominal wall
of pregnant women, uterine EMG represents an object-
ive and noninvasive way to quantify the uterine electrical
activity. Studies have shown that uterine EMG can pro-
vide valuable information about the function aspects of
the uterine contractility [1,2]. In addition, it is potentially
the best predictor of preterm labor and of great value
for the diagnosis of preterm delivery [3]. Although ana-
lyzing the uterine electrical activity represents an active
research area, little attention has been brought to the
classification of uterine EMG. In the literature, there
exist only a few studies dealing with the classification of
uterine EMG signals. In particular, Maner and Garfield
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[4] used a kohonen method in order to classify uterine
EMG data into term/preterm and labor/non-labor
classes. Uterine contractions were quantified by finding
the mean and the standard deviation of the power
spectrum peak frequency, burst duration, number of
bursts per unit time, and total burst activity. The ap-
proach applied on a total of 134 term and 51 preterm
women yielded a classification accuracy of 80%. More-
over, Lu et al. [5] presented a classification method
based on the wavelet packet decomposition and a multi-
layer Perceptron (MLP) to differ between term and pre-
term data. Their study included 11 preterm and 28 term
signals. They reported a classification accuracy of 64.1%.
Finally, in [3], Marque et al. used a multilayer percep-
tron and frequency-related parameters in order to differ-
entiate between high risk contractions recorded at the
same pregnancy terms on women who were proved to
deliver preterm and normal contractions recorded on
women who were proved to deliver at term. The results
showed first that it was possible to detect a risk of pre-
term labor as early as 27 weeks of gestation with a clas-
sification accuracy of 87%.
an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:bassam.moslem@utc.fr
http://creativecommons.org/licenses/by/2.0


Moslem et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:167 Page 2 of 9
http://asp.eurasipjournals.com/content/2012/1/167
However, all the previous studies were limited to the
use of only two to four electrodes. A large number of ex-
perimental studies have shown that the uterus, as other
biological systems, is complex both in its structure and
functions [6,7]. This complexity arises from stochastic,
nonlinear biological mechanisms interacting with a fluc-
tuating environment. Therefore, reducing the recordings
to one to two sensors of uterine EMG information may
be very limiting. Recent studies on the electrophysio-
logical activity of the uterine contractions have shown
that multisensor recordings is a very promising tech-
nique that can offer better insight into the progression
of pregnancy and can provide above all a fundamental
contribution for predicting labor [8]. New parameters
were derived from the multichannel recordings. In par-
ticular, synchronization [9-12] and propagation velocity
[13-16] of the electrical activity of the uterine muscle
were proven to be efficient tools to diagnose labor.
Moreover, in terms of classification of uterine EMG sig-
nals, it was proven that the use of a data fusion-based
approach can outperform the classification based on the
use of a single electrodes [17,18].
The aim of this study is to combine data fusion with

multiresolution analysis based on the wavelet packet
transform (WPT) in order to improve the recognition
accuracy of multichannel uterine EMG data and attain
the highest possible classification accuracy.
Herein, multiresolution analysis based on the WPT is

first applied in order to improve the discrimination
power of the selected feature. The WPT is a powerful
signal decomposition technique adapted for the analysis
of nonstationary signals such as the uterine EMG. WPT
decomposes a signal into a set of finite orthonormal sub-
spaces or packets. However, for solving classification
problems, only few packets should be selected according
to their discrimination power. The Local discriminant
bases (LDB) algorithm introduced by Saito and Coifman
[19] to address the problem of choosing the optimum
set of signal subspaces for classification applications is
therefore used. As a result, individual signals recorded
by each sensor are first decomposed using their corre-
sponding LDB tree structures. Then, relevant features
are extracted from the highly discriminatory subspaces
and fed to a classifier in order to classify the signals
into one of two the classes (pregnancy and labor).
These binary classification problems are solved by Sup-
port Vector Machines (SVM) classifiers with a Gaussian
Radial Basis Function (RBF) kernel. Finally, a decision
fusion rule based on the weighted majority voting
(WMV) of the individual channels is applied. Figure 1
illustrates the generalized block diagram of the pro-
posed approach.
The rest of the article is organized as follows. The fol-

lowing section is dedicated to the description of the
methodology used in this study such as the LDB algo-
rithm, the foundations of the SVM classifier as well as
our decision-level data fusion method. Then, in Section
“Results” we present the results obtained by applying
our approach on real uterine EMG signals. These results
are discussed in Section “Discussion”. Finally, the article
is ended with a conclusion section.

Materials and methods
Database description
The real uterine EMG signals used in this study were
recorded on 32 women: 22 women were recorded during
pregnancy (33 – 41 week of gestation, WG), 7 during
labor (37 – 42 WG) and 3 during both pregnancy and
labor (33 – 42 WG). The mean and standard deviations
of the gestational ages for pregnancy and labor were
34.14 ± 3.94 and 39.6 ± 1.75 weeks, respectively. Record-
ings were made in the University Hospital of Amiens in
France and at the Landspitali University hospital in Ice-
land by using protocols approved by each ethical com-
mittee (ID-RCB 2011-A00500-41 in France and VSN
02-0006-V2 in Iceland). Recordings were performed by
using a grid of 16 electrodes, arranged in a 4x4 matrix
positioned on the women’s abdomen [20]. The third
electrode column was always put on the uterine median
axis (Figure 2.a). Reference electrodes were placed on
each hip of the woman. Signals were sampled at 200
Hz. The recording device has an anti-aliasing filter with
a cut-off frequency of 100 Hz. After manual segmenta-
tion of the bursts of uterine electrical activity corre-
sponding to contractions with the help of the standard
tocodynamometer contraction data acquisition, we
obtained 137 pregnancy contraction signals and 76
labor signals. The simultaneous tocodynamometer paper
trace was digitalized to ease the segmentation of the
bursts. In this study, in order to increase the signal-to-
noise ratio, we considered vertical bipolar signals in-
stead of monopolar ones. Our signals form thus a rect-
angular 3x4 matrix (Figure 2.b).

Preprocessing
Uterine EMG is a nonstationary signal that contains not
only the useful information but also some unuseful parts
such as the artifacts (mother ECG, fetal movements. . .).
Therefore, the recorded signals cannot be used directly.
Before extracting the features, three steps are performed
in this study: (1) unwanted signals are removed by filter-
ing the burst signals between 0.1 and 3 Hz [1]; (2) all
signals are normalized by dividing each signal by its
standard deviation in order to ensure that all features
will have equal significance when they are applied to the
committee machines [21]; (3) all burst signals were
downsampled in order to reduce the number of the
studied packets.



Figure 1 Block diagram of the proposed approach used for classifying multichannel uterine EMG signals.
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The local discriminant bases (LDB) algorithm
In this section, we describe the LDB algorithm that looks
for a wavelet packet basis in a dictionary that best illumi-
nates dissimilarities among classes by using some class
separability or dissimilarity measure [19]. Let Ω0,0
Figure 2 a. The 4x4 monopolar electrode configuration on the
woman’s abdominal wall. b. A 4× 3 matrix representing all the
12 bipolar channels.
denote the standard vector space in ℛn. Let Ω1,0 and
Ω1,1 be the mutually orthogonal subspaces generated by
the application of two projection operators H and G re-
spectively to the parent space Ω0,0, i.e. Ω0;0 ¼ Ω1;0�Ω1;1.
These two operators correspond respectively to h(n) and
g(n), the two impulse responses of low-pass and high-
pass analysis filters which correspond to the scaling func-
tion and the wavelet function respectively. The iterative
decomposition process in the WPT generates subspaces
of ℛn of binary tree structure where the nodes of the tree
represent subspaces with different frequency localization
characteristics with Ω0,0 as the root node.
In general, at each level, the vector space is split by

the operators H and G into two mutually orthogonal
subspaces given by:

Ωj;k ¼ Ωjþ1;2k�Ωjþ1;2kþ1 ð1Þ

for j ¼ 0; 1:::::J ; k ¼ 0:::::2j � 1
Figure 3 A binary tree associated with wavelet packet
decompositions with Ω0,0 as the root node.
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This process repeats till the level J, giving rise to 2J

mutually orthogonal subspaces of equal bandwidth. Fig-
ure 3 shows the binary tree of the subspaces of Ω0,0.
Furthermore, each subspace Ωj,k is spanned by 2no�j

basis vector vj;k;l
� �2no�j�1

l¼0 where the triplet (j, k, l) corre-
sponds to scale, time localization and oscillation param-
eter, respectively, while 2no corresponds to the length of
the signal. Hence, the signal xi can be represented by a
set of coefficients as:

xi ¼
X
j;k;l

βj;k;lvj;k;l ð2Þ

where i represents the time and βj;k;l represents the coef-

ficients in each subspace represented by (j,k).

The dissimilarity measure
The optimal choice of LDB for a given dataset is driven
by the nature of the dataset and the dissimilarity mea-
sures used to distinguish between classes [22]. The
choice is made in such a way that this dissimilarity
measure should be able to bring out the differences be-
tween the signal classes in the time-frequency plane. It
is interesting to note that a combination of multiple dis-
similarity measures with varying complexity can also be
used to achieve high classification accuracies.
In previous studies, it has been demonstrated that,

throughout pregnancy, the energy of the recorded sig-
nals emerges significantly towards higher frequencies
[23-25]. It was reported that there was a noticeable dif-
ference in the energy distribution of the uterine EMG
signals between pregnancy and labor. Therefore, in this
studies, our dissimilarity measure is defined as the differ-
ence in the normalized energy between the correspond-
ing nodes of the different signal classes representing
each class of contraction (pregnancy, labor).

D ¼ E1
j;k � E2

j;k

��� ��� where E1
j;k and E2

j;k are the normalized

energy of the corresponding nodes given by (3) for each
class.
Based on the differences among these energy distribu-

tions, an orthonormal basis will allow the extraction of
the distinguishing features among signal classes. Hence,
the selection of an LDB from a given dictionary requires
the calculation of the time-frequency (TF) energy maps
for the whole binary tree.
The TF energy map of class c, denoted by Γ c,. is a table

of real numbers specified by the triplet (j, k, l) as

Γ c j; k; lð Þ :¼
P2no�1

i¼0 vTj;k;lx
cð Þ
i

� �
P2no�1

i¼0 x cð Þ
i

��� ���2 ð3Þ

for j ¼ 0:::::J ; k ¼ 0:::::2J � l; l ¼ 0:::::2 n0�jð Þ � 1 whereP2no�1

i¼0 x cð Þ
i

��� ���2 is the total signal energy belonging to class c.
The LDB algorithm results in only one complete best
local discriminant basis for all the classes involved.

Our LDB-based selection process
To identify the relevant signal subspaces using the LDB
algorithm, we follow the lines of Saito and Coifman in
[19]. Given Nc training signals consisting of the two

classes of signals x cð Þ
i

n oNc

i¼1

� 	2

c¼1
where each signal has

a 12-channel resolution. Herein, the LDB selection
process involves the use of the 12 channels of each train-
ing signal.

Step 1:
Construct a TF energy map Γ c for each of the two
classes (pregnancy vs. labor) by using the training
signals.

Step 2:
At each node, compute the discriminant measure
among the two TF energy maps.

Step 3:
Prune the binary tree: eliminate children nodes if the
sum of their discriminant measures is smaller than
or equal to the discriminant measure of their
parent node.

Step 4:
Order the most discriminant subspaces in increasing
order of their power of discrimination.

Calculation of the classifier’s input parameters
The selection of the input parameters or features is an
important step for solving classification and pattern rec-
ognition problems [26]. The more information we have
about the data, the more likely we would be able to suc-
ceed in assessing the true class for a single data item
[27]. Furthermore, the task of feature selection is much
more problem and domain dependent than is classifica-
tion proper, and thus requires knowledge of the domain.
Therefore, in our case, the selected features should also
have a meaningful electrophysiological interpretation.
This will help improve also our understanding of the
electrophysiological dynamics underlying the changes of
the uterine electrical activity during pregnancy and
thus, improve our pregnancy monitoring scheme.
Herein, we wish to favor a small number of features,
which might lead to simpler decision regions and a clas-
sifier easier to train.
The energy and the frequency content of the uterine

contractions are classical features which were included
in many studies to characterize the uterine activity.
Therefore, in this work, three features were extracted
from the LDBs: power of the contraction, median fre-
quency and the proportion of the energy contained in
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the selected packet (relative energy). These features were
chosen based on previous studies [2,23,28] and showed
that they may have either some predictive worth or
some physiological significance.

Support vector machines (SVM)
SVM is a powerful classification technique based on the
statistical learning theory [29]. It is primarily a two-class
classifier. However, multiclass classification is accom-
plished by combining multiple binary SVMs.
The optimization criterion is the width of the margin

between the classes, i.e., the empty area around the deci-
sion boundary (the separating hyperplane) defined by
the distance to the nearest training patterns. These pat-
terns, called support vectors, finally define the classifica-
tion function.
Let w and b denote the weight vector and the bias in

the optimal hyperplane, respectively, the corresponding
hyperplane can be defined as:

wT :yþ b ¼ 0 ð4Þ

On a pattern y, the discriminant function of a binary
SVM is given by:

f Yð Þ ¼ sgn
XN
i¼1

αiyiK yi; yð Þ þ b

 !
ð5Þ

where N is the number of learning patterns, yi are the
training pattern with corresponding labels yi 2 {-1,+1}(-1
and +1 stand for the negative and positive classes, re-
spectively), b is a bias, and K yi; yð Þ is a kernel function
mapping the input vectors into an expanded feature
space.
The coefficients αi are obtained by solving the follow-

ing quadratic optimization problem:

L αð Þ ¼
XN
i¼1

αi � 1
2


 �XN
i¼1

XN
j¼1

αiαjyiyjK yi; yj
� 
 ð6Þ

subject to two constraints given in (6) and (7):

; i ¼ 1; . . . ;N ð7Þ
XN
i¼1

αiyi ¼ 0 ð8Þ

K yi; yj
� 


can be written as K yi; yð Þ ¼ φ yð Þ:φ yið Þ where

φ yð Þ is the feature vector in the expanded feature space
and may have infinite dimensionality. Linear kernel, sig-
moid kernel, polynomial kernel, and RBF kernel are
most commonly used kernel functions. In this study, we
used Gaussian Radial Basis Function (RBF) kernel of the
following form:

K yi; yj
� 
 ¼ exp

X
i

yi � yj
� 
2

2σ2i

 !
ð9Þ

where σ is the kernel width parameter.

Decision-level data fusion
Multisensor data fusion refers to the acquisition, proces-
sing and synergistic combination of information gathered
by various sensors to provide a better understanding of a
phenomenon and to yield more accurate results for infor-
mation processing problems [30]. Data fusion has been
successfully used in several applications in military and
non-military domains such as classifying hyperspectral
images [31], automatic emotion recognition [32], biomed-
ical signal processing [33,34].
Data fusion can be done at one of three possible levels:

direct fusion of sensor data at the first level (also called
central fusion), representation of sensor data via feature
vectors, with subsequent fusion of the feature vectors at
the second, or processing each sensor to achieve high-
level inferences decisions, which are subsequently com-
bined [35]. Noteworthy, each of these approaches utilizes
different fusion techniques.
Combining multisource data from several sensors is

believed to offer several advantages over data from a sin-
gle sensor. First, combining the observations from sev-
eral identical sensors offers an improved classification
rate. A second advantage gained by using multiple sen-
sors is improved observability of the studied physio-
logical system [35]. Finally, using many decisions is
generally more stable and often more useful, in terms of
robustness to unknown pattern samples that do not ap-
pear in the training stage, then using a single decision.
Herein, we use a decision-level data fusion method
which combines sensor information after each sensor
has made a preliminary decision. Examples of decision-
level fusion methods include weighted decision methods
(voting techniques), classical inference, Bayesian infer-
ence, and Dempster-Shafer’s method [30,35]. In this
study, the decision-level fusion method is based on the
observation that the channel with a high accuracy
should have more influence on the decision making than
the channel with a lower accuracy. The same principle is
also applied to the target packets. Weights, noted θi,j
and λi (i = 1,..12; j = 1,..3), are therefore associated to the
target packets and channels respectively to express
quantitatively their classification reliability. Herein, reli-
ability measures which rank the channels and packets
according to their goodness are obtained heuristically
based on the classification success of a trial dataset dur-
ing an independent training phase [36]. The reason of



Figure 4 The wavelet packet decomposition tree with three levels and the respective frequency band for each packet.
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calculating the values of the weights heuristically is due
mainly to the fact that we lack complete knowledge of
the properties of the different channels. Further, the final
decision was based on the WMV decision of each com-
ponent classifier combined: for our m-channel problem
{d1, d2, . . .,dm}, (where m= 12), where dp represents the
decision of channel p, we define our decision fusion rule
as follows:

df ¼
Xm
p¼1

dpλp ð10Þ

If df > 0
� 


, then the decision is class 1 (pregnancy).

However, if, df ≤0
� 


the decision is class 2 (labor).
However, in order to reduce the error due to the small

sample size of training data, we have used the leave-one-
out cross validation method where a single observation
taken from the entire samples is used as the validation
data while the remaining observations are used for train-
ing the classifier. This is repeated such that each obser-
vation in the samples is used once in the validation data
[26]. In this phase, the training sets consisted each of an
equal number of trials from the two classes (pregnancy,
labor). Otherwise, the classifier will be biased toward the
class from which it has seen most feature vectors [27].
Finally, we used an independent test set on which we
Table 1 Classification results of pregnancy and labor contract

Packet Classification accuracy of
pregnancy contractions

(in %)

Classificatio
labor co

(i

(3,0) 68.4 7

(3,1) 93.4

(2,1) 45.9 5
evaluated our approach’s classification success rate. The
results of the classification are given in terms of correct
classification accuracy which is the number of samples
correctly classified divided by the total number of sam-
ples used.
Results
The total number of contractions included in this paper is
137 pregnancy and 76 labor contractions. Of these, a first
30 signals (Nc=30) randomly chosen of each class was
used as a first independent training dataset in order to
find the most discriminant packets. Since the energy of
the uterine EMG signals is located in a very limited band-
width (0.1 and 3Hz) [1], all signals were decomposed only
into a three-level (j = 1 to 3) wavelet packet tree. The de-
composition led to eight packets at the third level of band-
width 0.39 Hz each. Figure 4 shows the wavelet packet
decomposition tree with the three levels. In this figure, the
corresponding bandwidth is indicated at each node.
The Symlet 5 was chosen as the mother wavelet based

on previous research results [37]. The three highest dis-
criminant subspaces were chosen as the LDBs. After ap-
plying the LDB algorithm, packets (3,0), (3,1) and (2,1)
were chosen as the most discriminant packets. These
packets correspond to the frequency bands [0–0.39Hz],
[0.39–0.78Hz], and [0.78–1.56Hz], respectively and con-
ions of the second training dataset for each packet

n accuracy of
ntractions
n %)

Overall Classification
accuracy
(in %)

θi,j

2.3 70.3 0.703

30 61 0.61

7.8 74.3 0.743



Table 2 Classification results of pregnancy and labor contractions of the third training dataset for each channel

Channel Classification accuracy of
pregnancy contractions

(in %)

Classification accuracy of
labor contractions

(in %)

Overall classification
accuracy
(in %)

λi

Vb1 89.4 39.4 64.4 0.644

Vb2 64.4 50 57.2 0.572

Vb3 85.5 61.8 73.6 0.736

Vb4 71 44.7 57.9 0.579

Vb5 86.8 47.3 67.1 0.671

Vb6 80.2 40.7 60.5 0.605

Vb7 82.8 30.2 56.5 0.565

Vb8 84.2 38.1 61.1 0.611

Vb9 81.5 53.9 67.7 0.677

Vb10 94.7 48.6 71.7 0.717

Vb11 85.5 47.3 66.4 0.664

Vb12 81.5 60.5 71 0.71
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tainmore than 98% of the energy of the uterine EMG
signals [23].
Next, a second and a third datasets consisting each of

20 signals randomly chosen from each of the two classes
of contractions (pregnancy, labor) were used to deter-
mine the weights θi,j and λi respectively. Features were
extracted from the target subspaces and fed to an SVM
classifier. Thereafter, the weights θi,j were assigned
according to the classification results of each packet.
The classification accuracies of the training data for each
packet as well as the corresponding weights θi,j are indi-
cated in Table 1.
Furthermore, the classification accuracies of the train-

ing set for each channel are shown in Table 2. The
results show that the classification performance varies
from one channel to another. Specifically, channel Vb3
had the highest predictive value (73.6%) while for chan-
nel Vb7 had the worst (56.5%). As a result, the highest
weight was assigned to channel Vb3 while the lowest
weight was assigned to channel Vb7. Based on the classi-
fication accuracy obtained on the trials in the training
set, the weights λi were therefore assigned to each chan-
nel. The values of the weights λi are also indicated in
Table 2.
Finally, the trained network was used to classify the

test signals. The network was tested by using 97
Table 3 Classification results of pregnancy and labor
contractions for each channel for the test data by using a
weighted decision fusion rule

Weighted decision
fusion method

(in %)

Classification accuracy of pregnancy contractions 95.2

Classification accuracy of labor contractions 89.3

Overall classification accuracy 92.4
pregnancy contractions and 36 labor contractions (in-
cluding the first training dataset used to determine the
most discriminant packets). The final decisions of the in-
dividual channels were fused by using the WMV fusion
rule. The final classification results are presented in
Table 3. By using a weighted decision fusion method, the
overall classification accuracy was higher than any of the
individual channels. An overall classification accuracy of
92.4% was achieved. The accuracy was as high as 95.2%
for pregnancy contractions and 89.3% for labor contrac-
tions as indicated in Table 3. The high percentage of
correctly classified labor/non-labor events indicates ex-
plicitly just how efficient this approach method is at
detecting labor. Therefore, it can be seen that multi-
channel recordings can remarkably increase the classifi-
cation rate of uterine EMG signals for both pregnancy
and labor contractions.

Discussion
Numerous studies have analyzed the uterine EMG
recordings associated with pregnancy and labor. It has
been proved that it is of interest to offer a good insight
into the process of pregnancy and labor and may also be
used to predict the risk of preterm labor. Herein, we
confirmed the importance of uterine EMG for detecting
the onset of labor by classifying uterine EMG signals
into 2 classes (pregnancy vs. labor). The results of this
study showed that this technique may replace the meth-
ods currently available to clinicians to diagnose labor,
such as internal and external tocography, cervical
change evaluation by ultrasound examination [38].
Herein, we have used a matrix of 16 electrodes to im-

prove the classification accuracy of recorded uterine
electrical activity. The first point that emerges is that, al-
though there was a correlation between the electrical ac-
tivities recorded at different sites, the characteristics of
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the recorded signal depended on the position of the
recording electrode. The results revealed first that the
classification performance varied from one channel to
another. One possible explanation of this observable fact
is that the characteristics of the uterine electrical activity
are influenced by the position of the recording electrode:
on the one hand, the distance between the recording
position on the skin and the signal source in the myo-
metrium is reduced at the median axis with respect to
other electrodes [3,39,40]. There are more visceral tis-
sues between the skin and the uterus at the extremities
than on the middle of the median axis of woman’s abdo-
men [40]. On the other hand, in the region surrounding
the median axis, the position of the uterus relative to the
abdominal wall is constant even during contraction [3].
It was demonstrated thereafter that the main effect of
the electrode position, in terms of tissues depth below
the recording site and distance of electrodes to the
potentials source, concerns the attenuation of the high
frequencies which creates a strong attenuation of the
signal energy [3] which explains the rise of the high-
frequency content of the action potentials throughout
pregnancy and at the onset of labor reported in many
studies [1,24]. Therefore, the difference of the features
values between the two classes is less significant at the
median axis compared to other channels located at the
extremities of the recording matrix. Therefore, electro-
des positioned on the extremities are more sensible to
these variations than the channels located at the center
of the matrix and had more influence on the decision
making than the ones positioned on the median axis. As
a result, when a decision fusion rule was applied, an
improved accuracy of the classification decision com-
pared to a decision based on any of the individual data
sources alone was obtained. Furthermore, based on the
fact that there was variability between the classification
accuracies of the different channels, a decision fusion
rule based on the WMV may be more convenient for
combining the decisions than other rules such as the
majority voting as concluded in [41]. It is important also
to note that, due to the complexity of the analyzed data,
a SVM classifier with a RBF kernel which is known to be
a strong classifier should be used as the component clas-
sifier of the network. When tested on the same data,
SVM classifier with a RBF kernel yielded better classifi-
cation results than a neural network of the same kernel
function [18,41].
On the other hand, the use of the multiresolution ana-

lysis and the LDB algorithm that selects a basis from a
dictionary that illuminates the dissimilarities among the
two classes presented an important preprocessing step
for increasing the discriminatory powers of the extracted
features. Despite the use of simple and classical para-
meters, this method yielded better results than any of
the reported accuracies when compared with earlier
results [3-5].
We conclude therefore that the combination of multi-

resolution analysis with data fusion can be a very power-
ful approach when nature of data to be classified is very
complex as in the case of the uterine EMG signals.
Finally, although still to be tested, we believe that the

results of our approach may be improved by using a
more advanced decision-level fusion method such as the
Bayesian inference and Dempster-Shafer’s method. Also,
other sophisticated uterine EMG parameters not consid-
ered in this study (e.g. propagation velocity, fractal di-
mension, complexity [42],. . .) may help improve these
results. Finally, it is important to note that the use of the
LDB algorithm, as well as the determination of the dif-
ferent weights requires a large number of training sig-
nals; therefore, by recording more signals, this technique
may yield better classification results. As our ultimate
goal is to improve the classification accuracy of uterine
EMG signals in order to help detect preterm labor, we
find these results to be very useful.

Conclusion
The classification of uterine EMG signals recorded by
using multiple sensors was addressed. From this study,
we can conclude first that the classification of uterine
EMG signals can be improved by applying a decision-
level data fusion rule. Also, we can conclude that multi-
resolution analysis based on the wavelet packet transform
a data fusion seems to be an effective method for improv-
ing the classification of labor/non-labor signals. Although
simple parameters and a small training dataset were
used, the network demonstrated good performance on
complex classification problems. As our goal is to im-
prove the classification accuracy of uterine EMG data,
we find the classification results very promising com-
pared to previously reported results.
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