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Abstract

This article considers extending the scope of the empirical mode decomposition (EMD) method. The extension is
aimed at noisy data and irregularly spaced data, which is necessary for widespread applicability of EMD. The proposed
algorithm, called statistical EMD (SEMD), uses a smoothing technique instead of an interpolation when constructing
upper and lower envelopes. Using SEMD, we discuss how to identify non-informative fluctuations such as noise,
outliers, and ultra-high frequency components from the signal, and to decompose irregularly spaced data into several
components without distortions.
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Introduction
When analyzing a complex signal, we frequently decom-
pose it into several components having simple forms and
then analyze the information contained in each com-
ponent to reduce the complexity and to enhance inter-
pretability. Conventionally, decomposition is processed
using a basis system. The benefits of decomposition are
as follows: (1) a signal is well approximated by a finite
number of basis functions, (2) information in the time
(physical) domain is transformed into information in the
frequency domain without losing any information, and (3)
the interpretability of the signal can be enhanced by ana-
lyzing each component separately and comparing it with
the other components.
Spectral analysis [1] and wavelet analysis [2-4] are pop-

ular methods for signal decomposition. However, when a
signal has inherent nonstationary and nonlinear features
according to the scale and time location, these meth-
ods might not be suitable. Empirical mode decomposition
(EMD), developed by Huang et al. [5], provides a data-
driven approach to decompose a signal into so-called
intrinsic mode functions (IMFs) according to the local
oscillationmagnitude in the physical domain. IMFs can be
considered as data-driven empirical basis functions. EMD
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has been popularly used for analyzing nonstationary sig-
nals or nonlinear signals in many disciplines of science
and engineering [6].
However, due to interpolation process in the construc-

tion of envelopes, IMFs obtained by the conventional
EMD algorithm are sensitive to non-informative fluctu-
ations such as noise, outliers, and ultra-high frequency
components, and hence, the non-informative fluctuation
effect distorts the subsequent decomposition results. In
addition, this method focuses on a narrow scope that
does not cover irregularly sampled data. These constraints
of its scope strongly diminish the applicability of EMD
to various signals. To extend the scope of the conven-
tional EMD to noisy signals and irregularly spaced data,
we propose a statistical EMD algorithm called SEMD that
is based on a smoothing technique. This method is a
fully data-adaptive algorithm as in the case of the con-
ventional EMD. The proposed SEMD has several advan-
tages over the conventional EMD: (1) It is robust to
noise or non-informative random fluctuations such as
outliers and ultra-high frequency components, and hence,
SEMD can decompose such signals into appropriate IMFs
without distortion caused by the above-mentioned fac-
tors. (2) It provides a reasonable boundary condition of
an IMF without any boundary treatment, and therefore,
SEMD can provide stable decomposition results on the
entire domain including boundary regions. Furthermore,
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we extend EMD to analyze irregularly spaced signals by
combining SEMD with a simulation technique.
The remainder of this article is organized as follows.

Section Review: empirical mode decomposition presents
an overview of the conventional EMD. Section Statistical
EMD describes the proposed SEMD method, and several
case studies are presented to show its broad applicability.
In addition, we investigate the variation diminishing prop-
erty of SEMD. An extension to an irregularly spaced signal
is presented in Section Extension of EMD to irregularly
spaced signals. Finally, concluding remarks are presented
in Section Conclusion.
Before closing this section, we note that, in the liter-

ature, there have been several attempts to enhance the
performance of the conventional EMD and to extend its
scope. For example, to deal with noise, Boudraa and Cexus
[7] removed the high-frequency components using a fil-
tering method, and Wu and Huang [8] used the ensemble
mean approach of the simulated signal. Both methods
are based on conventional sifting followed by a posterior
adjustment. For applying the conventional EMD to signals
with lower sampling rate, Xu et al. [9] proposed a hybrid
extrema estimation algorithm based on Fourier interpola-
tion.More recently, Diop et al. [10] suggested a PDE-based
approach to compute envelopes, which is another way to
use non-interpolation in construction of envelopes.

Review: empirical mode decomposition
Fourier analysis decomposes a signal into a sum of sinu-
soids having different frequencies. However, it is well
known that for nonstationary signals, Fourier analysis
does not effectively provide frequency information of the
signals. Although wavelet analysis is a popular method
for analyzing nonstationary signals, it suffers from a non-
adaptive nature in that it applies the same type of basis
functions to the entire range of data. Wavelet analy-
sis also represents a signal by a linear combination of
wavelet basis functions. Therefore, its formulation for the
energy-frequency representation of nonlinear data can be
misleading [5]. Thus, we require a set of flexible basis
functions that reflects time-varying properties of a signal.
Huang et al. [5] proposed a data-driven algorithm for

extracting an oscillatory wave from a given signal x as fol-
lows. First, we identify the local extrema and construct
two functions called the upper envelope and lower enve-
lope by interpolating the local maxima and local minima,
respectively. Second, we take their average; this produces
a signal with a frequency lower than that of the original
signal because the main pattern of the signal is confined
between the two envelopes. Third, by subtracting the
envelope mean from x, the highly oscillatory wave h is
separated.
Huang et al. [5] defined an oscillatory wave to be an IMF

if it satisfies two conditions: (1) the number of extrema

and the number of zero-crossings should be equal or
differ by one and (2) the local average should be zero,
implying that the mean of the upper envelope and the
lower envelope is zero. There might exist overshoots and
undershoots in h after one iteration of the aforementioned
procedure, in which case the two conditions are not sat-
isfied. In such a case, until the conditions are satisfied,
the procedure is repeated for h. This iterative process is
called sifting. We may consider the IMF to be an empiri-
cal basis driven by the data-adapted process, sifting. This
IMF is the mode function that has the finest resolution. By
sifting, the original signal x is decomposed into the high-
est frequency imf 1 and a residual signal r1 = x − imf 1
that is less oscillatory than the original signal x. If r1 has
signals having different frequencies, then the next IMF
is obtained by considering r1 as a new signal. The signal
is sequentially decomposed into signals having different
frequencies from the highest-frequency component imf 1
to the lowest-frequency component imf n for some finite
n and a residual signal r. Finally, we have n IMFs and a
residual signal

x(t) =
n∑

i=1
imf i(t) + r(t).

Here, index i denotes the resolution level and imf 1 is
IMF at the finest level. We finally remark that Fourier
analysis assumes that a signal is stationary and consists
of components of a pure tone. In practice, the frequency
information can evolve over time and several such fre-
quencies can be compounded. The above EMD procedure
is useful for identifying the amount of variation due to
oscillation at different scale and time location and extract-
ing an oscillatory wave from a nonstationary signal.

Statistical EMD
One of the main purposes of EMD is to decompose a sig-
nal into several components and to identify its significant
frequency components. It is not uncommon for a signal
to be corrupted by non-informative random fluctuations
such as noise, whichmight consist of high frequencies and
contains no interpretable information.
However, the conventional EMD algorithm cannot

effectively separate noise from the signal, and hence, this
algorithm does not produce stable decomposition results
from noisy signals. To overcome this problem, we propose
a modified sifting process based on a smoothing tech-
nique. The proposed algorithm can be easily implemented
by simply replacing the interpolation with smoothing.
That is, the upper and lower envelopes can be constructed
by a smoothing technique. The proposed algorithm is
designed for considering noisy signals that are used in the
field of statistics. Thus, we call the proposed algorithm
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statistical EMD (SEMD). Formally, the SEMD algorithm
can be stated as follows:

A. (Modified sifting) Take a signal x to be decomposed,
and extract the first mode h1,λ by using a smoothing
technique.

(A-1) Identify the local maxima (minima) z of the
signal h01,λ where h01,λ is the original signal x.

(A-2) Construct an upper envelope ûλ (lower
envelope �̂λ) by applying a smoothing
technique with a smoothing parameter λ to
the maxima (minima) z.

(A-3) Compute the local meanmλ = 1
2 (ûλ + �̂λ) by

the average of both the envelopes, and then
obtain a candidate intrinsic mode
h11,λ = h01,λ − mλ.

(A-4) Repeat steps (A-1)–(A-3) for the signal h11,λ
until the signal hj1,λ at the jth iteration satisfies
the IMF conditions.

(A-5) Decompose the signal x = h1,λ + rλ, where
h1,λ is defined as the limit of hj1,λ and rλ is the
remaining signal.

B. (Conventional sifting) If the remaining signal
rλ = x − h1,λ has an intrinsic oscillation mode, then
rλ can be further decomposed by conventional sifting.

The only difference between SEMD algorithm and the
conventional EMD is step A, where the first mode is
extracted by smoothing instead of interpolation. In partic-
ular, step (A-2) in construction of ûλ and �̂λ by smoothing
plays most important roles in determining the quality
of the decomposition when the signal is corrupted by
non-informative random fluctuations.
A key issue that needs to be considered is how to deter-

mine the degree of smoothness (i.e., smoothing parame-
ter, λ) in the smoothing process.We propose an automatic
selection method of λ utilizing the conventional cross-
validation. The cross-validation splits observations into K
roughly equal-sized parts (for example, K = 4). For the
kth part (say, test dataset), we fit the model to the other
K − 1 parts (say, training dataset) of the observations, and
calculate the prediction error of the kth part by the fitted
model. We perform this procedure for k = 1, . . . ,K and
combine all K estimates of prediction error.
However, by omitting the test dataset, the remaining

training dataset for fitting the model becomes unequally
spaced data. Since the model fit is based on the decompo-
sition, it is difficult to obtain the stable fitting results with
such unequally spaced data, and hence, the conventional
cross-validation method may not be directly applicable to
this case.

Here, we propose an imputation-based cross-validation
method for selecting the smoothing parameter. For the kth
test dataset, we impute it by an imputation method, apply
the SEMD with a given smoothing parameter λ to a new
composite data which consists of the imputed kth dataset
and the remaining training dataset, and calculate the pre-
diction error for the kth test dataset. More specifically,
with defining an indexing function κ : {1, 2, . . . , n} →
{1, 2, . . . ,K} that indicates the partition to which obser-
vation x(t) is allocated, we obtain K partitioned datasets,
Tk = {x(t) : k = κ(t), t = 1, 2, . . . , n} (k = 1, . . .K). We
then define the prediction error as follows:

(i) Split a signal x into K test datasets T1, . . . ,Tk , . . . ,TK .
(ii) Impute the kth test dataset by local average of two

neighboring points and obtain T̃k .
(iii) With a given smoothing parameter λ, apply the

SEMD algorithm to decompose the composite signal
T1, . . . ,Tk−1, T̃k ,Tk+1, . . . ,TK into an h1,λ and the
remaining signal rλ.

(iv) Obtain the predicted values of remaining signal
evaluated at the kth part, say rkλ(t).

(v) Repeat steps (ii)–(iv) for k = 1, . . . ,K , and define the
prediction error as

PE(λ) = 1
n

n∑
t=1

{x(t) − rkλ(t)}2.

Finally, by using an optimization algorithm such as
golden section search algorithm, we select the smooth-
ing parameter λ value that minimizes the prediction
error PE(λ). By considering each test dataset as new
observations, it can be shown that the expectation of
PE(λ) is close to true prediction error [11]. Thus, the
above procedure is widely used for estimating true predic-
tion error.
We have some remarks regarding the SEMD algorithm.

• The first mode h1,λ: The h1,λ might not contain a
meaningful mode when non-informative fluctuations
such as noise are present, and hence, it may not be
appropriate to define the extracted mode as IMF.
However, the extracted mode can be considered as
IMF in the case of noiseless signals.

• Modified sifting at the first level: The modified
sifting can be employed to extract further IMFs
beyond the firstly extracted mode h1,λ. However, from
our experience based on extensive simulation studies,
SEMD effectively extracts noise from a noisy signal x
at the first level. Furthermore, Rilling and Flandrin
[12] and Park et al. [13] investigated that when there
exists a big discrepancy between the frequencies of
two components of a signal, ordinary sifting process
cannot correctly estimate the relatively low frequency
component, which results in misidentifying the
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relatively high frequency component. Since noise acts
as a high frequency component and the modified
sifting utilizing smoothing effectively estimates the
low frequency component, SEMD seems to
effectively extract noise at the first level.

• Smoothing technique: Several smoothing
techniques including kernel smoothing, smoothing
splines, and local polynomial method have been well
developed. In this study, we use kernel smoothing
with Gaussian kernel. In practice, any smoothing
method can be adopted for SEMD algorithm.

• The role of the smoothing parameter λ: The
performance of the modified sifting depends on the
choice of λ. We now consider two special cases: (1)
λ = 0—both envelopes ûλ and �̂λ are constructed by
interpolation, and hence, the extracted results are
identical to those by the conventional EMD, and (2)
λ = ∞—both envelopes ûλ and �̂λ are the weighted
averages of local extrema, so that the extracted mode
becomes a over-smoothed function which might not
be suitable to represent any frequency patterns of the
original signal. It implies that any meaningful modes
can not be extracted further. Therefore, to overcome
the above problem, we propose the data-driven cross-
validation approach to select an optimal λ. Finally, we
remark that since the PE(λ) is a reasonable estimate of
true prediction error, the resultant λ should be close
to 0 when the signal is noise-free. Thus, the resulting
fitting is almost identical to interpolation result in the
case of noise-free signal. In summary, SEMD can be
applicable to both noisy and noise-free signals.

• The number of K : Through this article, we use
K = 4, so that the entire signal is divided into four
parts. The K can be chosen to be any number less
than n. The case K = n is known as ‘leave-one-out’
cross-validation, where κ(t) = t, and the predicted
value for the tth observation is evaluated using all the
data except the tth observation. Thus, the
leave-one-out cross-validation is computationally
intensive.

• Sensitivity of imputation method: An imputation
method is required for the derivation of PE(λ). In this
study, we use local average of two neighboring points
for imputation which is simple and fast. It can be also
adapted by an advanced imputation technique such
as EM algorithm. However, for all cases in the article,
we observe that the selection results for the
smoothing parameter are almost identical.

• Computation cost: Compared to the conventional
EMD, the SEMD algorithm requires a longer
computational time due mainly to the smoothing
parameter selection. However, once the smoothing
parameter for the first mode is selected, the
computation time of the proposed algorithm is even

faster than that of the conventional methods when a
signal is contaminated by random fluctuations,
because the remaining steps are almost identical to
those of conventional EMD and in this case, the
conventional EMD tends to produce extra artificial
modes (this observation will be shown in subsequent
sections). In addition, the computational burden of
the above K-fold cross-validation procedure is not
considerable at all.

c
Here, we discuss a theoretical property of SEMD,

namely, the variation diminishing property of envelopes.
It implies that, as the value of smoothing parameter
increases, variation of envelopes decreasesmonotonically.
In other words, structures of envelopes such as peaks and
valleys disappear monotonically as the level of smoothing
increases. Thus, lower and upper envelopes generated by
a certain level of smoothing parameter should not contain
some artifacts due to noise. This fact has been known as
causality in the scale space literature (see, e.g., [14]).
Proposition 1. (variation diminishing property of
envelopes) Let {zi}mi=1 be a sequence of the centered local
maxima (or minima) of the original signal {x(t)}nt=1 (m <

n) and ν(λ) be the number of sign changes in the Gaussian
(or one-sided exponential) kernel estimate ûλ for {zi}mi=1. It
follows that

ν(λ) ≤ ν(λ′)

for any positive value λ′ ≤ λ.

Proof. : Suppose that we observe the data (t1, z1), . . . ,
(tm, zm). Give a smoothing parameter λ, a kernel smooth-
ing estimate is defined as

ûλ(t) = 1
mλ

m∑
i=1

ziK{(t − ti)/λ},

where the kernel function is K(x) = (1/
√
2π)

exp(−x2/2). Then, using the fact that K(t/λ1)∗K(t/λ2) =
K(t/

√
λ21 + λ22), we obtain

ûλ1(t) ∗ K(t/λ2) = û√
λ21+λ22

(t)

for all λ1, λ2 > 0. By Theorem of [15], it follows that
the number of sign changes in ûλ(t) is monotonically
decreasing function of λ.

To conclude this section, we note that the benefits of
adopting a smoothing process for sifting can be sum-
marized as a few items and these will be investigated
empirically through simulation studies in the subsequent
sections.
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(a) Extrema from a signal contaminated by noise are
sensitive to noise or outliers. Thus, it is necessary to
filter out such insignificant terms when constructing
the upper and lower envelopes, and hence, the sifting
process using filtered envelopes can produce stable
IMFs.

(b) As to be discussed below, the conventional EMD
cannot properly handle a signal containing an
ultra-high frequency component because it is difficult
to obtain the desired upper and lower envelopes by
using interpolation. This case can be solved by
employing a smoothing approach.

(c) Inadequate information is available on the
modulation of two boundaries before the first
extremum and after the last extremum when
constructing envelopes. Thus, using smoothing
instead of interpolation for extrema can alleviate the
boundary problem.

SEMD for noisy signals
To observe the effect of smoothing in the sifting process,
we consider the following synthetic signal x(t), 0 < t < 9
with frequencies f1, f2, and f3:

x(t) = 0.5t + sin(f1π t) + sin(f2π t) + sin(f3π t). (1)

The panels in Figure 1 show signals obtained from
model (1) with f1 = 6, f2 = 2, and f3 = 1, and the decom-
position results by the conventional EMD and SEMD,
respectively. For the noise-free signal, the performance
of SEMD for decomposition is comparable to that of
the conventional EMD, which properly produces three
IMFs and the residue. We also consider monthly aver-
age surface air temperatures of Northern Hemisphere
at surface level 700 hPa for the period January 1961 –
August 2003 in Figure 2. It is available from the website
http://www.cdc.noaa.gov/. It seems that the temperature
data is noise-free signal. The panels in Figure 2 show the
first two IMFs and the remaining signal obtained by EMD
and SEMD are almost identical.
On the other hand, EMD distorts the decomposi-

tion when noise is present. The left-hand side panels in
Figure 3 show a Gaussian noisy signal with signal-to-noise
ratio (SNR) 5, the first IMF, and the remaining signal
using interpolation during the sifting process. We notice
that through all the experiments and simulation study
of this article, n = 1024 data points are regularly sam-
pled in the time domain, and SNR is defined as SNR
= ‖m‖/σ ; m is a true function and σ is the standard
deviation of noise. It is apparent that the remaining sig-
nal exhibits a noisy pattern. In contrast, the application
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Figure 1 Decomposition results by EMD and SEMD for a noise-free signal.
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Figure 2Monthly average surface air temperatures of Northern Hemisphere at surface level 700 hPa and its decomposition results by
EMD and SEMD.

of a smoothing technique ensures that noise is effectively
separated from the signal as shown in the right-hand side
panels of Figure 3. This fact can be evaluated by examin-
ing the spectrum of periodogram. As shown in Figure 4,
we observe that the periodogram of the first compo-
nent by SEMD is almost flat, which is close to that of
pure noise, while that of EMD shows a pattern which is
not flat and therefore differs from that of pure noise. In

this case, the optimal smoothing parameter λ of SEMD
is selected as λ = 0.0523 by minimizing the prediction
error of cross-validation. Figure 5 shows the prediction
errors according to the smoothing parameter, which illus-
trates the sensitivity to the choice of smoothing parameter.
Each first component from SEMD and EMD affects the
subsequent decomposition results significantly. Figure 6
shows the decomposition results for a noisy signal.
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Figure 3 The first component and remaining signal by EMD and SEMD for a Gaussian noisy signal with SNR 5.



Kim et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:168 Page 7 of 17
http://asp.eurasipjournals.com/content/2012/1/168

0.0 0.1 0.2 0.3 0.4 0.5

−
25

−
15

−
5

frequency

sp
ec

tr
um

 (
dB

)

(a) pure noise

0.0 0.1 0.2 0.3 0.4 0.5

−
25

−
15

−
5

frequency

sp
ec

tr
um

 (
dB

)

(b) imf 1 by EMD

0.0 0.1 0.2 0.3 0.4 0.5

−
25

−
15

−
5

frequency

sp
ec

tr
um

 (
dB

)

(c) noise by SEMD

Figure 4 Periodogram of pure noise, and periodograms of the first components by EMD and SEMD for a Gaussian noisy signal with SNR 5
of Figure 3.

The conventional EMD does not produce proper IMFs,
whereas SEMD extracts noise and decomposes three IMFs
effectively.

SEMD for signals with outliers
Here, we consider a case in which the signal has some
insignificant random fluctuations represented by out-
liers. Unfortunately, the conventional EMD may not be
effective to decompose signals with outliers because the
interpolation is sensitive to outliers. More specifically,
interpolation in the conventional sifting is based on local
extrema, and therefore, the upper or lower envelope
moves toward the extreme values. Thus, the sequent IMFs
and the residual signal are distorted to an extent that
depends on the extreme values. The left-hand side panels
in Figure 7 show the case with a single outlier. The EMD
process cannot cope with even an outlier and produces
incorrect waveforms, whereas the SEMD results shown in
right-hand side panels are robust to the presence of an
outlier. In this case, the optimal smoothing parameter λ of
SEMD is 0.0663 which is lager than that of Gaussian noisy
signal in Figure 3. In a similar manner, the first compo-
nent of SEMD effectively treats a heavy-tailed noise that
can produce outliers, such as the t-distribution with three
degrees of freedom shown in Figure 8.

To evaluate the practical performance of SEMD and to
see whether the first component effectively captures the
noise or outliers from a signal, a simulation study was
conducted. In the study, we compared SEMD with the
conventional EMD and a wavelet shrinkage method.

1. emd: conventional EMD,
2. semd: proposed SEMD, and
3. sure: SURE wavelet shrinkage method of [16].

We consider the nine test functions displayed in
Figure 9: Sines (sines) in model (1), a chirp signal
(chirp) of the form m(t) = exp(−0.01t) cos(π t/10)
(t ∈[ 0, 500]), Heavisine (heav) from [17], fg1 (fg1) from
[18], Wave (wave), Angles (angle), Parabolas (para),
Time Shifted Sine (tsine) from [19], and Corner (corn)
from [20].
The test functions are corrupted by Gaussian and t-

distribution noise with three degrees of freedom, respec-
tively. We used seven noise levels with SNRs of 1, 2, . . . , 7.
For each combination of the test functions, noise types,
and SNR, 100 datasets were generated with a sample size
of 1024. For each generated dataset, the three methods
mentioned above are applied to obtain the estimate m̂
of the test function m. In the EMD methods, including
SEMD, the estimate ofm is obtained by removing the first
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Figure 5 The prediction errors of SEMD according to smoothing parameter λ for a Gaussian noisy signal with SNR 5 of Figure 3.
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Figure 6 Decomposition results by EMD and SEMD for a Gaussian noisy signal with SNR 5.
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component from the noisy signal. As a measure of per-
formance, the mean squared error, MSE (= 1

n
∑{m(t) −

m̂(t)}2) is then calculated for each method. Figures 10
and 11 show average MSE as function of SNR, averaged
over 100 datasets from two noisy types.
From the simulation results, the following main obser-

vations can be made: (i) noise distorts the decomposition
results in the case of the conventional EMD, (ii) wavelet
shrinkage outperforms the conventional EMD in recov-
ering the true function, (iii) SEMD is the most effective
in removing noise from a noisy signal, and (iv) SEMD is
robust to the presence of extreme values. In summary,
the simulation results illustrate that SEMD is an effective
decomposition method for separating noise or outliers
from signals.

SEMD for signals with an ultra-high frequency component
It is known that if the extrema of a signal are located
near the extrema of the highest-frequency component,
the conventional EMD effectively decomposes a signal
[12,13]. However, when a signal contains an ultra-high

frequency component, the very small gaps between the
extrema of a signal and the highest-frequency component
can degrade the desired representation of the envelopes.
Thus, an ultra-high frequency component may be incor-
rectly extracted, as shown in Figures 12, 13 and 14. A
signal of Figure 12 is generated from model (1) with
frequencies f1 = 80, f2 = 2, and f3 = 1, and for generat-
ing signals in Figures 13 and 14, an ultra-high frequency
component of 0.1 sin(480π t) is added to the two signals,
fg1 and Wave, respectively. Since smoothing can help to
properly construct the hidden symmetric envelopes of an
ultra-high frequency component, unlike the interpolation
technique, we apply SEMD to the three simulated signals.
As shown in the figures, SEMD successfully decomposes
the ultra-high frequency IMF and the subsequent IMFs.
Note that conventional EMD produces artificial IMFs.

Boundary treatment by SEMD
When constructing envelopes during the sifting process,
inadequate information is available on the modulation
of two boundaries before the first extremum and after
the last extremum. Unless the boundaries are properly
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Figure 13 Decomposition results by EMD and SEMD for fg1 signal with an ultra-high frequency component 0.1 sin(480πt).

treated, large swings occur on both sides, and these even-
tually distort the entire decomposition result. This phe-
nomenon is particularly exaggerated in lower-frequency
IMFs because there is inadequate information on an
intrinsic mode. In addition to traditional boundary treat-
ments such as periodic or symmetric conditions, Huang

et al. [5] extended the original signal by adding artifi-
cial waves called characteristic waves, and these can be
constructed by repeating the intrinsic mode formed by
extreme values nearest to the boundary.
To evaluate the performance of boundary treatment

of SEMD, we consider three test signals. For a signal
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Figure 14 Decomposition results by EMD and SEMD for Wave signal with an ultra-high frequency component 0.1 sin(480πt).
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in Figure 15, frequencies of model (1) are defined as
f1 = 6, f2 = 2, and f3 = 1, and we generate signals in
Figures 16 and 17 by adding a term 0.1 sin(60π t) to
the two signals, fg1 and Wave, respectively. The left-
hand side panels of Figures 15, 16 and 17 show the
decomposition results of the conventional EMD without
any boundary treatment. The relatively large amplitude
at both boundaries in the first IMF eventually has an
effect on the sequential IMFs. This effect subsequently
produces the artificial IMFs, which are not a compo-
nent of the original signal. On the other hand, SEMD
itself provides an alternative to the boundary problem
treatment, that is, without using any periodic/symmetric
condition or characteristic wave, SEMD can alleviate
the boundary problem by applying a smoothing pro-
cedure to all levels. As shown in the right-hand side
panels of Figures 15, 16 and 17, the decomposition results
of SEMD provide a better boundary adjustment, and

this can produce appropriate components on the entire
domain.

Extension of EMD to irregularly spaced signals
We consider an extension of EMD to irregularly spaced
signals. The conventional EMD interpolates in-between
extrema using cubic splines; this might not be appropri-
ate for obtaining the upper and lower envelopes when
the observed data are scattered: they are not observed on
regular (spatial) grids, and they have spatially inhomoge-
neous densities including data voids of various sizes.
Here, we propose a new method based on the combi-

nation of a simulation technique for generating random
fields and the SEMD algorithm, called simulation-based
SEMD. This method can be easily adopted for one-
dimensional signals. The proposedmethod comprises two
steps: (1) Extrema are generated on a regularly spaced
domain by a simulation method. (2) The upper and lower
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Figure 15 Boundary treatment by SEMD for a signal x(t) = 0.5t + sin(6πt) + sin(2πt) + sin(πt), 0 < t < 9.
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Figure 16 Boundary treatment by SEMD for a signal x(t) = fg1(t) + 0.1 sin(60πt).

envelopes are constructed using the simulated extrema
and the SEMD algorithm.
A key feature of the proposed simulation-based SEMD

method is that it can integrate various patterns between
the simulated extrema. Furthermore, the uncertainty of

the resulting IMFs can be evaluated on the basis of several
sets of simulations.
To generate simulated extrema, we can use some well-

studied methods for simulating random fields in spa-
tial statistics. In this study, we employ a kriging-based

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

signal

(a) Decomposition by EMD

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

4 imf 1

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

4 imf 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

remaining signal

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

signal

(b) Decomposition by SEMD

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

4 imf 1

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

4 imf 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

remaining signal

Figure 17 Boundary treatment by SEMD for a signal x(t) = Wave(t) + 0.1 sin(60πt).
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simulation method that is described below. Consider a
Gaussian random field with a covariance function � and
a realization vector x(s) =[ x(s1), . . . , x(sm)]T sampled at
irregularly spaced locations s =[ s1, . . . , sm]T . The aim is
to generate a set of extrema on a regular grid with the
same mean and covariance structure as x(s) and to ensure
that the realization passes through the observed values.
Suppose that we have the decomposition

x(t) = p(t; x) + x(t) − p(t; x),

where p(t; x) denotes the kriging predictor at regularly
spaced locations t = (t1, . . . , tn) that depends on x. The
quantity e(t) = x(t)−p(t; x) denotes kriging residuals that
are not available in practice. Therefore, we generate e(t)
with an estimated covariance. Using the simulated values
p(t; x) + e(t), we identify the extrema and use the SEMD
to obtain the IMF at t. Irregularly spaced IMFs are derived
at s.

We apply the proposed method to a signal from model
(1) with frequencies f1 = 6, f2 = 2, and f3 = 1. The top
panel of Figure 18 shows 1,024 irregularly spaced observa-
tions contaminated by Gaussian noise with SNR = 7. The
mean estimate for a signal by the simulation-based SEMD
method with 200 replications and its 99% empirical con-
fidence interval are indicated by a solid line and gray band
in the second panel of Figure 18, respectively. To evaluate
the performance of the proposedmethod, we apply SEMD
and the conventional EMD to the irregularly spaced data
shown in the top panel. The dashed lines in the third
and fourth panels show the reconstructions of SEMD and
EMD, respectively. TheMSEs of the proposed simulation-
based SEMD, SEMD, and EMD are 0.0059, 0.0072, and
511.603, respectively. Furthermore, Figure 19 shows the
mean estimates of the IMFs and residue by the simulation-
based SEMD with 200 replications. From the results of
Figure 19, the simulation-based SEMD method is capable
of effectively decomposing irregularly spaced data.
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Figure 18 Extension of EMD to irregularly spaced data. (a) the dotted line denotes the mean function of the signal in model (1); (b) the solid
line is the estimate by simulation-based SEMD; (c) the dashed line is the estimate by SEMD; and (d) the dashed line is the estimate by the
conventional EMD.
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Figure 19 The mean estimates of IMFs and residue by the simulation-based SEMDwith 200 replications.

Conclusion
In this article, we have proposed a statistical EMD to deal
with a noisy signal by combining smoothing techniques
and the conventional EMD. The results obtained from
various numerical experiments confirm the effectiveness
of the statistical EMD method. Furthermore, we have
extended EMD to irregularly spaced signals by utilizing
simulated extrema. These extensions of the conventional
EMD are expected to increase the applications of EMD.
Further studies of the proposed SEMD are needed.

The current algorithm of SEMD requires the selection
of smoothing parameter, which is indeed computationally
expensive and might be an obstacle of handing massive
data. Hence, it is necessary to develop a computation-
ally efficient method of smoothing parameter selection.
As another possible refinement of SEMD, we would like
to investigate intermittence problem of mode mixing,
which means that different modes of oscillations coex-
ist in a single IMF. Finally, although SEMD is relatively
robust to outliers compared with the conventional EMD,
a least-squared-based smoothing method such as kernel
smoothing can be affected by outliers in construction of

envelopes. Therefore, it seems that a quantile-based EMD
would merit further study.
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