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Abstract

Neural network (NN) approaches have been widely applied for modeling and identification of nonlinear
multiple-input multiple-output (MIMO) systems. This paper proposes a stochastic analysis of a class of these NN
algorithms. The class of MIMO systems considered in this paper is composed of a set of single-input nonlinearities
followed by a linear combiner. The NN model consists of a set of single-input memoryless NN blocks followed by a
linear combiner. A gradient descent algorithm is used for the learning process. Here we give analytical expressions
for the mean squared error (MSE), explore the stationary points of the algorithm, evaluate the misadjustment error
due to weight fluctuations, and derive recursions for the mean weight transient behavior during the learning
process. The paper shows that in the case of independent inputs, the adaptive linear combiner identifies the linear
combining matrix of the MIMO system (to within a scaling diagonal matrix) and that each NN block identifies the
corresponding unknown nonlinearity to within a scale factor. The paper also investigates the particular case of linear
identification of the nonlinear MIMO system. It is shown in this case that, for independent inputs, the adaptive linear
combiner identifies a scaled version of the unknown linear combining matrix. The paper is supported with
computer simulations which confirm the theoretical results.
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Introduction
Neural network [1] approaches have been extensively
used in the past few years for nonlinear MIMO system
modeling, identification and control where they have
shown very good performances compared to classical
techniques [2-6].
If these NN approaches are to be used in real systems,

it is important for the algorithm designer and the user to
understand their learning behavior and performance cap-
abilities. Several authors have analyzed NN algorithms
during the last two decades which considerably helped
the neural network community to better understand the
mechanisms of neural networks [1,7-15]. For example,
the authors in [13] have studied a simple structure con-
sisting of two inputs and a single neuron. The authors in
[8] studied a memoryless single-input single-output
(SISO) system identification model for the single neuron

case. In [9] the authors proposed a stochastic analysis of
gradient adaptive identification of nonlinear Wiener sys-
tems composed of a linear filter followed with a Zero-
memory nonlinearity. The model was composed of a lin-
ear adaptive filter followed by an adaptive parameterized
version of the nonlinearity. This study has been later
generalized [16] for the analysis of stochastic gradient
tracking of time-varying polynomial Wiener systems. In
[12] the author analyzed NN identification of nonlinear
SISO Wiener systems with memory for the case where
the adaptive nonlinearity is a memoryless NN with an ar-
bitrary number of neurons. The case of a nonlinear SISO
Wiener-Hammerstein system (i.e., an adaptive filter fol-
lowed by an adaptive Zero-memory NN followed by an
adaptive filter) has been analyzed in [11].
This paper deals with a typical class of nonlinear

MIMO systems (Figure 1) which is composed of M
inputs, M memoryless nonlinearities, a linear combiner,
and L outputs. This corresponds, for example, to MIMO
channels used in wireless terrestrial communications
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[17-22], satellite communications [23,24], amplifier mod-
eling [25], control of nonlinear MIMO systems [6], etc.
Recently, a neural network approach has been proposed
to adaptively identify the overall input–output transfer
function of this class of MIMO systems and to
characterize each component of the system (i.e., the
memoryless nonlinearities and the linear combiner) [4].
The proposed NN model is composed of a set of mem-
oryless NN blocks followed by an adaptive linear com-
biner. Each part of the adaptive system aims at
identifying the corresponding part in the unknown
MIMO system. The algorithm has been successfully ap-
plied to system modeling, channel tracking, and fault
detection.
The purpose of this paper is to provide a stochastic

analysis of NN modeling of this class of MIMO systems.
The paper provides a general methodology that may be
used to solve other problems in stochastic NN learning
analysis. The methodology consists of splitting the study
into simple structures, before studying the complete
structure. Here, as a first step we start by analyzing a
simple linear adaptive MIMO scheme (consisting of an
adaptive matrix) that identifies the nonlinear MIMO sys-
tem (i.e., problem of linear identification of a nonlinear
MIMO system). Then we analyze a nonlinear adaptive
system in which the nonlinearities are assumed to be
known and frozen during the learning process, only the
linear combiner is made adaptive. Finally, the complete
adaptive scheme is analyzed taking into account the
insights given by the analysis of the simpler structures.
In our analytical approach, we derive the general formu-
las and recursions, which we apply to a case study that
we believe is illustrative to the reader.
The paper is organized as follows. The problem state-

ment is given in Section 2. The study of the simple

structures is detailed in Section 3. Section 4 presents the
analysis for the complete structure. Simulation results
and illustrations are given in Section 5. Finally, conclu-
sions and future work are given in Section 6.

Problem statement
Nonlinear MIMO system
The class of nonlinear MIMO systems discussed in this
paper is presented in Figure 1. Each input xi (n) (i = 1,. . .,
M) is nonlinearly transformed by a memoryless nonlinear-
ity gi (.). The outputs of these nonlinearities are then
linearly combined by an L×M matrix H = [hji] (assumed
in this paper to be constant). Matrix H is defined by the
unknown system to be identified. For example, in wireless
MIMO communication systems, M is the propagation
matrix representing the channel between M transmitting
antennas and L receiving antennas.
The jth output of the MIMO system is expressed as:

yj nð Þ ¼
XM
i¼1

hji nð Þgi xi nð Þð Þ þ Nj nð Þ ð1Þ

where Nj is a white Gaussian noise with variance σ0
2.

Let X nð Þ¼ x1 nð Þx2 nð Þ . . . xM nð Þ�t; g X nð Þð Þ¼�
g1 x1 nð Þð Þ½

g2 x2 nð Þð Þ . . . gM xM nð Þð Þ�t ; Y nð Þ ¼ y1 nð Þy2 nð Þ . . . yL nð Þ�t ;�
and N nð Þ ¼ N1 nð ÞN2 nð Þ . . .NL nð Þ�t:�
The system input–output relationship can be

expressed in a matrix form as:

Y nð Þ ¼ H � g X nð Þð Þ þ N nð Þ: ð2Þ

Neural Network identification structure and algorithm
The neural network (Figure 2) is composed of M blocks.
Each block k has a scalar input xk (n) (k = 1,. . .,M), N

Figure 1 Nonlinear MIMO system.
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neurons and a scalar output. The output of the kth block
is expressed as:

NNk nð Þ ¼
XN
i¼1

ckif akixk nð Þ þ bkið Þ; k ¼ 1; ::::;M ð3Þ

Where f is the NN activation function. aki, cki, bki are,
respectively, the input weight, bias term, and output
weight of the ith neuron in the kth block. The output
NNk of the kth block is connected to the jth output of the
system through weight wjk. The system jth output is then
expressed as:

sj nð Þ ¼
XM
k¼1

wjkNNk nð Þ; j ¼ 1; ; L ð4Þ

Weights wjk will be represented by an LxM matrix:
W = [wjk].
Let S nð Þ¼ s1 nð Þs2 nð Þ . . . sL nð Þ�t and NN nð Þ¼�

NN1 nð Þ½
NN2 nð Þ . . .NNM nð Þ�t:
Equations (4) can then be expressed in a matrix form

as:

S nð Þ ¼ W � NN nð Þ: ð5Þ
For the learning process, the NN parameters are

updated so that to minimize the sum of the squared
errors between the unknown system outputs and the
corresponding outputs of the model (Figure 3):

e nð Þk k2 ¼
XL
j¼1

e2j nð Þ: ð6Þ

Here ej nð Þ ¼ yj nð Þ � sj nð Þ and e nð Þ ¼ e1 nð Þe2 nð Þ . . .½
eL nð Þ� t :
The gradient descent recursions for weight adaptation

are:

W nþ 1ð Þ ¼ W nð Þ þ 2μe nð ÞNNt nð Þ ð7Þ

cki nþ 1ð Þ ¼ cki nð Þ þ 2μ f akixk nð Þ þ bkið Þ
XL
l¼1

wlkel nð Þ

ð8Þ

aki nþ 1ð Þ ¼ aki nð Þ þ 2μckixk nð Þf 0
akixk nð Þð

þbkiÞ
XL

l¼1
wlkel nð Þ ð9Þ

bki nþ1ð Þ ¼ bki nð Þþ2μckif
0
akixk nð Þþbkið Þ

�
XL

l¼1
wlkel nð Þ ð10Þ

where μ is a small positive constant and f
0 ðÞ represents

the derivative: f
0
xð Þ ¼ @f xð Þ

@x :

Case study
After the derivation of the general formulas, it is import-
ant that we apply them to special cases in order to get
closed-form expressions of the different recursions that
can be illustrated to the reader. We have chosen here a
case study that we think is good to illustrate our results.

Figure 2 NN identification structure.

Ibnkahla EURASIP Journal on Advances in Signal Processing 2012, 2012:179 Page 3 of 22
http://asp.eurasipjournals.com/content/2012/1/179



In this case study, the inputs xi (n) will be assumed
uncorrelated Zero-mean Gaussian variables with variance
σ2
xi . The NN activation function will be taken as the erf

function. The unknown nonlinear transfer functions are
taken from a family of nonlinear functions of the form

gi xð Þ ¼ αi x exp
�βix

2

2

� �
, where αi and βi are positive con-

stants. These nonlinear functions are reasonable models
for amplitude conversions of nonlinear high power
amplifiers (HPA) used in digital communications
[12,25,26]. Note that other nonlinear functions may be
considered, however, explicit closed-form solutions of
the different derivations may not be possible.

Study of simplified structures: Linear adaptation
Before analyzing the full structure, we will analyze the
following simplified schemes which will help us under-
stand the complete structure:

1. The adaptive system is composed of an adaptive
linear combiner W (Section 3.1).

2. The adaptive system is composed of W and scaled
versions of the unknown nonlinearities (Section 3.2).

Linear adaptive system
This section studies the linear adaptive system that tries
to model the nonlinear MIMO system (Figure 4):

Mean weight behavior and Wiener solution
Since matrix W is linear, it will not be able to identify
the nonlinear blocks. However, we will see that it is able
to identify matrix H to within a diagonal scaling matrix
if the inputs are Zero-mean and independent.
The gradient descent update of matrixW is expressed as:
W nþ 1ð Þ ¼ W nð Þ þ 2μe nð ÞXt nð Þ

¼ W nð Þ þ 2μ HgX nð Þ þ N nð Þðð
�W nð ÞX nð ÞÞXt nð Þ ð11Þ

Averaging both sides of (11) and using the standard
LMS assumption of small μ [10], we obtain:

E W nþ 1ð Þð Þ � E W nð Þð Þ þ 2μ HRg Xð ÞX
�

�E W nð Þð ÞRXXÞ
¼ E W nð Þð Þ I � 2μRXXð Þ þ 2μHRg Xð ÞX

ð12Þ
Where RXX ¼ E XXtð Þ;Rg Xð ÞX ¼ E g Xð ÞXtð Þ:

Figure 3 Adaptive learning scheme.
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By setting the updating gradient term to Zero, it can
be shown that this equation has a single stationary point
(Wiener solution [10]) which is expressed by:

W ¼ W0 ¼ HU where U ¼ Rg Xð ÞXR�1
XX ð13Þ

Following Equation (12), the mean weights can be
expressed as a function of the initial condition as:

E W nð Þð Þ ¼ W 0ð Þ I � 2μRXXð Þn

þ 2μHRg Xð ÞX
Xn�1

p¼0

I � 2μRXXð Þp ð14Þ

If μ is sufficiently small, the first term converges to 0
and the second term converges to HRg Xð ÞXR�1

XX .
Hence, the mean weights converge to the Wiener

solution:

W 1ð Þ ¼ W0 ¼ HRg Xð ÞXR�1
XX ð15Þ

It can be easily shown that the stability condition on μ
is [10]:

0 < μ <
1

λmax
ð16Þ

where λmax is the largest eigenvalue of the covariance
matrix RXX.
Note that for Zero-mean independent inputs, U is a di-

agonal matrix:

U ¼ Rg Xð ÞXR�1
XX

¼

E g1 x1ð Þx1½ �
σ2
x1

0 . . . 0

0
E g2 x2ð Þx2½ �

σ2
x2

. . .

0 0 . . .
E gM xMð ÞxM½ �

σ2
xM

2
666666664

3
777777775

ð17Þ

In this case, the linear adaptation allows the identifica-
tion of matrix W to within a scaling matrix, which
depends on the nonlinearities and the input signals. As

Figure 4 Linear adaptive system.
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expected, the scaling matrix reduces to the identity
matrix if gk (xk) = xk.
Application to the case study:
For the particular nonlinear functions given in the case

study (see Section 2.3), it is easy to show:

E xi nð Þgi xi nð Þð Þð Þ ¼ αi σxi
2

1þ βiσxi
2

� �3
2

and

E g2i xi nð Þð Þ� � ¼ α2i σxi
2

1þ 2βiσxi
2

� �3
2

ð18Þ

The mean weight transient recursions are expressed as:

E wjk nþ 1ð Þ� � ¼ E wjk nð Þ� �
1� 2μσ2xk

� �
þ 2μ hjk

αk σ2
xk

1þ βkσ
2
xk

� �3
2

ð19Þ

Matrix U reduces to the following diagonal matrix:

U¼

α1

1þβ1σ
2
x1

� �3
2

0 . . . 0

0
α2

1þ β2σ
2
x2

� �3
2

. . .

0 0 . . .
αM

1þ βMσ2
xM

� �3
2

2
66666666664

3
77777777775

ð20Þ

Transient MSE and Wiener MSE
The transient MSE is determined by:

E e nð Þk k2� � ¼ E Hg X nð Þð Þ þ N nð Þ �W nð ÞX nð Þk k2� �
¼
XL
j¼1

E e2j nð Þ
h i

ð21Þ

where:

E e2j nð Þ
� �

¼ E Hjg X nð Þð Þ þ Nj nð Þ �Wj nð ÞX nð Þ�� ��2� �
ð22Þ

where Wj nð Þ ¼ wj1 nð Þwj2 nð Þ . . . wjM nð Þ �t and Hj ¼
�

hj1 hj2 . . . hjM�t :�
Using the independence of noise and weights at time

n, we get:

E e2j nð Þ
� �

¼ σ2
0 þ E ðHjg X nð Þð Þ �Wj nð ÞX nð Þ�� ��2� �

¼ σ2
0 þ Ht

j Rg Xð Þg Xð ÞHj � 2Ht
j Rg Xð ÞXE Wj nð Þ� �

þ E Wj nð ÞRXXW
t
j nð Þ

� �
ð23Þ

The total MSE is therefore expressed as:

E e nð Þk k2� � ¼ Lσ2
0 þ

XL
j¼1

Ht
j Rg Xð Þg Xð ÞHj

� 2Ht
j Rg Xð ÞXE Wj nð Þ� �

þ E Wt
j nð ÞRXXWj nð Þ

� �
: ð24Þ

Wiener MSE:

The Wiener MSE, ζ0 ¼ E eW0 nð Þk k2� �
, is the minimum

MSE that can be reached by the system if W is equal to
the Wiener solution W0 = HU. It can be easily shown that:

ζ0 ¼ E eW0 nð Þk k2� �
¼ Lσ2

0 þ E Hg X nð Þð Þ �W0X nð Þk k2� �
¼ Lσ2

0 þ E H g X nð Þð Þ � UX nð Þð Þk k2� � ð25Þ

It is clear from this equation that if the unknown func-
tions are linear, then the Wiener MSE reduces to the
noise power. The MSE is always larger than ζ0 because
of the misadjustment error introduced by the weight
fluctuations.
Now we can write the MSE as a function of the

Wiener MSE:

E e nð Þk k2� � ¼ E H g X nð Þð Þ þ N nð Þ�W nð ÞX nð Þð Þk k2� �
¼ E eW0 nð Þ � W nð Þ �W0ð ÞX nð Þk �k2� �

ð26Þ

Let the instantaneous deviation of the matrix weights
with respect to the Wiener solution be denoted by:

V nð Þ ¼ vjk nð Þ� � ¼ W nð Þ �W0: ð27Þ

We have:

E e nð Þk k2� � ¼ E eW0 nð Þ � V nð ÞX nð Þk k2� �
: ð28Þ

This expression is similar to that of the well-known
LMS algorithm [10], and can be evaluated as the sum of
the minimum error and excess error (or misadjustment)
as:

E e nð Þk k2� � ¼ ζ0 þ
XL
j¼1

tr RXXKVjVj nð Þ� � ð29Þ

where Vj nð Þ ¼ vj1 vj2 . . . vjM
� � t

and KVjVj nð Þ ¼ E Vj nð Þ�
V t
j nð ÞÞ.
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The misadjustment is expressed as:

Δ nð Þ ¼ tr RXX

XL
j¼1

RVjVj nð Þ
 !

: ð30Þ

At the convergence, we have:

E e 1ð Þk k2� � ¼ ζ0 þ Δ 1ð Þ: ð31Þ
Derivation of the misadjustment:
From Equation (11) it is easy to show that the weight

fluctuations follow the recursion:

V nþ 1ð Þ ¼ V nð Þ þ 2μ eW0 nð Þ � V nð ÞX nð Þð ÞXt nð Þ
ð32Þ

Taking the mean of this equation and applying the or-
thogonality principle between the input vector and the
Wiener error, we get:

E V nþ 1ð Þð Þ ¼ E V nð Þð Þ 1� 2μRXXð Þ ð33Þ
Thus, as expected, if μ is sufficiently small E(V(n)) con-

verges to 0.
Similarly, for each vector Vj we can obtain the follow-

ing recursion:

Vj nþ 1ð Þ ¼ Vj nð Þ þ 2μ eW0j nð Þ � Xt nð ÞVj nð Þ� �
X nð Þ Þ

ð34Þ
The evaluation of the covariance matrix of the weight

fluctuations is obtained by multiplying both sides of
Equation (34) by V t

j nþ 1ð Þ and averaging:

KVjV t
j
nþ 1ð Þ ¼ KVt

j V
t
j
nð Þ � 2μRXXKVjVj nð Þ

� 2μKVjVj nð ÞRXX

þ 2μE eW0j nð ÞXV t
j I � 2μXXtð Þ

h i
þ 2μE eW0j nð ÞXV t

j I � 2μXXtð Þ
h it

þ 4μ2E XXtKVjVjXX
t

� �
þ 4μ2E e2W0j nð ÞXXt

h i
ð35Þ

These expectations are derived in Appendix III, which
yields:

KVjV t
j
nþ 1ð Þ ¼ KVt

j V
t
j
nð Þ � 2μRXXKVjVj nð Þ

� 2μKVjVj nð ÞRXX

þ 4μ2 �E Ht
j g Xð ÞXE V t

j nð Þ
� �

XXt
h i�

þtr RXXW0E V t
j nð Þ

� �� �
RXX

þRXXW0E V t
j nð Þ

� �
RXX

��
þ 4μ2 �E Ht

j g Xð ÞXE V t
j nð Þ

� �
XXt

h i�
þtr RXXW0E V t

j nð Þ
� �� �

RXX

þRXXW0E V t
j nð Þ

� �
RXX

��t
þ 4μ2 tr RXXKVjVj nð Þ� �

RXX
�

þ2RXXKVjVj nð ÞRXX
�

þ4μ2 E g Xð Þgt Xð ÞHjH
t
j XX

t
h i�

þσ2
0RXX � tr RXXW

t
0jW

t
0j

� �
RXX

�2RXXW
t
0jW

t
0jRXX

�
ð36Þ

Taking into account that E(Vj(∞)) = 0, KVjVj can be
obtained by solving the following equation:

RXXKVjVj 1ð ÞþKVjVj 1ð ÞRXX �2μ tr RXXKVjVj 1ð Þ� �
RXX

� 4μRXXKVjVj 1ð ÞRXX

¼ 2μ E g Xð Þgt Xð ÞHjH
t
j XX

t
h i

þ 2μσ20RXX

h
�2μtr RXXW

t
0jW

t
0j

� �
RXX � 4μRXXW

t
0jW

t
0jRXX

i
ð37Þ

This expression holds for any input signal. It can be simplified if RXX ¼ σ2
xI . In this case we have:

tr RXXKVjVj 1ð Þ� � ¼ μ
σ20σ

2
xM þ tr E g Xð Þgt Xð ÞHjHt

j XX
t

� �� �
� σ4

x M þ 2ð Þtr W0jW t
0j

� �
1� μσ2x M þ 2ð Þ ð38Þ

It is now easy to determine the total misadjustment:

Δ 1ð Þ ¼
XL
j¼1

tr RXXKVjVj 1ð Þ� � ¼ μ

σ2
0σ

2
xMLþ tr E g Xð Þgt Xð ÞPL

j¼1
HjHt

j XX
t

 !" #
� σ4

x M þ 2ð Þtr W0Wt
0

� �
1� μσ2x M þ 2ð Þ ð39Þ
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Note that, as expected, in the case of linear functions
Δ(∞) reduces to:

Δ 1ð Þjg Xð Þ¼X ¼ μσ20σ
2
xML

1� μσ2x M þ 2ð Þ : ð40Þ

The additional terms are due to the nonlinearities and
they should be calculated specifically for each
nonlinearity.
Application to the case study:
The MSE is expressed as:

E e nð Þk k2� � ¼ Lσ0
2 þ

XL
j¼1

XM
k¼1

αkσ
2
xk

αk

1þ 2βiσxk
2

� �3
2

h2jk

2
4

� 2

1þ βkσxk
2

� �3
2

hjkwjk nð Þ þ w2
jk nð Þ

3
5
ð41Þ

The Wiener MSE is expressed in this case as:

ζ0 ¼ Lσ0
2 þ

XM
i¼1

α2i σ
2
xi

1þ 2βiσxi
2

� �3
2 � 1

1þ βiσxi
2

� �3 XL
j¼1

h2ji

ð42Þ

Adaptive W, the nonlinearities are frozen and known with
scale factors
In this section, matrix W is adaptive, the nonlinearities
are frozen and known with scale factors (Figure 5).

Mean weight behavior and stationary points
The gradient descent update of matrix W is expressed
as:

W nþ 1ð Þ ¼ W nð Þ þ 2μe nð ÞΩg X nð Þð Þt
¼ W nð Þ þ 2μ Hg X nð Þð Þ þ N nð Þð½
�W nð ÞΩg X nð Þð Þ�Ωg X nð Þð Þt ð43Þ

Figure 5 Simplified scheme, the nonlinearities are frozen and assumed known with a scaling factor.
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where Ω ¼
η1 0 0
0 . . . 0
0 ηM

2
4

3
5.

Averaging both sides of (43) and using the standard
LMS assumption of small μ, we obtain:

E W nþ 1ð Þð Þ � E W nð Þð Þ þ 2μ HΩRg Xð Þg Xð Þ
�

� E W nð Þð ÞΩ2Rg Xð Þg Xð Þ
�

¼ E W nð Þð Þ I � 2μΩ2Rg Xð Þg Xð Þ
� �

þ 2μHΩRg Xð Þg Xð Þ ð44Þ
These recursions have a single stationary point

(Wiener solution) which is:

W ¼ W0 ¼ H �Ω�1 ð45Þ

Following Equation (44), the mean weight behavior can
be expressed as function of the initial condition as:

E W nð Þð Þ¼W 0ð Þ I � 2μΩ2Rg Xð Þg Xð Þ
� �n

þ2μHΩRg Xð Þg Xð Þ
Xn�1

p¼0

I�2μΩ2Rg Xð Þg Xð Þ
� �p

ð46Þ

Hence, if μ is sufficiently small, it can be shown that
the mean weights converge to the Wiener solution:

W 1ð Þ ¼ W0 ¼ HΩ�1: ð47Þ

The stability condition on μ is: 0 < μ < 1
λmax

Where λmax is the largest eigenvalue of the covariance
matrix Ω2Rg (X)g(X).
Thus, if each nonlinear function gk (.) is known with a

scaling factor ηk, then weights hjk will be identified by
wjk (to the inverse of the scaling factor).

MSE
We have:

E e nð Þk k2� � ¼ E Hg X nð Þð Þ þ N nð Þkð
�W nð ÞΩg X nð Þð Þk2�

¼
XL
j¼1

E e2j nð Þ
h i

ð48Þ

where:

E e2j nð Þ
� �

¼ E Hjg X nð Þð Þ þ Nj nð Þ���
�Wj nð ÞΩg X nð Þð Þ��2� ð49Þ

Using the independence of noise and weights at time
n, we obtain:

E e2j nð Þ
� �

¼ σ2
0 þ E Hj �ΩWj nð Þ� �

g X nð Þð Þ�� ��2� �
¼ σ2

0 þ Ht
j Rg Xð Þg Xð ÞHj

� 2Ht
j ΩRg Xð Þg Xð ÞE Wj nð Þ� �

þ E Wt
j nð ÞΩ2Rg Xð Þg Xð ÞWj nð Þ

� �
The MSE is therefore expressed as:

E e nð Þk k2� � ¼ Lσ2
0 þ

XL
j¼1

Hj
t Rg Xð Þg Xð ÞHj

� 2Hj
tΩRg Xð Þg Xð ÞE Wj nð Þ� �

þ E Wt
j nð ÞΩ2Rg Xð Þg Xð ÞWj nð Þ

� �
ð50Þ

Wiener MSE:
The Wiener MSE can be easily expressed as:

ζ0 ¼ E e2W0
nð Þ

� �
¼ Lσ2

0 þ E H �W0Ωð Þg X nð Þð Þk k2� � ¼ Lσ2
0 ð51Þ

Therefore the Wiener MSE is equal to the noise floor:
There are no terms due to the nonlinearities. This is
expected since the nonlinearities are known with a scal-
ing matrix Ω (we have seen that the scaling matrix is
canceled by W0 since W0 = HΩ-1).
Let Z (n) = Ω g(X(n)), we can then express the MSE

as a function of ζ0, the weight fluctuation vector V(n) =
W(n)–W0, and Z(n):

E e nð Þk k2� � ¼ E eW0 nð Þ � W nð Þ �W0ð ÞZ nð Þk k2� �
¼ ζ0 þ E V nð ÞZ nð Þk k2� �
¼ ζ0 þ

XL
j¼1

tr RZZKVjVj nð Þ� � ð52Þ

Similarly to Equation (29), the misadjustment is
expressed as:

Δ nð Þ ¼ tr RZZ

XL
j¼1

KVjVj nð Þ
 !

: ð53Þ

The steady state MSE is then expressed as:

E e 1ð Þk k2� � ¼ ζ0 þ Δ 1ð Þ: ð54Þ

Derivation of the misadjustment:
It is easy to show that the weight fluctuations follow

the recursion:

V nþ 1ð Þ ¼ V nð Þ þ 2μ eW0 nð Þ � V nð ÞZ nð Þð ÞZt nð Þ Þ:
ð55Þ
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Taking the mean of this equation and applying the or-
thogonality principle between the input vector and the
Wiener error, we obtain:

E V nþ 1ð Þð Þ ¼ E V nð Þð Þ � 1� 2μRZZð Þ: ð56Þ

Thus, as expected, if μ is sufficiently small, E(V(n))
converges to 0.
For each vector Vj we have similar recursions:

Vj nþ 1ð Þ ¼ Vj nð Þ þ 2μ eW0j nð Þ � Z nð ÞtVj nð Þ� �
Z nð Þ Þ:

ð57Þ

The evaluation of the covariance matrix of the weight
fluctuations is obtained by multiplying both sides of
Equation (57) by V t

j nþ 1ð Þ and averaging:

KVjV t
j
nþ 1ð Þ

¼ KVt
j V

t
j
nð Þ � 2μRZZKVjVj nð Þ � 2μKVjVj nð ÞRZZ

þ 2μE eW0j nð ÞZ nð ÞV t
j I � 2μZ nð ÞZ nð Þt� �h i

þ 2μE eW0j nð ÞZ nð ÞV t
j I � 2μZ nð ÞZ nð Þt� �h it

þ 4μ2E Z nð ÞZ nð ÞtKVjVjZ nð ÞZ nð Þt� �
þ 4μ2E e2W0j nð ÞZ nð ÞZ nð Þt

h i
ð58Þ

In a similar way as in Appendix III, KVjVj (∞) can be
obtained by solving the following equation:

RZZKVjVj 1ð Þ þ KVjVj 1ð ÞRZZ�2μ tr RZZKVjVj 1ð Þ� �
RZZ

� 4μRZZKVjVj 1ð ÞRZZ

¼ 2μ E g Xð Þgt Xð ÞHjH
t
j ZZ

t
h i

þ 2μσ20RZZ

h
�2μtr RZZW

t
0jW

t
0j

� �
RZZ � 4μRZZW

t
0jW

t
0jRZZ

i
ð59Þ

This expression can not be further simplified because
RZZ is not necessarily of the form σ2z I .
Therefore, tr(RZZ KVjVj (∞)) should be calculated for

each nonlinearity and for each Ω.
It is interesting to study the case where nonlinearities

are known with the same scaling factor, i.e., Ω = ηI. In
this case, and if the input vectors are independent and
the outputs of the nonlinearities are Zero-mean and of
equal variance σ2

g , we have:

tr RZZKVjVj 1ð Þ� � ¼ μ
σ2
0η

2σ2g M

1� μη2σ2
g M þ 2ð Þ ð60Þ

As expected, the total misadjustment reduces to:

Δ 1ð Þ¼
XL
j¼1

tr RZZKVjVj 1ð Þ� �¼ μ
σ2
0η

2σ2
gML

1� μη2σ2
g M þ 2ð Þ :

ð61Þ

Here the value of the misadjustment is similar to that
of linear identification of a linear system (LMS algo-
rithm). This is expected since in this case there are no
errors due to the approximation of the nonlinearities.

Case study

For the case study, it is easy to show that Gii ¼

E g x2i nð Þ� �� � ¼ αi2 σx2

1þ2βiσxi
2ð Þ32

: This yields:

E e2j nð Þ
� �

¼ σ0
2 þ

XM
i

αi2 σxi
2

1þ 2βiσxi
2

� �3
2

hji � wji nð Þηi
� �2

ð62Þ

Study of the full structure
This section deals with the full structure (Figures 2, 3).
All the NN and matrix W weights are updated.

Mean weight transient behavior
We take the following notations for the weights:
E wjk nð Þ� �¼ �wjk nð Þ;E cki nð Þð Þ ¼ �cki nð Þ;E aki nð Þð Þ ¼ �aki nð Þ;
E bki nð Þð Þ ¼ �bki nð Þ.
The update of matrix W is expressed as:

W nþ 1ð Þ ¼ W nð Þ þ 2μe nð ÞNN X nð Þð Þt
¼ W nð Þ þ 2μ Hg X nð Þð Þ þ N nð Þ½
�W nð ÞNN X nð Þð Þ�NN X nð Þð Þt ð63Þ

Averaging both sides of (63) and using the standard
LMS assumption of small μ, we obtain:

E W nþ 1ð Þð Þ � E W nð Þð Þ þ 2μ HRg Xð ÞNN Xð Þ nð Þ�
�E W nð Þð ÞRNN Xð ÞNN Xð Þ nð Þ�

¼ E W nð Þð Þ I � 2μRNN Xð ÞNN Xð Þ nð Þ� �
þ 2μHRg Xð ÞNN Xð Þ nð Þ ð64Þ

Where RNN Xð ÞNN Xð Þ nð Þ ¼ E NN X nð Þð ÞNN X nð Þð Þt� �
;

Rg Xð ÞNN Xð Þ nð Þ ¼ E g X nð Þð ÞNN X nð Þð Þt� �
.

These matrices are time-dependent since they depend
on the NN block weights which are updated through
time.
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Using the scalar notation we have:

�wjk nþ 1ð Þ ¼ �wjk nð Þ

þ 2μE
XM
i¼1

hjigi xi nð Þð Þ �
XM
l¼1

wjlNNl nð Þ
 !" !

�
XN
m¼1

ckmf akmxk nð Þ þ bkmð Þ
#

� �wjk nð Þþ2μ
XM;N

i;m

hji�ckmE gi xi nð Þð Þf �akmxk nð Þþ�bkm
� �� �"

�
XM;N ;N

l;m;i

�wjl�cli�ckmE f �alixl nð Þ þ �bli
� �

f �akmxk nð Þ þ �bkm
� �� �#

ð65Þ

Let: Ki akm; bkmð Þ ¼ E gi xi nð Þð Þf akmxk nð Þ þ bkmð Þð Þ; and
Flk ali; bli; akm; bkmð Þ¼E f alixl nð Þþblið Þf akmxk nð Þþbkmð Þð Þ
With these notations we have:

�wjk nþ 1ð Þ ¼ �wjk nð Þ þ 2μ
XM;N

i;m

hjickmKi �akm; �bkm
� �"

�
XM;N ;N

l;m;i

�wjl�cli�ckmFlk �ali; �bli; �akm; �bkm
� �#

ð66Þ

For the NN block weights we have:

�cki nþ 1ð Þ¼�cki nð Þþ2μE
XL
l¼1

wlkel nð Þf akixk nð Þþbkið Þ
 !

� �cki nð Þþ2μ
XL
l¼1

�wlkE
XM
p¼1

hlpgp x nð Þð Þf �akix nð Þþ�bki
� � 

�
XM
m¼1

wlm

XN
q¼1

�cmqf �amqx nð Þþ�bmq
� � !

f �akix nð Þþ �bki
� �!

¼ �cki nð Þ þ 2μ
XL
l¼1

�wlk

XM
p¼1

hlpKp �aki; �bki
� � 

�
XM
m¼1

�wlm

XN
q¼1

�cmqFmk �amq; �bmq; �aki; �bki
� � !!

ð67Þ

�aki nþ 1ð Þ ¼ �aki nð Þ

þ 2μE cki
XL
l¼1

wlkel nð Þx nð Þf 0
akix nð Þ þ bkið Þ

" #

� �aki nð Þ þ 2μ�cki
XL
l¼1

�wlk

XM
p¼1

hlpE gp x nð Þð Þx nð Þ� 

� f
0
�akix nð Þ þ �bki
� ���XM

m¼1

�wlm

XN
q¼1

�cmqE f �amqx nð Þ�� 

þ�bmq
�
x nð Þf 0

�akix nð Þ þ �bki
� ����

¼ �aki nð Þ þ 2μ�cki
XL
l¼1

�wlk

XM
p¼1

hlp
@Kp �aki; �bki

� �
@�aki

 

�
XM;N

m;q; m;qð Þ6¼ k;ið Þ
�wlm�cmq

@Fmk �amq; �bmq; �aki; �bki
� �

@�aki

� 1
2
�wlk�cki

@Fki �aki; �bki; �aki; �bki
� �

@�aki

	
ð68Þ

�bki nþ 1ð Þ ¼ �bki nð Þ

þ 2μE cki
XL
l¼1

wlkel nð Þf 0
akix nð Þ þ bkið Þ

" #

� �bki nð Þ þ 2μ�cki
XL
l¼1

�wlk

XM
p¼1

hlpE gp x nð Þð Þf 0
�akix nð Þð

� 

þ�bki
���XM

m¼1

�wlm

XN
q¼1

�cmqE f �amqx nð Þ�� 

þ�bmq
�
f
0
�akix nð Þ þ �bki
� ����

¼ �bki nð Þ þ 2μ�cki
XL
l¼1

�wlk

XM
p¼1

hlp
@Kp �aki; �bki

� �
@�bki

 

�
XM;N

m;q

�wlm�cmq
@Fmk �amq; �bmq; �aki; �bki

� �
@�bki

!
ð69Þ

These equations hold for any nonlinearity. In the fol-
lowing, we will calculate them explicitly for the case
study described in Section 2.3
Application to the case study:
Since the inputs are independent and Zero-mean, we

have Ki (akm,bkm)=0, k 6¼i , and (see Appendix I)

Ki aim; bimð Þ ¼ E gi xi nð Þð Þf aimx nð Þ þ bimð Þð Þ
¼

ffiffiffi
2
π

r
αiσ2x

1þ βiσ
2
x

� � aimffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x a2im þ βi
� �þ 1

q
� 1
2

ffiffiffi
2
π

r
αiσ

2
x b

2
im

aim

1þ σ2
x βi þ a2im
� �� �3

2

ð70Þ
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In the other hand we have: Flk ali; bli; akm; bkmð Þ ¼ 0;
l≠k, and (see Appendix I)

Fkk aki; bki; akm; bkmð Þ
¼ E f akix nð Þ þ bkið Þf akmx nð Þ þ bkmð Þð Þ

¼ 2
π
sin�1 akiakmσ2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

xa
2
ki þ σ2xa

2
km þ σ4

xa
2
kia

2
km

q
0
B@

1
CA

� 1
π
b2ki

σ2
x akiakm

1þ σ2
xa

2
ki

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2x a2ki þ a2km

� �q
� 1
π
b2km

σ2x akiakm

1þ σ2
xa

2
km

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

x a2ki þ a2km
� �q

þ bkibkm
2
π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

x a2ki þ a2km
� �q ð71Þ

Inserting these expressions in equations (66)-(69), we
obtain:

�wjk nþ 1ð Þ ¼ �wjk nð Þ þ 2μ hjk
XN
m¼1

ckmKk �akm; �bkm
� �"

��wjk

XN
m;i

�cki�ckmFkk �aki; �bki; �akm; �bkm
� �#

ð72Þ

�cki nþ 1ð Þ ¼ �cki nð Þ þ 2μ
XL
l¼1

�wlk hlkKk �aki; �bki
� ��

��wlk

XN
q¼1

�ckqFkk �akq; �bkq; �aki; �bki
� � !!

ð73Þ

�aki nþ 1ð Þ ¼ �aki nð Þ þ 2μ�cki
XL
l¼1

�wlk hlk
@Kk �aki; �bki

� �
@�aki

�

��wlk

XN
q 6¼k

�ckq
@Fkk �akq; �bkq; �aki; �bki

� �
@�aki

� 1
2
�wlk�ckk

@Fkk �akk ; �bkk ; �aki; �bki
� �

@�akk

	
ð74Þ

�bki nþ 1ð Þ ¼ �bki nð Þ þ 2μ�cki
XL
l¼1

�wlk hlk
@Kk �aki; �bki

� �
@�bki

�

�
XN
q

�wlk�ckq
@Fkk �akq; �bkq; �aki; �bki

� �
@�bki

!

ð75Þ

The explicit expressions of the different derivatives are
detailed in Appendix II.

Stationary points
We obtain the stationary points by setting to 0 the
expectations of the updating gradient terms in (64) and
(4.5-7).
For W, we obtain:

W0 ¼ H � Rg Xð ÞNN Xð ÞR�1
NN Xð ÞNN Xð Þ ¼ H � U;where

U ¼ Rg Xð ÞNN Xð ÞR�1
NN Xð ÞNN Xð Þ: ð76Þ

For cki we obtain the equations:

XL
l¼1

wlk hlkKk aki; bkið Þð

��wlk

XN
q¼1

ckqFkk akq; bkq; aki; bki
� � !!

¼ 0 ð77Þ

For aki we obtain the equations:

XL
l¼1

wlk hlk
@Kk aki; bkið Þ

@aki

�

� �wlk

XN
q 6¼k

�ckq
@Fkk akq; bkq; aki; bki

� �
@aki

� 1
2
wlkckk

@Fkk akk ; bkk ; aki; bkið Þ
@akk

	
¼ 0 ð78Þ

For bki we obtain:

XL
l¼1

wlk hlk
@Kk aki; bkið Þ

@bki

�

�
XN
q

wlkckq
@Fkk akq; bkq; aki; bki

� �
@bki

!
¼ 0 ð79Þ

The above equations are nonlinear in the NN variables.
They can be solved numerically, but they are very diffi-
cult to solve analytically.
Convergence of the algorithm to the stationary points:
It is always interesting to show whether an algorithm

is capable of converging to its stationary points or not.
In our case it is difficult to establish this, since the up-
dating equations of the weights are nonlinear, except
for W.
In the case where the NN weights are frozen we can

establish the convergence condition for W.
In this case we have:

E W nþ 1ð Þð Þ ¼ E W nð Þð Þ I � 2μRNN Xð ÞNN Xð Þ
� �

þ 2μHRg Xð ÞNN Xð Þ ð80Þ

The covariance matrices are fixed, since in this case
the NN weights are frozen.
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E(W(n)) can be expressed as a function of the initial
condition as:

E W nð Þð Þ¼W 0ð Þ I�2μRNN Xð ÞNN Xð Þ
� �nþ2μHRg Xð ÞNN Xð Þ

�
Xn�1

p¼0

I � 2μRNN Xð ÞNN Xð Þ
� �p ð81Þ

If μ is sufficiently small, the steady state solution to
(81) is:

W 1ð Þ ¼ W0 ¼ HRg Xð ÞNN Xð ÞR�1
NN Xð ÞNN Xð Þ: ð82Þ

Hence, the mean weights converge to the stationary
point W0, and the stability condition on μ is:

0 < μ <
1

λmax
ð83Þ

Where λmax is the largest eigenvalue of the correlation
matrix RNN(X)NN(X).
Application to the case study:
For the case study it can be shown that U reduces to a

diagonal matrix:

U ¼ Rg Xð ÞNN Xð ÞR�1
NN Xð ÞNN Xð Þ

¼
γ1 0 . . . 0

0 γ2 . . . 0

0 0 . . . γM

2
64

3
75; ð84Þ

where:

γk ¼
PN

mKk akm; bkmð ÞPN ;M
m;i ckickmFkk aki; bki; akm; bkmð Þ ð85Þ

This indicates that weights wjk are scaled versions of
the unknown weights hjk, the scale factor γk is the same
for all the weights connecting the kth NN block to the
outputs and it depends only on block k weights. If the
error is sufficiently small, the kth block NN will approxi-
mate the kth nonlinearity to the inverse of the scale
factor.

MSE expression
The transient MSE is determined by:

E e nð Þk k2� � ¼XL

j¼1
E e2j nð Þ
h i

¼ E Hg X nð Þð Þ þ N nð Þkð
�W nð ÞNN X nð Þð Þk2� ð86Þ

where:

E e2j nð Þ
� �

¼ E Hjg X nð Þð Þ þ Nj nð Þ���
�Wj nð ÞNN X nð Þð Þ��2�

¼ E
XM
i¼1

hjigi xi nð Þð Þ þ Nj nð Þ
  

�
XM
k�1

wjk �
XN
i¼1

ckif akixk nð Þ þ bkið Þ
!2!

ð87Þ
Which can be expressed as:

E e2j nð Þ
� �

¼ σ0
2 þ

XM
i;l

hjihjlE gi xi nð Þð Þgl xl nð Þð Þð Þ

�2
XM
i;k

hji nð Þwjk

XN
m¼1

ckmE gi xi nð Þð Þf akmxk nð Þþbkmð Þð Þ
 !

þ
XM
k;l

XN
i;m

wjlwjkclickiE f alixl nð Þþblið Þf akmxk nð Þþbkmð Þð Þ

ð88Þ
Let Gil = E(gi(xi (n))gl(xi (n))). Using the notations of

Section 4.1, we have:

E e2j nð Þ
� �

¼ σ0
2 þ

XM
i;l

hjihjlGil

� 2
XM
i;k

hjiwjk

XN
m¼1

ckmKi akm; bkmð Þ
 !

þ
XM
k;l

XN
i;m

wjlwjkclickmFlk ali; bli; akm; bkmð Þ

ð89Þ
Application to the case study:
It can be easily shown that:

E e2j nð Þ
� �

¼ σ0
2 þ

XM
i

h2jiGii

� 2
XM
k

hjkwjk

XN
m¼1

ckmKk akm; bkmð Þ
 !

þ
XM
k

w2
jk

XN
i;m

c2kiFkk aki; bki; akm; bkmð Þ:

ð90Þ

The 1st term of E e2j nð Þ
� �

represents the noise power,

the 2nd term is the signal power of the jth MIMO output,
the 3rd term is the sum of the individual contributions of
the neurons weighed by W and H weights, the 4th term
represents the sum of the coupling terms between
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neurons inside the same block weighed by W. Note that
since the inputs are Zero-mean and independent, there
are no coupling terms between neurons in different
blocks (as in Eq. (89)).
The total MSE is then expressed as:

E e nð Þk k2� � ¼ Lσ0
2 þ

XM
j;i

h2jiGii

� 2
XM
j;k

hjkwjk

XN
m¼1

ckmKk akm; bkmð Þ
 !

þ
XM
j;k

w2
jk

XN
i;m

c2kiFkk aki; bki; akm; bkmð Þ:

ð91Þ

Case of frozen NN weights:
It is interesting to see the behavior of the MSE in the

case where the NN weights are frozen.
In this case we have:

ζ0 ¼ E eW0 nð Þk k2� �
¼ Lσ2

0 þ E Hg X nð Þð Þ �W0NN X nð Þð Þk k2� �
: ð92Þ

Here the minimum MSE depends on the noise floor
and on the NN approximation error of the nonlinearities.
It is clear from this equation and from Section 3.2 that,
if the NN blocks ideally identify the nonlinearities (to
within scale factors), then ζ0 reduces to the noise floor.
The MSE can be written as a function of ζ0 as:

E e nð Þk k2� � ¼ E eW0 nð Þ� W nð Þ�W0ð ÞNN X nð Þð Þk �k2� �
¼ E eW0 nð Þ�V nð ÞX nð Þk k2� � ð93Þ

The steady state MSE is in this case:

E e 1ð Þk k2� � ¼ ζ0 þ
XL
j¼1

tr RNN Xð ÞNN Xð ÞKVjVj 1ð Þ� �
:

ð94Þ

The misadjustment can be derived similarly as in Sec-
tions 3.1 and 3.2. We obtain a similar equation as (53),
by replacing RZZ by RNN(X)NN(X). The equation can not
be simplified further.
It is interesting to notice, however, that if the NN

blocks perfectly identify the nonlinearities and if the con-
ditions above equation (60) are fulfilled, then:

Δ 1ð Þ ¼
XL
j¼1

tr RNN Xð ÞNN Xð ÞKVjVj 1ð Þ� �

¼ μ
σ20σ

2
gML

1� μσ2g M þ 2ð Þ ð95Þ

Simulation examples
In this section we present some simulation results which
are applied to the case study described in Section 2.3. In
these simulations, we have considered a 2 × 2 MIMO sys-
tem (i.e., M = L = 2). For the parameterized nonlineari-
ties we have chosen α1=α2=1, β1=1, β2=2. Unless
otherwise specified, the inputs are uncorrelated Zero-
mean white Gaussian processes with σxi = 1. In the
simulations, the unknown combining matrix was fixed

and was taken as H ¼ 1 0:3
0:3 1

� 

. For example, in a

MIMO communication system, H can be seen as the
propagation matrix between 2 transmitting antennas and
2 receiving antennas.

Linear adaptation
For the linear adaptation case (Section 3.1), the adaptive
system is composed of a 2x2 matrix W. For the noise we
have taken σ0 = 0.001. The mean weight recursions and
the MSE transient behaviors (Figures 6, 7) have been
estimated over 20 Monte Carlo (MC) simulations and
compared to the theoretical derivations (Equations (19)
and (41)). This chosen number of MC simulations shows
excellent fit between the Theory and MC estimations
which confirms the validity of the different assumptions
made. A larger number of MC simulations allows a bet-
ter smoothing of the curves, but the conclusions remain
the same.

Matrix W converges to a scaled version of H: W0 ¼
0:3536 0:0577
0:1061 0:1925

� 

¼ H U; U ¼ 0:3536 0:0000

0:0000 0:1925

� 

:

Note the typical behavior of the LMS algorithm: A time
constant controls the transient part of the learning curve

Figure 6 Smoothed MSE vs. iteration number - Linear
adaptation case.
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and the mean weight curve. This is fundamentally differ-
ent from the full NN system learning which is governed
by several time constants and presents plateau regions
(Section 5.2). It should be noted that the steady state MSE
is high because of the error caused by the fact that the
nonlinearities are not approximated (actually they are
modeled by the identity function) (Equation (25)).

MSE surface for the full NN algorithm
We move now to the study of the full NN algorithm.
In this simulation, we have taken N = 3 neurons in
each of the two NN blocks. The learning rate was
fixed to μ =0.0045. Figure 8 shows the MSE surface (i.e.,
Eq. (90), with no time dependence) as a function of w11

and w12 (the other parameters were fixed). It is clear that
the MSE is quadratic in w11 and w21. It presents a single
global minimum (as shown in Equations (76 and 84)).

Figure 9 (resp. Figure 10) shows the MSE surface as a
function of a11 and c11 (resp. a11 and a12) (the other
parameters were fixed). It can be noted the flat areas
(plateau regions) around the minima of the MSE sur-
face. This explains the slow evolution of the NN
weights when the algorithm gets close to its conver-
gence point.
The MSE evolution during the learning process (Equa-

tion (90)) has been compared to 20 MC estimations
(Figure 11a): The theory shows very good fit with the
simulation results. In the Figure, we notice that the MSE
presents several phases (each phase is controlled by a
time constant) which end by a plateau phase where the
MSE decreases very slowly. This is a typical behavior of
the backpropagation algorithm [1] which is fundamen-
tally different from that of the linear adaptation scheme
(Figure 6). Here the MSE error is much smaller. This is
expected, since here the additional MSE error due to the
nonlinearities (Eq. 92) is highly reduced because our NN

Figure 9 MSE surface, MSE (a11, c21).

Figure 7 Mean weight transient behavior - Linear adaptation
case.

Figure 8 MSE surface, MSE (w11, w21). Figure 10 MSE surface, MSE (a11, a12).
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Figure 11 a: MSE during the learning process (theory and simulation), σ0=0.001 and μ=0.0045. b: MSE for different values of noise
variance, the learning rate was μ=0.0045 (theoretical results). c : MSE for different values of learning rate μ (the noise variance was set to σ0=0.001),
theoretical results.
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blocks have correctly identified the unknown nonlineari-
ties (Figure 12, 13). Here we are in a situation close to
that of Section 3.2 (Equations 51-52).
Figure 11b shows the MSE evolution during the learn-

ing process for different values of the noise variance σ0.
It can be seen that, as the noise variance decreases, the
MSE decreases. However, below a certain value of σ0
(here σ0=0.0005), the MSE curves are almost identical.
This is because in this case, the weight misadjustment
error (for the linear part) and the nonlinear approxima-
tion error (of the nonlinear memoryless part) are much
higher than the error caused by the presence of noise
(see Eqs. 92-93).
Figure 11c investigates the influence of the learning

rate μ. It can be seen that as μ increases (up to μ=0.002),
the algorithm is faster and the MSE is lower at the end

of the simulation time. However, for μ>0.002, as μ
increases, the algorithm is faster at the beginning of the
learning process, but the MSE is higher at the end of the
simulation time. This is due to the misadjustment error
which is higher for higher μ (see, e.g., Eq. 95).

Mean weight transient behavior for the full NN algorithm
Here we keep the system described in Section 5.2. The
mean weight recursions for the linear combiner W and
the two NN blocks are shown in Figure 14, 15, 16 for
both theory and MC estimations. The theoretical and
estimated curves are indistinguishable. This confirms the
validity of the different assumptions made in Sections
4.1 and 4.2.

Figure 12 Identification of g1 (x), by the 1st NN block.

Figure 13 Identification of g2 (x) by the 2nd NN block.

Figure 14 Mean weight behavior: Matrix W (theory and
simulation).

Figure 15 Mean weight behavior: First NN block (theory and
simulation).
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Notice that, in Figure 14, W weights have a fast
evolution at the beginning of the learning process
(with values approaching H×U(n) where U is a diag-
onal matrix). They then evolve slowly till the end of
the learning process. The slow evolution is justified by
the plateau regions presented by the MSE surface. At
the end of this simulation, matrix U was close to a

diagonal matrix: USim¼ 1:2702 0:0001
0:0003 1:0946

� 

; (and

UTheory¼ 1:270 0
0 1:095

� 

). This result is expected since

the inputs are uncorrelated (Equations 84-85).
Figure 12, 13 show that functions g1 (x) and g2 (x) have

been correctly identified by the corresponding NN
blocks (the NN functions are normalized by the scaling
factors γ1=1/1.2702, γ1=1/1.0946, respectively).

Impact of correlated inputs
In the simulations below we study the impact of corre-
lated inputs. The input signal vector is chosen here as a
2D Gaussian process with covariance matrix of the form

RXX ¼ 1 ρ
ρ 1

� 

: The number of neurons in each NN

block was taken as N = 5 neurons. The learning rate
μ=0.0075. We have run several simulations for different

values of the cross correlation. Note that (ρ=0) corre-
sponds to independent inputs, and (ρ=1) corresponds
to the same input (i.e., x1=x2). The values of matrix U
and the MSE after n=2105 iterations are shown in
Table 1. It can be seen from Table 1 that, in practice,
matrix U remains very close to a diagonal matrix,
even for high correlation between inputs. This indi-
cates that the system is capable of correctly identifying
the nonlinearities even when the inputs are highly
correlated. The identification performances for the
cases (ρ=0.6) and ( ρ=0.99) are illustrated in Figures 17,
18 and 19, 20, respectively. As expected, the MSE
increases as the correlation between inputs increases
(Table 1). When ρ=1 (i.e., the two inputs are the same)
the system is capable of correctly identifying the overall
MIMO input–output transfer function. However, in this
case, it is not capable of separating the nonlinearities (as
U is not diagonal). The reason is that in this case, the
system is seen by the learning algorithm as a 1x2 SIMO
system which has several equivalent structures. Figure 21
shows an example of two equivalent structures. There-
fore, the adaptive system is structurally not able to separ-
ate the nonlinearities. It is worth to note that for the
case (ρ=0.999), the inputs look like noisy versions of each
other (i.e., this is equivalent to a 1x2 system identifica-
tion problem with noisy inputs). Thus, the MSE for the
case (ρ=0.999 ) is larger than the MSE for the case
(ρ=1).

Conclusion and future work
The paper provides a statistical analysis of NN model-
ing and identification of a class of nonlinear MIMO
systems. The study investigates the MSE error, mean
weight behavior, stationary points, misadjustment error,
and stability conditions. The unknown system is com-
posed of a set of single-input memoryless nonlinearities
followed by a combining matrix. The NN model is
composed of a set of single-input memoryless NN
blocks followed by an adaptive linear combiner. The
paper is supported with simulation results which show
good agreement between the theoretical recursions and
MC simulations. Future work will focus on 3 research
directions. The first will explore the theoretical findings
in order to express the effect of the number of neu-
rons on the transient and steady state behavior of the
algorithm. The second research axis will investigate the

Figure 16 Mean weight behavior: Second NN block (theory and
simulation vs. iterations).

Table 1 Effect of correlated inputs

ρ=0 ρ=0.6 ρ=0.9 ρ=0.99 ρ=0.999 ρ=1 (same input)

E(U(n)), for
n=2× 105 �1:228 0:0000

0:0004 �1:066

� 
 �1:2245 0:0004
0:001 �1:1331

� 
 �1:23 0:001
0:0025 �1:12

� 
 �1:24 0:019
0:023 �1:08

� 
 �0:324 �1:07
�1:002 �0:03

� 
 �0:023 �1:24
�1:14 �0:15

� 


MSE(n) 10-4 1.25 10-4 1.5 10-4 1.75 10-4 9 10-4 1.7 10-4
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case where matrix H is time-varying and/or with mem-
ory (this may have applications, for example, in adap-
tive control of nonlinear dynamical MIMO systems).
Finally, we will study the algorithm behavior and per-
formance for specific inputs (such as space-time coded
signals used in wireless communications and their im-
pact on the system capacity).

Endnotes
This work has been supported by The Natural Sciences

and Engineering Research Council of Canada (NSERC).
The time index of the weights has been omitted from

the right hand side of the equations to make them easier
to read.

Appendix I

1) Calculation of Fkk
Let x1 and x2 be two zero-mean Gaussian variables
such that σ2

x1 ¼ σ2
x2 ¼ σ2x and E x1x2ð Þ ¼ ρ

Therefore, Fkk aki; bki; akm; bkmð Þ ¼ E f akixk nð Þþðð
bkiÞf akmxk nð Þ þ bkmð ÞÞρ¼σ2x

:

Using Price’s theorem we have:

E @2f akix1þbkið Þf akmx2þbkmð Þ
@x1@x2

h i
¼ @E f akix1þbkið Þf wkmx2þbkmð Þ½ �

@ρ :

Let U ρð Þ ¼ E @2f akix1þbkið Þf wkmx2þbkmð Þ
@x1@x2

h i
;

Then: E f akix1 þ bkið Þf akmx2 þ bkmð Þ½ �ρ¼σ2x
�

E f akix1 þ bkið Þf akmx2 þ bkmð Þ½ �ρ¼0 ¼
R σ2x
0 U ρð Þdρ:

Thus, using the un-correlation criteria between x1
and x2 for ρ=0 , we have: E f akix1 þ bkið Þf akmx2þð½
bkmÞ�ρ¼0 ¼ E f akix1 þ bkið Þ½ �E f akmx2 þ bkmð Þ½ �: Thus:

Figure 17 Identification of g1 (x), case ρ=0.6.

Figure 18 Identification of g2 (x), case ρ=0.6.

Figure 19 Identification of g1 (x), case ρ=0.99.

Figure 20 Identification of g2 (x), case ρ=0.99.

Ibnkahla EURASIP Journal on Advances in Signal Processing 2012, 2012:179 Page 19 of 22
http://asp.eurasipjournals.com/content/2012/1/179



F aki; bki; akm; bkmð Þ ¼ E f akix1 þ bkið Þ½ �E f akmx2þð½
bkmÞ� þ

R σ2x
0 U ρð Þdρ:

We have: U ρð Þ ¼ E @2f akix1þbkið Þf akmx2þbkmð Þ
@x1@x2

h i
¼

2
π akiakm

1

2π Rj j12
Rþ1
�1

Rþ1
�1 e�

1
2 akix1þbkið Þ2e�

1
2 akmx2þbkmð Þ2

e�
1
2X

tR�1Xdx1dx2 where X¼ x1 x2½ �t and R¼ σ2
x ρ
ρ σ2

x

� 

:

Combining the terms in the exponentials and
completing the squares, the integrals can be
calculated: U ρð Þ ¼ 2

π
akiakmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þσ2xa
2
kiþσ2xa

2
kmþ σ4x�ρ2ð Þa2kia2km

p �

exp 1
2 �b2ki � b2km þ 1

a2kiþ
σ2x

σ2x�ρ2

"
b2kia

2
kiþ

""

bkiaki a2kiþ
σ2x

σ2x�ρ2

� �
þbkmakm

ρ

σ2x�ρ2

� �2

a2kiþ
σ2x

σ2x�ρ2

� �
a2kmþ

σ2x
σ2x�ρ2

� �
a2km�

ρ2

σ2x�ρ2

3
5
3
5
3
5:

Note that in the biasless case (i.e. all the bias terms
are set to 0) this expression reduces to:

U ρð Þ ¼ 2
π

akiakmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2xa

2
ki þ σ2

xa
2
km þ σ4

x � ρ2
� �

a2kia
2
km

q :

The integral is then simple to calculate:

Z σ2x

0
U ρð Þdρ¼2

π
sin�1 akiakmσ2

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þσ2

xa
2
kiþσ2

xa
2
kmþσ4xa

2
kia

2
km

q
0
B@

1
CA

In the other hand, since E f wkx1ð Þ½ � ¼ E f wix2ð Þ½ � ¼ 0,
then:

F aki; akm; 0; 0ð Þ ¼ 2
π sin�1 akiakmσ2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þσ2xa
2
kiþσ2xa

2
kmþσ4xa

2
kia

2
km

p
� 	

:

When the bias terms are not set to 0, a Taylor series
expansion on the bias terms can be used in order to
avoid the calculation of the integral.

2) Calculation of K

Kk akm; bkmð Þ ¼ E gk xkð Þf akmxk þ akmð Þ½ �

¼ 1ffiffiffiffiffiffi
2π

p 1
σx

Z þ1

�1
αk xe

�βk x
2

2 e
� x2

2σ2x

Z akmxþbkm

0
e�

u2
2 du dx:

The inside integral can be eliminated by integrating
by parts on variable x.
The integral is then evaluated by combining the
terms in the exponentials and completing the
squares. This yields:

Kk akm; bkmð Þ ¼
ffiffiffi
2
π

r
αk

1
σ2x
þ βk

akmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x a2km þ βk
� �þ 1

q

� exp
�b2km
2

1� σ2
x

1þ σ2
x βk þ a2km
� �

 ! !
:

Again, a Taylor series expansion can be used to
simplify this expression.
Note that in the biasless case we have:

Kk akm; 0ð Þ ¼
ffiffiffi
2
π

r
α

1
σ2x
þ βk

akmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x a2km þ βk
� �þ 1

q

Figure 21 Example of two equivalent structures when the inputs are the same.
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Appendix II
The derivatives needed to compute the different recursions are expressed as follows:

@Kk akm; 0ð Þ
@akm

¼
ffiffiffi
2
π

r
ασ2x

σ2
x a2km þ βk
� �þ 1

� �3
2

;
@Kk akm; bkmð Þ

@akm
¼ @Kk akm; 0ð Þ

@akm
�

ffiffiffi
2
π

r
αk σ2

x
b2km
2

1þ σ2
xβk � 2σ2

x a
2
km

1þ σ2x βk þ a2km
� �� �5

2

@Fkk aki; 0; aki; 0ð Þ
@aki

¼ 4
π

σ2
x aki

σ2
xa

2
ki þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2σ2

xa
2
ki

q ;

@Fkk aki; aki; bki; bkið Þ
@aki

¼ @F aki; 0; aki; 0ð Þ
@aki

� 2
π
b2kiσ

2
xaki

5σ2
x a

2
ki þ 3

1þ σ2
xa

2
ki

� �2
1þ 2σ2

xa
2
ki

� �3
2

@F aki; 0; akm; 0ð Þ
@aki

¼ 2
π

σ2x akm

σ2xa
2
ki þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2x a2ki þ a2km

� �q
@F aki; akm; bki; bkmð Þ

@aki
¼ @F aki; aki; 0; 0ð Þ

@aki
� 1
π
b2ki

σ2
x akm

1þ σ2
xa

2
ki

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

x a2km þ a2ki
� �q 1þ σ2

xa
2
km

1þ σ2
x a2km þ a2ki
� �� 2σ2xa

2
ki

1þ σ2
xa

2
ki

 !

� 1
π
a2km

σ2
x akm

1þ σ2
x a2km þ a2ki
� �� �3

2

� bkibkm
2
π

σ2x aki

1þ σ2x a2km þ a2ki
� �� �3

2

@F aki; akm; bki; bkmð Þ
@bkm

¼ � 2
π
bki

σ2
x akiakm

1þ σ2xa
2
ki

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2x a2km þ a2ki

� �q � bkm
2
π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2

x a2km þ a2ki
� �q

Appendix III

KVjV t
j
nþ 1ð Þ ¼ KVt

j V
t
j
nð Þ � 2μRXXKVjVj nð Þ

� 2μKVjVj nð ÞRXX

þ 2μE eW0j nð ÞXV t
j I � 2μXXtð Þ

h i
þ 2μE eW0j nð ÞXV t

j I � 2μXXtð Þ
h it

þ 4μ2E XXtKVjVjXX
t

� �
þ 4μ2E e2W0j nð ÞXXt

h i
ð96Þ

The calculations are similar to [9] Appendix, the main
difference is that here we deal with a multi-dimensional
input. Therefore, we will follow the same methodology
as in [9].
Following [10] the expectation before the last one can

be calculated as:

E XXtKVjVj nð ÞXXt
� � ¼ tr RXXKVjVj nð Þ� �

RXX

þ 2RXXKVjVj nð ÞRXX : ð97Þ

The first expectation is expressed as:

E eW0j nð ÞXV t
j I � μXXtð Þ

h i
¼ E eW0j nð ÞXV t

j

h i
� μE eW0j nð ÞXV t

j XX
t

h i
ð98Þ

The first term is Zero (orthogonality principle). The
second term is:

E eW0j nð ÞXV t
j XX

t
h i

¼ E Ht
j gj xj
� �þ Nj nð Þ

�h
�Wt

0jX nð Þ
�
XV t

j XX
t
i

ð99Þ

The middle term is Zero (Zero-mean white noise), the
last expectation is:

E Wt
0jX nð ÞXV t

j XX
t

h i
¼ E X nð ÞXW0V

t
j nð ÞXXt

h i
� tr RXXW0E V t

j nð Þ
� �� �

RXX

þ 2RXXW0E V t
j nð Þ

� �
RXX

ð100Þ

The first expectation in Eq. (99) E Ht
j g Xð ÞXV t

j nð ÞXXt
h i

� E Ht
j g Xð ÞXE V t

j nð Þ
� �

XXt
h i

involves the nonlinearity gj

(xj) and should be evaluated explicitly.

The remaining expectation in (96) is: E e2oj nð ÞXXt
h i

:

E e2oj nð ÞXXt
h i

¼ E Ht
j g Xð Þ �Wt

0jX
� �2

XXt

� 

þ σ2

0RXX

ð101Þ
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We have

E Wt
0jX

� �2
XXt

� 

¼ E XXtWt

0jW
t
0jXX

t
h i

¼ tr RXXW
t
0jW

t
0j

� �
RXX

þ 2RXXW
t
0jW

t
0jRXX ð102Þ

The first term in (102) is:

E Ht
j g Xð Þ

� �2
XXt

� 

¼ E HjH

t
j g Xð Þgt Xð ÞXXt

h i
¼ E g Xð Þgt Xð ÞHjH

t
j XX

t
h i

(96) is then expressed as:

KVjV t
j
nþ 1ð Þ ¼ KVt

j V
t
j
nð Þ � 2μRXXKVjVj nð Þ

� 2μKVjVj nð ÞRXX þ 4μ2 �E Ht
j g Xð ÞXE V t

j nð Þ
� �

XXt
h i�

þtr RXXW0E V t
j nð Þ

� �� �
RXX þRXXW0E V t

j nð Þ
� �

RXX

��
þ4μ2 �E Ht

j g Xð ÞXE V t
j nð Þ

� �
XXt

h i�
þtr RXXW0E V t

j nð Þ
� �� �

RXXþRXXW0E V t
j nð Þ

� �
RXX

��t
þ 4μ2 tr RXXKVjVj nð Þ� �

RXX þ 2RXXKVjVj nð ÞRXX
� �

þ 4μ2 E g Xð Þgt Xð ÞHjH
t
j XX

t
h i

þ σ20RXX

�
�tr RXXW0tW

t
0

� �
RXX � 2RXXW

t
0jW

t
0jRXX

�
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