Ibnkahla EURASIP Journal on Advances in Signal Processing 2012, 2012:179
http://asp.eurasipjournals.com/content/2012/1/179

® EURASIP Journal on
Advances in Signal Processing

a SpringerOpen Journal

RESEARCH Open Access

Stochastic analysis of neural network modeling
and identification of nonlinear memoryless MIMO
systems

Mohamed Ibnkahla’

Abstract

Neural network (NN) approaches have been widely applied for modeling and identification of nonlinear
multiple-input multiple-output (MIMO) systems. This paper proposes a stochastic analysis of a class of these NN
algorithms. The class of MIMO systems considered in this paper is composed of a set of single-input nonlinearities
followed by a linear combiner. The NN model consists of a set of single-input memoryless NN blocks followed by a
linear combiner. A gradient descent algorithm is used for the learning process. Here we give analytical expressions
for the mean squared error (MSE), explore the stationary points of the algorithm, evaluate the misadjustment error
due to weight fluctuations, and derive recursions for the mean weight transient behavior during the learning
process. The paper shows that in the case of independent inputs, the adaptive linear combiner identifies the linear
combining matrix of the MIMO system (to within a scaling diagonal matrix) and that each NN block identifies the
corresponding unknown nonlinearity to within a scale factor. The paper also investigates the particular case of linear
identification of the nonlinear MIMO system. It is shown in this case that, for independent inputs, the adaptive linear
combiner identifies a scaled version of the unknown linear combining matrix. The paper is supported with
computer simulations which confirm the theoretical results.
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Introduction

Neural network [1] approaches have been extensively
used in the past few years for nonlinear MIMO system
modeling, identification and control where they have
shown very good performances compared to classical
techniques [2-6].

If these NN approaches are to be used in real systems,
it is important for the algorithm designer and the user to
understand their learning behavior and performance cap-
abilities. Several authors have analyzed NN algorithms
during the last two decades which considerably helped
the neural network community to better understand the
mechanisms of neural networks [1,7-15]. For example,
the authors in [13] have studied a simple structure con-
sisting of two inputs and a single neuron. The authors in
[8] studied a memoryless single-input single-output
(SISO) system identification model for the single neuron
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case. In [9] the authors proposed a stochastic analysis of
gradient adaptive identification of nonlinear Wiener sys-
tems composed of a linear filter followed with a Zero-
memory nonlinearity. The model was composed of a lin-
ear adaptive filter followed by an adaptive parameterized
version of the nonlinearity. This study has been later
generalized [16] for the analysis of stochastic gradient
tracking of time-varying polynomial Wiener systems. In
[12] the author analyzed NN identification of nonlinear
SISO Wiener systems with memory for the case where
the adaptive nonlinearity is a memoryless NN with an ar-
bitrary number of neurons. The case of a nonlinear SISO
Wiener-Hammerstein system (i.e., an adaptive filter fol-
lowed by an adaptive Zero-memory NN followed by an
adaptive filter) has been analyzed in [11].

This paper deals with a typical class of nonlinear
MIMO systems (Figure 1) which is composed of M
inputs, M memoryless nonlinearities, a linear combiner,
and L outputs. This corresponds, for example, to MIMO
channels used in wireless terrestrial communications
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Figure 1 Nonlinear MIMO system.

[17-22], satellite communications [23,24], amplifier mod-
eling [25], control of nonlinear MIMO systems [6], etc.
Recently, a neural network approach has been proposed
to adaptively identify the overall input—output transfer
function of this class of MIMO systems and to
characterize each component of the system (ie., the
memoryless nonlinearities and the linear combiner) [4].
The proposed NN model is composed of a set of mem-
oryless NN blocks followed by an adaptive linear com-
biner. Each part of the adaptive system aims at
identifying the corresponding part in the unknown
MIMO system. The algorithm has been successfully ap-
plied to system modeling, channel tracking, and fault
detection.

The purpose of this paper is to provide a stochastic
analysis of NN modeling of this class of MIMO systems.
The paper provides a general methodology that may be
used to solve other problems in stochastic NN learning
analysis. The methodology consists of splitting the study
into simple structures, before studying the complete
structure. Here, as a first step we start by analyzing a
simple linear adaptive MIMO scheme (consisting of an
adaptive matrix) that identifies the nonlinear MIMO sys-
tem (i.e., problem of linear identification of a nonlinear
MIMO system). Then we analyze a nonlinear adaptive
system in which the nonlinearities are assumed to be
known and frozen during the learning process, only the
linear combiner is made adaptive. Finally, the complete
adaptive scheme is analyzed taking into account the
insights given by the analysis of the simpler structures.
In our analytical approach, we derive the general formu-
las and recursions, which we apply to a case study that
we believe is illustrative to the reader.

The paper is organized as follows. The problem state-
ment is given in Section 2. The study of the simple

structures is detailed in Section 3. Section 4 presents the
analysis for the complete structure. Simulation results
and illustrations are given in Section 5. Finally, conclu-
sions and future work are given in Section 6.

Problem statement
Nonlinear MIMO system
The class of nonlinear MIMO systems discussed in this
paper is presented in Figure 1. Each input x; (n) (i = 1,.. .,
M) is nonlinearly transformed by a memoryless nonlinear-
ity g (.). The outputs of these nonlinearities are then
linearly combined by an L x M matrix H = [h;;] (assumed
in this paper to be constant). Matrix H is defined by the
unknown system to be identified. For example, in wireless
MIMO communication systems, M is the propagation
matrix representing the channel between M transmitting
antennas and L receiving antennas.

The j output of the MIMO system is expressed as:

3(m) = 3 hy(m)g o)) + Ny () )

where N; is a white Gaussian noise with variance o3

Let X(n)=[x1(n)xs(n) ... xn(n))", g(X(n)) = [g1 (21 (m))
@ (02(m)) . g (xar ()], Y (n) = [y1(n)ya(n) ...y (m)]',
and N(n) = [Ni(n)N(n)...Ny(n)]".

The system input—output relationship can be
expressed in a matrix form as:
Y(n) = H x g(X(n)) + N(n). 2)

Neural Network identification structure and algorithm
The neural network (Figure 2) is composed of M blocks.
Each block k has a scalar input x; (1) (k = 1,...,.M), N
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neurons and a scalar output. The output of the k™ block
is expressed as:

z

NNi(n) = cf (awn(n) + b)), k=1, ..M (3)

i=1

Where fis the NN activation function. ay;, cx;» by are,
respectively, the input weight, bias term, and output
weight of the i/ neuron in the k™ block. The output
NN of the &™ block is connected to the j output of the
system through weight wj. The system j™ output is then
expressed as:

si(n) = Zw,-kNNk(n),j =1,,L (4)
=1

Weights wj will be represented by an LxM matrix:
W = [W/k].

Let S(n)=[s1(n)s2(n)...s.(n)]" and NN(n)=[NN;(n)
NN (1) ... NNy (n)]'.

Equations (4) can then be expressed in a matrix form
as:

S(n) = W x NN(n). (5)

For the learning process, the NN parameters are
updated so that to minimize the sum of the squared
errors between the unknown system outputs and the
corresponding outputs of the model (Figure 3):

le(m)[* =7 & (n). (6)

Here

e(n)]".
The gradient descent recursions for weight adaptation
are:

ej(n) = y;(n) — s;(n) and e(n) = le;(n)ex(n) ...

W(n+ 1) = W(n) + 2ue(n)NN*(n) (7)

ci(n+ 1) = ci(n) + 2uf (arxr (n) + big) Z wyee(n)

=1
(8)

ai(n + 1) = ag(n) + 2pcixe(n)f (arxe(n)

+bki)ZlL:1W1kel(n) )

bri(n+1) = b(n)+2u c/Q-f/ (akixr(n)+by)

X Z,L:lekel(n) (10)

where 4 is a small positive constant and f'() represents
the derivative: f (x) = ‘r)fa—g).

Case study

After the derivation of the general formulas, it is import-
ant that we apply them to special cases in order to get
closed-form expressions of the different recursions that
can be illustrated to the reader. We have chosen here a
case study that we think is good to illustrate our results.
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Figure 3 Adaptive learning scheme.
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Weight update algorithm

In this case study, the inputs x; (n) will be assumed
uncorrelated Zero-mean Gaussian variables with variance
o2 . The NN activation function will be taken as the erf
function. The unknown nonlinear transfer functions are
taken from a family of nonlinear functions of the form

—0h. 2 oy
gi(x) = ajxexp (#), where a; and S; are positive con-

stants. These nonlinear functions are reasonable models
for amplitude conversions of nonlinear high power
amplifiers (HPA) wused in digital communications
[12,25,26]. Note that other nonlinear functions may be
considered, however, explicit closed-form solutions of
the different derivations may not be possible.

Study of simplified structures: Linear adaptation
Before analyzing the full structure, we will analyze the
following simplified schemes which will help us under-
stand the complete structure:

1. The adaptive system is composed of an adaptive
linear combiner W (Section 3.1).

2. The adaptive system is composed of W and scaled
versions of the unknown nonlinearities (Section 3.2).

Linear adaptive system
This section studies the linear adaptive system that tries
to model the nonlinear MIMO system (Figure 4):

Mean weight behavior and Wiener solution
Since matrix W is linear, it will not be able to identify
the nonlinear blocks. However, we will see that it is able
to identify matrix H to within a diagonal scaling matrix
if the inputs are Zero-mean and independent.

The gradient descent update of matrix W is expressed as:

W(n+1) = W(n) +2ue(n) X (n)
= W(n) + 2u((HgX (n) + N(n)

~W(n)X(n)X'(n) (11)

Averaging both sides of (11) and using the standard
LMS assumption of small ¢ [10], we obtain:
E(W(n+ 1)) ~ E(W (n)) + 2 (HRx
—E(W(n))Rxx)
= E(W(n))(I — 2uRxx) + 2uHR,(x)x
(12)
Where Ryx = E(XX"), Ry(x)x = E(g(X)X").
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Weight update algorithm

J

By setting the updating gradient term to Zero, it can
be shown that this equation has a single stationary point
(Wiener solution [10]) which is expressed by:

W = W, = HU where U = Ry(x)xRyyx (13)

Following Equation (12), the mean weights can be
expressed as a function of the initial condition as:

E(W(n)) = W(0)(I — 2uRxx)"

+ 2uHRyx)x Y (I = 2uRxx )
p=0

(14)

If u is sufficiently small, the first term converges to 0
and the second term converges to HRy(x)xRyx-

Hence, the mean weights converge to the Wiener
solution:

W (00) = Wo = HRy(x)xRyx (15)

It can be easily shown that the stability condition on g
is [10]:

0<u<

o (16)

where A, is the largest eigenvalue of the covariance
matrix Ryx.

Note that for Zero-mean independent inputs, U is a di-
agonal matrix:

U = Ryx)xRyx

[Elg(e)n] o |
7 L
_ 0 E—[gz((;f)xﬂ (17)
R

In this case, the linear adaptation allows the identifica-
tion of matrix W to within a scaling matrix, which
depends on the nonlinearities and the input signals. As
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expected, the scaling matrix reduces to the identity
matrix if gx (xz) = %z

Application to the case study:

For the particular nonlinear functions given in the case
study (see Section 2.3), it is easy to show:

E(xi(m)gi(x(n))) = — 2% and

(1+ﬁi0xi2)2
E(g2(x;(n :L 18
(&7 (xi(m)) TP (18)

The mean weight transient recursions are expressed as:

E(w( + 1)) = E(weln)) (1 - 2002

2
a0
+ 2u by ———— (19)

(1 —i—ﬁkaﬁk)i

Matrix U reduces to the following diagonal matrix:

[ o |
(1 +ﬁ10§1)2
[4%)
0 B —
v (1 + /3)2‘792@)2
0 0 e
(1 + ﬁMU?CM)Z
(20)
Transient MSE and Wiener MSE
The transient MSE is determined by:
E(lle(n)||*) = E(|[Hg(X (n)) + N(n) — W (m)X(n)|")
L
= ZE[ef(n)}
=1
(21)
where:
E(eF(n)) = E(|[Hg(X(m) + Ni(m) = Wi(mX(m)|*)
(22)
where  Wj (n) = [wj(n) wp (n) ... wiy (n)]" and H; =

[hjl hj2 R th]t
Using the independence of noise and weights at time
n, we get:

Page 6 of 22

E(2(n)) = o3 + E([[(Hg(x(n) — WimX(m)|[")
= 05+ H{ Ry(x)q00Hj — 2H Ry(x)xE(Wj(n))
+ E(Wm) R Wi () (23)

The total MSE is therefore expressed as:

L
E(lle(m)|*) = Log + > H! Ryxg00 Hj
=1

— 2H; Ry(x)xE(W;(n))
+E(W ()R W) ) (24)

Wiener MSE:

The Wiener MSE, {, = E(Hewo(n)Hz) , is the minimum
MSE that can be reached by the system if W is equal to
the Wiener solution W = HU. It can be easily shown that:

Co = E(Jlews(m)]*)
= Log + E(||Hg(X(n)) — WoX(n)]*)
= Log + E(|H(g(X(n)) — UX(n)]*) (25)

It is clear from this equation that if the unknown func-
tions are linear, then the Wiener MSE reduces to the
noise power. The MSE is always larger than {, because
of the misadjustment error introduced by the weight
fluctuations.

Now we can write the MSE as a function of the
Wiener MSE:

E(lle(m)|”) = E(|IH(g(X(n)) + N(n) = W (m)X(n))*)
= E(|lew, (n) — (W (n) — Wo)X(m)]||*)
(26)

Let the instantaneous deviation of the matrix weights
with respect to the Wiener solution be denoted by:

V(n) = [vk(n)] = W(n) — W. (27)
We have:
E(|le(m)]|*) = E(llew, () = V(X (m)[*). (28)

This expression is similar to that of the well-known
LMS algorithm [10], and can be evaluated as the sum of
the minimum error and excess error (or misadjustment)
as:

E(Je()|) = Co+ > tr(Recky () (29)
where Vj(n) = [vj1 vp2. ..va]t and Ky,y,(n) = E(V;(n)
Vi)
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The misadjustment is expressed as:

L
An) = tr (RXX ZRV,V,.(”)) (30)
=1
At the convergence, we have:
E(lle(c0)lI*) = {o + A(c0). (31)

Derivation of the misadjustment:
From Equation (11) it is easy to show that the weight
fluctuations follow the recursion:

V(n+1) = V(n) + 2ulew,(n) = V(n)X(m))X*(n)
(32)
Taking the mean of this equation and applying the or-

thogonality principle between the input vector and the
Wiener error, we get:

E(V(in+1)) =E(V(n))(1 — 2uRxx) (33)
Thus, as expected, if 4 is sufficiently small E(V(#)) con-
verges to 0.
Similarly, for each vector
ing recursion:

V; we can obtain the follow-

Vi(n +1) = Vj(n) + 2u(ew;(n) — X' () Vj(n))X(n))
(34)
The evaluation of the covariance matrix of the weight
fluctuations is obtained by multiplying both sides of

Equation (34) by V/(n + 1) and averaging;

4 2uE [e%,(n)xvf (I - 2p¢XXf)}

}

t

+ 2uE [e%,(n)xvjt (I —2uXxX")

Page 7 of 22

These expectations are derived in Appendix III, which
yields:

Kyy+(n+ 1) = Kyeye(n) — 2Ry, ()
— 2uKy,v,(n)Rxx
+ 4y (—E [Hfg()()XE(Vf(n))XXt}
i (RXX WOE(V;(n)))RXX
+R)Q(W0E(V;(n))RXX))
+ 4y (—E [lﬁg(X)XE(vj(n))th}
o (RXXWOE(V;(n)))RXX
+R;Q(W0E(Vj”(n))RXX)>t
+ 442 (tr (Rux Ky, (1)) Ry
+2Rxx Ky, (n)Rxx)
a4y (E[g(X)g! (X)HH{XX'|
02 Ryx — tr (RXX ngWéj)RXX
—2R W, Wg,RXX) (36)

Taking into account that E(Vj(e)) = 0, Ky;; can be
obtained by solving the following equation:

— 4‘/‘RXX[(V,V/(OO)RXX

— 24 [E[g(X)g (OHHIXX!| + 203 R

+ 4P E[XX" Ky, XX*]
+ 4u’E [e%%j(n)XXt} —2utr (Rxx Wé/ Wé;) Rxx — 4puRxx Wéj Wéijx]
(35) (37)
This expression holds for any input signal. It can be simplified if Ryx = 02 . In this case we have:
0202 M + tr (E (g(x) g (X)H,HfXX‘)) — 4 (M +2)tr (WO, ng)
tr(RxxKv.v, = 38
r(RaxKvy,(00)) = u 1— (M +2) %)
It is now easy to determine the total misadjustment:
L
. 0302ML + tr | E (g(X)gt(X) 2]—1,-1—[;XX¢>] — oH(M +2)tr(Wo W)
=

j=1

1 —po2(M+2)
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Note that, as expected, in the case of linear functions
A(e0) reduces to:

uadoiML

Alo)lgx =7 uo (M +2)°

(40)

The additional terms are due to the nonlinearities and
they should be calculated specifically for each
nonlinearity.

Application to the case study:

The MSE is expressed as:

L M
E(||e(n)|| = Loy + Z Zaka o 7khj2k
=1 k=1 (14 2B,0,2)
2

_7h}kwlk( ) + Wfk(n)

Page 8 of 22

The Wiener MSE is expressed in this case as:

3

1+2B0,%) =1 &
C =L + 2 2( i hz
0= 00 Za (1+ﬁox’ IZ

(42)

Adaptive W, the nonlinearities are frozen and known with
scale factors

In this section, matrix W is adaptive, the nonlinearities
are frozen and known with scale factors (Figure 5).

Mean weight behavior and stationary points
The gradient descent update of matrix W is expressed
as:

W(n+1) = W(n)+2ue(n)Qg(X(n))

(1 +Brow?) = W(n) + 2u[(Hg(X(n)) + N(n)
(41) —W(n)Qg(X(n))|Qg(X(n))" (43)
1 J'l('?)
o) — ) (LJ\f o
20) ————— Unknown 1)

Xy () e

nonlinear MIMO system

x(n) g 77!81 ()
X, (%) E > ’7:3:(-)
xy, (1) : o181 ()

1 5,(n)

5:()

Figure 5 Simplified scheme, the nonlinearities are frozen and assumed known with a scaling factor.

Weight update algorithm
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7, O 0
where Q = | 0 0
0 Mm

Averaging both sides of (43) and using the standard
LMS assumption of small y, we obtain:

E(W(n+1)) ~ E(W(n)) + 2u(H QRy(x)(x)
— E(W (1)) Q* Ry(x)q00))
= E(W(n)) (I — 2uQ?Ry(x)4(x))

+ 2,MH.QRg(X)g(X) (44)

These recursions have a single stationary point
(Wiener solution) which is:

W=W,=HxQ! (45)
Following Equation (44), the mean weight behavior can
be expressed as function of the initial condition as:

E(W (1)) =W(0)(I — 2uQ°Ry(x)px))"

n—1

+2uH QR (x)4(x) Z(I —2uQRyxyqx))”
p=0

(46)

Hence, if u is sufficiently small, it can be shown that
the mean weights converge to the Wiener solution:

W(oo) =Wy =HQ™". (47)

1

A max

The stability condition on g is: 0 < p <

Where A,.x is the largest eigenvalue of the covariance
matrix QzRg (X)g(X)-

Thus, if each nonlinear function g (.) is known with a
scaling factor 7, then weights /1; will be identified by
wji (to the inverse of the scaling factor).

MSE
We have:

E(lle(n)||”) = E(|[Hg(X(m)) + N(n)
—W(n)Qg(X(m))[)

= ZL;E [e2(m)] (48)
where:
E(20n) = E( gt m) + N
~Wi(mQg(x(m)]) (49)

Page 9 of 22

Using the independence of noise and weights at time
7, we obtain:

E(e?(n))

]

3+ E(||(#; — 2 W m)ex(n) )
00 + Hj Rygx) Hy

— 2H} ORy (x50 E(Wj(n))

+ E(‘Vjt(n)QZRg(X)g(X) VV/(”))

The MSE is therefore expressed as:

L
2
E(lle(m)|?) = Log + > Hf' Ryt Hj
=1

— 2H}' ORyx)¢(x) E(Wj(n))

+ E(W}(mQ Ryg0 W) (50)
Wiener MSE:
The Wiener MSE can be easily expressed as:
(o= E(e%%(n))
= Loy + E(||(H — Wo)g(X(n))||*) = Loy~ (51)

Therefore the Wiener MSE is equal to the noise floor:
There are no terms due to the nonlinearities. This is
expected since the nonlinearities are known with a scal-
ing matrix Q (we have seen that the scaling matrix is
canceled by W, since W, = HQ™).

Let Z (n) = Q g(X(n)), we can then express the MSE
as a function of {y, the weight fluctuation vector V(n) =
W(n)—-W,, and Z(n):

E(lle(m)[”) = E(|lew, (n) — (W (n) = Wo)Z(n)]*)
= Go+E(IV(nZ(m)|P)

L
= o+ Y tr(RzzKyjv(m))
j=1

(52)

Similarly to Equation (29), the misadjustment is
expressed as:

L
A(}’I) =tr (RZZ Z[(\//\/}(ﬂ)) . (53)
j=1
The steady state MSE is then expressed as:
E([le(c0)||*) = {o + A(o0). (54)

Derivation of the misadjustment:
It is easy to show that the weight fluctuations follow
the recursion:

V(n+1) = V(n) + 2ulew,(n) — V(n)Z(n))Z (n)).
(55)
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Taking the mean of this equation and applying the or-
thogonality principle between the input vector and the
Wiener error, we obtain:

E(V(n+1)) = E(V(n)) x (1 2uRzz). (56)

Thus, as expected, if y is sufficiently small, E(V(n))
converges to 0.
For each vector V; we have similar recursions:

Vi(n +1) = V(n) + 2u(ew,j(n) — Z(n) Vi(n)) Z(n) ).
(57)
The evaluation of the covariance matrix of the weight

fluctuations is obtained by multiplying both sides of
Equation (57) by V/(n + 1) and averaging:

= [(ervjr(n) — 2/AR221<V/V/(1’1) — 2/41(‘4\//(}’!)[\)22
+ 2uE {ewoj(n)Z(n)Vf (I- ZuZ(n)Z(n)t)}

+ 2uE {ewoj(n)Z(n)Vj‘ (I- ZﬂZ(n)Z(n)t)} ¢
+ 4PE[Z(n)Z(n)' Ky, Z(n) Z(n)']

+ 4°E {e%w(n)Z(n)Z(n)t} (58)
In a similar way as in Appendix III, Ky;; (e) can be
obtained by solving the following equation:

Rzzl(v/.vf (OO) + [(V/V, (OO)Rzz—Zﬂ tr (RZZI<V/V,< (OO))RZZ
— 4uRzzKyv;v,(00)Rzz
— [E [g(x) o (X)H,HfZZt} + 2u02Rzz
dutr (RZZ W, ng) Ryz — 4Rz W}, ngRZZ}
(59)

This expression can not be further simplified because
Rz is not necessarily of the form ¢21.

Therefore, tr(Rzz Kyj; () should be calculated for
each nonlinearity and for each Q.

It is interesting to study the case where nonlinearities
are known with the same scaling factor, ie, Q = zl. In
this case, and if the input vectors are independent and
the outputs of the nonlinearities are Zero-mean and of

2

equal variance g, we have:

aonto; M
1—punPoz(M+2)

tr(RzzKy,y,(00)) = (60)

Page 10 of 22

As expected, the total misadjustment reduces to:

L 2,2 2
ool oML
> tr(RzzKyy,(00)) = :
7 (RzzKyy () M1 upa2(M 1 2)

7 (61)

A(0)

Here the value of the misadjustment is similar to that
of linear identification of a linear system (LMS algo-
rithm). This is expected since in this case there are no
errors due to the approximation of the nonlinearities.

Case study
For the case study, it is easy to show that G; =
E(g(x2(n))) = —2% . This yields:
(b)) (14+28,042)} ¥
M 2 2
;" Oy, 2
E(ef(n)) =00" + Zié (b — wyi(n)y;)
7 (142B,0.2)
(62)

Study of the full structure
This section deals with the full structure (Figures 2, 3).
All the NN and matrix W weights are updated.

Mean weight transient behavior
We take the following notations for the weights:

E(wi(n)) = wi(n), E(ci(n)) = exi(n), E(axi(n)) = an(n),

E(bii(n)) = by(n).
The update of matrix W is expressed as:

W(n+1) = W(n) + 2ue(n)NN (X (n))*
= W(n) + 2u[Hg(X(n)) + N(n)

—W ()NN (X (m))INN (X (n))’ (63)

Averaging both sides of (63) and using the standard
LMS assumption of small 4, we obtain:

E(W(n+1)) = E(W(n)) + 2u(HRy(x v x) (1)
—E(W (1)) Runionnx) (1))

+ 2uHR, (x)nn (x) (1) (64)

Where Rynxwnix)(n) = E[NN(X (n)) NN(X(n))"],

Ryponnx) (m) = E[g(X (n)) NN (X (n))'].

These matrices are time-dependent since they depend
on the NN block weights which are updated through
time.



Ibnkahla EURASIP Journal on Advances in Signal Processing 2012, 2012:179
http://asp.eurasipjournals.com/content/2012/1/179

Using the scalar notation we have:

ﬁ/jk(l’l + 1) = ﬁ/l'k(}’l)
M
<Z h/,gl x, Z WIINN[
N
X Z Cronf (Gromxic (1) + bion)
m=1

)

Z HjiCiomE (g (%: (1) )f (Gtomnc (1) +Bron) )

im

(65)

+ 2uE

~ Wik (n)+2p

MN.N

- Z wiCiiimE (f (@i (1) + by )f (Gimxi (1) + bion) )

Lm,i

Let: Ki(am, bim) = E(gi(x:(n))f (armxx (1) + bom)), and
Fir (@i, bii, o, bm) = E(f (@ () +b3i )f (@gmxx (1) +bion) )
With these notations we have:

MN
Wi (n -+ 1) = Wie(n) + 24| > BiiCuonKi (@aom; bion)
im
MNN ) i
- Z wjrCriCiomEuc (@i, bii, Giom bkm)‘|

Lm,i

(66)

For the NN block weights we have:

cui(n + 1) =2xq(m) +24E <i wikei(n “kixk(”)+bki)>

~ Cu(n)+2u ; WiE (; hupgy (x(n) )f (
_mi Wi (qu; Cnaf (aqu(n)—i—bmq))f (@xi(m)+ bki)>
(f: Ky (@i, bii)

p=1

ﬂmq» mq s A, bkl)) ) (67)

ﬁkix(n) +Bki)

L
= Culm) + 2y Wik

(S

=1
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Zlki(l’l + 1) = Zlki(l’l)

Cli Z wicer(m)x(n)f (axx(n) + by)

=1

~ ay(n) + 2ucy Z Wik Z hipE (g, (x(n))x(n)
I= p=1

=1
(Z CngE (f aqu

+ 2uE

xf'(szix(n)+l_9ki)) Z Wi

+byg)x(n)f (arix(n) + Bki))) )

= a(n) + 2uci Z Wik <Z hyp —2

MN

81( ak,, bla)
8ak

_ aka (Zlmqy bmq7 Aiy bki)

wlmcmq —
m.gq.(m.q)#(k.i) Oady;

bii(n + 1) = by(n)

L

1_ _ OFq(au, b, axi, bri)
— 5 WikCri
ey wier(m)f (arix(n) + bko]
=1

(68)

2 Oady

+ 2uE

~ bii(n) + 2ucy Z Wik (Z hi,E (gp (m)f (@xx(n)
= —

61<p (ﬁki, [;ki)
Oby;

aka amq (69)

- E Wlmcmq

These equations hold for any nonlinearity. In the fol-
lowing, we will calculate them explicitly for the case
study described in Section 2.3

Application to the case study:

Since the inputs are independent and Zero-mean, we
have K; (@xbim)=0, k#i , and (see Appendix I)

+ bim))

Ki(@im, bim i(i(m) )f (@i (1)
a;0> Aim

bim) = E(g
-

-V (1+pB02)
1

2
- 2 \/;alo.x btzm

UJZC (alzm +ﬁl) +1

Aim

(1+03(B; + i)

3
2

(70)
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In the other hand we have: Fi(ay, by, awm, bim) = 0,
lzk, and (see Appendix I)

Fyi(aki, bii, @kom, bion)
= E(f(tlkix(l’l) + bki)f(ﬂkmx(l’l) + bkm))

20 i T2
JT
\/ 1+ o2al, + o2a},, + oalal,,
1 b2 0% ayiaom
ok (1+02a2)\/1+02(a2 +a2)
x%ki x \"ki km
1 0% Akiltion
T m 2 .2 2( 2 2
(l + O-xakm> \/1 + ax (aki + akm)
2 1
+ biibign — (71)

\/1 + 03 (aj; + ai,,)

Inserting these expressions in equations (66)-(69), we
obtain:

N
hjk Z ClonKic (@xom» bom)

m=1

Wik(n + 1) = wix(n) + 2p

N
— Wik Z CxiCiomFri (@i bii Aom bkm)]

m,i

(72)

L

Cii(n + 1) = eu(n) + 24 Wi
=1

N
— Wik (Z CigFrk (Zlkq, by, i, bki)) )
q=1

(huKi (@i, bri)

(73)
s o
_ _ _ _ OK (@i, bii
a(n+ 1) = ax(n) + 2uck Z Wik (h,k(a")
I—1 A i
OF (g, brg: ari, b
i chq i 2 i)
a7k i
1 OFu(axk, bk, axi, bi)
-z 74
5 WikCik D (74)

_ _ L 0K (@, by
bki(}’l + 1) = bki(l/l) + 2uci; Z Wik <h1k %
=1 ki

OF i (aiq, big: ari» b
3§y il
ki

(75)

The explicit expressions of the different derivatives are
detailed in Appendix IL
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Stationary points
We obtain the stationary points by setting to O the
expectations of the updating gradient terms in (64) and
(4.5-7).

For W, we obtain:

= H x U, where
(76)

Wo =H x Rg<x)NN(x>R&11v(x)NN(X>

U = Ry()nn () Ranoonn (x)-

For ¢;; we obtain the equations:

L
> wi(huKi(axi, bs)

=1

N
— Wik (Z cqFi (g, brg: i, bki)) ) =0 (77)

g=1

For a;; we obtain the equations:

ZW(

OF i (arg, brg, ari, bii)
— Wik § qu

OKy (ay;, bii)
Oa AL

a7k Oa
1 OF (@i, bik, aki, b))
_Z =0 78
5 WIKCKk Do (78)
For b;; we obtain:
0K (ari, b
Z Wik <hlk k ﬂkn kz)
OF (g, brg, ari, br

B SRS P

'

The above equations are nonlinear in the NN variables.
They can be solved numerically, but they are very diffi-
cult to solve analytically.

Convergence of the algorithm to the stationary points:

It is always interesting to show whether an algorithm
is capable of converging to its stationary points or not.
In our case it is difficult to establish this, since the up-
dating equations of the weights are nonlinear, except
for W.

In the case where the NN weights are frozen we can
establish the convergence condition for W.

In this case we have:

E(W(n+1)) = E(W(m)) (I — 2uRnn0onn(x))

+ 2uHR, (0N (x) (80)

The covariance matrices are fixed, since in this case
the NN weights are frozen.
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E(W(n)) can be expressed as a function of the initial
condition as:

E(W(n))=W(0) (1 —2URNN (X)NN (X) ) " +2uHR, (x)nN (x)

X (1 — 2URNN(ONN(X) )p
—0

=

(81)

N

If u is sufficiently small, the steady state solution to
(81) is:
W (00) = Wo = HRy(x)nw(x) Ran(xnw ) - (82)

Hence, the mean weights converge to the stationary
point Wy, and the stability condition on  is:

O<u< (83)

A‘ max

Where A« is the largest eigenvalue of the correlation
matrix Ryneonne)-

Application to the case study:

For the case study it can be shown that U reduces to a
diagonal matrix:

U = Ry(x)nn (X)RXUIV(X)NN(X)

yi: 0... 0
=10 y,... 0], (84)
0 O Ym
where:
SN K (@homs biom)
Yi = (85)

NM
> omi kiChmEik (ki Biis Aoms bion)

This indicates that weights wj are scaled versions of
the unknown weights /;, the scale factor y; is the same
for all the weights connecting the K NN block to the
outputs and it depends only on block k weights. If the
error is sufficiently small, the K™ block NN will approxi-
mate the & nonlinearity to the inverse of the scale
factor.

MSE expression
The transient MSE is determined by:

E(le(m’) =7 E[en)]
— E(|[Hg(X () + N(n)

~W(m)NN(X(n))[) (86)
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~ Wi NN (X(m)])

W
= E( Zhjigi(xi(n)) + Nj(n)

i=1

M
J—

1 i=1

Wik X ch{f(ﬂkixk(”) + bki)) )
(87)

Which can be expressed as:
M
E(&(n)) = o0 + 3 bl (gi(si(m) i)
il

M N
-2 Iy (”)Wik<z comE (€i(xi(n) )f (ﬂkmxk(”)+bkm))>
ik

m=1

M N
+D N wiwicuckiE (f (i (n)+bi)f (@i (1) +bion))
kJ im

(88)
Let G; = E(gi(x; (n))gl(x; (n))). Using the notations of
Section 4.1, we have:

M
E(ef(n)) =00’ + ZhﬁhﬂGil
il

M N
-2 Z hjink ( Ckml(i(ﬂkmv bkm))
ik =1

m

M N
+E E WiWikCiClomEi (@i, b, @koms biom)

Kl i
(89)
Application to the case study:
It can be easily shown that:
M
E(ejz(n)) =09" + Zh,'ziGii
M N
2> hiwie <Z ClonKic(@ion bkm))
k m=1
M N
+ > Wi Y iFu@is bii, @i, bion)-
k i,m
(90)

The I* term of E(ef(n)) represents the noise power,

the 2™ term is the signal power of the j MIMO output,
the 3" term is the sum of the individual contributions of
the neurons weighed by W and H weights, the 4™ term
represents the sum of the coupling terms between
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neurons inside the same block weighed by W. Note that
since the inputs are Zero-mean and independent, there
are no coupling terms between neurons in different
blocks (as in Eq. (89)).

The total MSE is then expressed as:

M
E(|le(m)|*) = Lao® +>_ hiGi
7
M N
-2 Z hjijk (Z CromKic (i, bkm))
T =

M N
2 2
+ Z Wi Z CiiFik (ki biiy @iom, biom )
Jik

im

(91)

Case of frozen NN weights:

It is interesting to see the behavior of the MSE in the
case where the NN weights are frozen.

In this case we have:

Co = E(Jlew, (m)]%)
= Log + E(||Hg(X(n)) — WoNN(X(m)|*).  (92)
Here the minimum MSE depends on the noise floor
and on the NN approximation error of the nonlinearities.
It is clear from this equation and from Section 3.2 that,
if the NN blocks ideally identify the nonlinearities (to
within scale factors), then (,, reduces to the noise floor.
The MSE can be written as a function of {, as:

E(lle(n)|I*) = E(|lews (n)—(W (n) = Wo)NN (X (n))]]*)
= E(llew, (n) =V (m)X(n)]*) (93)

The steady state MSE is in this case:

L
E(||€(OO)H2) = (0 + Z tr(RNN(X)NN(X)KV,V].(oo)).
j=1

(94)

The misadjustment can be derived similarly as in Sec-
tions 3.1 and 3.2. We obtain a similar equation as (53),
by replacing Rz by Rynonnex) The equation can not
be simplified further.

It is interesting to notice, however, that if the NN
blocks perfectly identify the nonlinearities and if the con-
ditions above equation (60) are fulfilled, then:

)3
A(oo) = Z tr (RNN(X)NN(X)K\/,\/,(OO))
s
2 2
B 050 ML
T uek(M 1 2) (95)
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Simulation examples

In this section we present some simulation results which
are applied to the case study described in Section 2.3. In
these simulations, we have considered a 2 x 2 MIMO sys-
tem (i.e, M = L = 2). For the parameterized nonlineari-
ties we have chosen a;=ap=1, =1, fB,=2. Unless
otherwise specified, the inputs are uncorrelated Zero-
mean white Gaussian processes with o,; = 1. In the
simulations, the unknown combining matrix was fixed
1 03
03 1
MIMO communication system, H can be seen as the
propagation matrix between 2 transmitting antennas and
2 receiving antennas.

and was taken as H = { } . For example, in a

Linear adaptation

For the linear adaptation case (Section 3.1), the adaptive
system is composed of a 2x2 matrix W. For the noise we
have taken oy = 0.001. The mean weight recursions and
the MSE transient behaviors (Figures 6, 7) have been
estimated over 20 Monte Carlo (MC) simulations and
compared to the theoretical derivations (Equations (19)
and (41)). This chosen number of MC simulations shows
excellent fit between the Theory and MC estimations
which confirms the validity of the different assumptions
made. A larger number of MC simulations allows a bet-
ter smoothing of the curves, but the conclusions remain
the same.

Matrix W converges to a scaled version of H: W =

0.3536  0.0577 0.3536  0.0000
{0.1061 0.1925 0.0000 0.1925} '

Note the typical behavior of the LMS algorithm: A time
constant controls the transient part of the learning curve

| -1 uu-|

. A

E
) el .

0.35r

03F

0.25

02

0.15

011

005 1 1 1 1 1
0 500 1000 1500 2000 2500 n

Figure 6 Smoothed MSE vs. iteration number - Linear
adaptation case.
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Ew, ()

\

0.25 Simulation 7
Ew,(m)
E(w, (m)
E(w,,(n))
SIOD 10IOO 15;00 ZOIDO 25IOO n

Figure 7 Mean weight transient behavior - Linear adaptation
case.

and the mean weight curve. This is fundamentally differ-
ent from the full NN system learning which is governed
by several time constants and presents plateau regions
(Section 5.2). It should be noted that the steady state MSE
is high because of the error caused by the fact that the
nonlinearities are not approximated (actually they are
modeled by the identity function) (Equation (25)).

MSE surface for the full NN algorithm

We move now to the study of the full NN algorithm.
In this simulation, we have taken N = 3 neurons in
each of the two NN blocks. The learning rate was
fixed to u =0.0045. Figure 8 shows the MSE surface (i.e.,
Eq. (90), with no time dependence) as a function of wq;
and wy, (the other parameters were fixed). It is clear that
the MSE is quadratic in w;; and ws;. It presents a single
global minimum (as shown in Equations (76 and 84)).

MSE

5 5
Figure 8 MSE surface, MSE (w+,, W3,).

Figure 9 MSE surface, MSE (a,,, ¢21).
N

Figure 9 (resp. Figure 10) shows the MSE surface as a
function of a;; and ¢;; (resp. a;; and a5) (the other
parameters were fixed). It can be noted the flat areas
(plateau regions) around the minima of the MSE sur-
face. This explains the slow evolution of the NN
weights when the algorithm gets close to its conver-
gence point.

The MSE evolution during the learning process (Equa-
tion (90)) has been compared to 20 MC estimations
(Figure 11a): The theory shows very good fit with the
simulation results. In the Figure, we notice that the MSE
presents several phases (each phase is controlled by a
time constant) which end by a plateau phase where the
MSE decreases very slowly. This is a typical behavior of
the backpropagation algorithm [1] which is fundamen-
tally different from that of the linear adaptation scheme
(Figure 6). Here the MSE error is much smaller. This is
expected, since here the additional MSE error due to the
nonlinearities (Eq. 92) is highly reduced because our NN

Figure 10 MSE surface, MSE (a;4, a;).
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2 Simulation
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10" 1 1 1 1 1 Il 1 1 1
0 05 1 15 2 25 3 35 4 45 .o
Iteration (n)
Ele(s|)
T T T T T T T
10" i
a0 =0.125
Op = 0.1
» g0.=0.075
107 gp = 0.05
10°F T
g = 0.00057
10"1 | | | | | | | | |
| 4
0 05 1 15 2 25 3 35 4 45" 1o
Iteration (n)

10- 1 1 L 1 1 L L 1 1
0 0.5 1 15 2 25 3 35 4 45 4
x10

Iteration (n)

Figure 11 a: MSE during the learning process (theory and simulation), 6,=0.001 and p=0.0045. b: MSE for different values of noise
variance, the learning rate was u=0.0045 (theoretical results). ¢ : MSE for different values of learning rate u (the noise variance was set to 6,=0.001),
theoretical results.
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Figure 12 Identification of g, (x), by the 1°* NN block.

blocks have correctly identified the unknown nonlineari-
ties (Figure 12, 13). Here we are in a situation close to
that of Section 3.2 (Equations 51-52).

Figure 11b shows the MSE evolution during the learn-
ing process for different values of the noise variance .
It can be seen that, as the noise variance decreases, the
MSE decreases. However, below a certain value of o
(here 0,=0.0005), the MSE curves are almost identical.
This is because in this case, the weight misadjustment
error (for the linear part) and the nonlinear approxima-
tion error (of the nonlinear memoryless part) are much
higher than the error caused by the presence of noise
(see Egs. 92-93).

Figure 1lc investigates the influence of the learning
rate y. It can be seen that as y increases (up to ¢=0.002),
the algorithm is faster and the MSE is lower at the end

0.45 T T T T
041 R
0.35f
0.3+
0.25¢
0.2f
0.15f
0.1

0.05f

0 0.5 1 15 2 25

Figure 13 Identification of g, (x) by the 2"¢ NN block.

14 , :
E (Wn([’l)_fﬂ
19} o -
b E(w, () 1
08 .
06 ‘ _
oot ' E(wy, ()
04 _
02 / E(w,,(n) 1
% 1 2 3 4 5 6 n
X 104

Figure 14 Mean weight behavior: Matrix W (theory and
simulation).

of the simulation time. However, for x>0.002, as u
increases, the algorithm is faster at the beginning of the
learning process, but the MSE is higher at the end of the
simulation time. This is due to the misadjustment error
which is higher for higher y (see, e.g., Eq. 95).

Mean weight transient behavior for the full NN algorithm
Here we keep the system described in Section 5.2. The
mean weight recursions for the linear combiner W and
the two NN blocks are shown in Figure 14, 15, 16 for
both theory and MC estimations. The theoretical and
estimated curves are indistinguishable. This confirms the
validity of the different assumptions made in Sections
4.1 and 4.2.

S DT o = e SN,
04 f an i
03

02

01 |

01 f.'. f 4

0 05 1 15 n
x10*

Figure 15 Mean weight behavior: First NN block (theory and
simulation).
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1 T T v T

T Blage |
7 / E(c, (n)

op e 1

Figure 16 Mean weight behavior: Second NN block (theory and
simulation vs. iterations).

Notice that, in Figure 14, W weights have a fast
evolution at the beginning of the learning process
(with values approaching HxU(n) where U is a diag-
onal matrix). They then evolve slowly till the end of
the learning process. The slow evolution is justified by
the plateau regions presented by the MSE surface. At
the end of this simulation, matrix U was close to a
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values of the cross correlation. Note that (p=0) corre-
sponds to independent inputs, and (p=1) corresponds
to the same input (i.e., x;=x,). The values of matrix U
and the MSE after n=210" iterations are shown in
Table 1. It can be seen from Table 1 that, in practice,
matrix U remains very close to a diagonal matrix,

NI even for high correlation between inputs. This indi-
\\\g Elcy(n)) cates that the system is capable of correctly identifying
-1f ) = — the nonlinearities even when the inputs are highly
K\ E(ax) correlated. The identification performances for the
157 ] cases (p=0.6) and ( p=0.99) are illustrated in Figures 17,
E(c,,(n)) 18 and 19, 20, respectively. As expected, the MSE

2r increases as the correlation between inputs increases
(Table 1). When p=1 (i.e., the two inputs are the same)

8 1 2 3 4 5 6 n the system is capable of correctly identifying the overall
x10* MIMO input—output transfer function. However, in this

case, it is not capable of separating the nonlinearities (as
U is not diagonal). The reason is that in this case, the
system is seen by the learning algorithm as a 1x2 SIMO
system which has several equivalent structures. Figure 21
shows an example of two equivalent structures. There-
fore, the adaptive system is structurally not able to separ-
ate the nonlinearities. It is worth to note that for the
case (p=0.999), the inputs look like noisy versions of each
other (i.e., this is equivalent to a 1x2 system identifica-
tion problem with noisy inputs). Thus, the MSE for the
case (p=0.999 ) is larger than the MSE for the case

. - _ [1.2702  0.0001 (p=1).
diagonal matrix: Uy, = {0.0003 1.0946]’ (and
Utheory = [1'270 0 }). This result is expected since Conclusion anc} future V\(o!‘k .
0 1.095 The paper provides a statistical analysis of NN model-

the inputs are uncorrelated (Equations 84-85).

Figure 12, 13 show that functions g; (x) and g, (x) have
been correctly identified by the corresponding NN
blocks (the NN functions are normalized by the scaling
factors y;=1/1.2702, y;=1/1.0946, respectively).

Impact of correlated inputs

In the simulations below we study the impact of corre-

lated inputs. The input signal vector is chosen here as a

2D Gaussian process with covariance matrix of the form
1 .

Rxx = [p 11) ] The number of neurons in each NN

block was taken as N = 5 neurons. The learning rate
#=0.0075. We have run several simulations for different

Table 1 Effect of correlated inputs

ing and identification of a class of nonlinear MIMO
systems. The study investigates the MSE error, mean
weight behavior, stationary points, misadjustment error,
and stability conditions. The unknown system is com-
posed of a set of single-input memoryless nonlinearities
followed by a combining matrix. The NN model is
composed of a set of single-input memoryless NN
blocks followed by an adaptive linear combiner. The
paper is supported with simulation results which show
good agreement between the theoretical recursions and
MC simulations. Future work will focus on 3 research
directions. The first will explore the theoretical findings
in order to express the effect of the number of neu-
rons on the transient and steady state behavior of the
algorithm. The second research axis will investigate the

p=0 p=0.6 p=0.9 p=0.99 p=0.999 p=1 (same input)
EU(n)), for
n=2x10° —1.228  0.0000 —1.2245 0.0004 —1.23  0.001 —1.24 0.019 —0.324 —1.07 —0.023 —1.24
0.0004 —1.066 0.001  —1.1331 0.0025 —1.12 0.023 —1.08 —1.002 —0.03 -1.14 —0.15
MSE(n) 0% 125 10* 1510" 175 10% 910" 1710
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Figure 17 Identification of g, (x), case p=0.6.
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Figure 19 Identification of g, (x), case p=0.99.
AN

case where matrix H is time-varying and/or with mem-
ory (this may have applications, for example, in adap-
tive control of nonlinear dynamical MIMO systems).
Finally, we will study the algorithm behavior and per-
formance for specific inputs (such as space-time coded
signals used in wireless communications and their im-
pact on the system capacity).

Endnotes
This work has been supported by The Natural Sciences
and Engineering Research Council of Canada (NSERC).
The time index of the weights has been omitted from
the right hand side of the equations to make them easier
to read.

Appendix |

1) Calculation of Fy
Let x; and x, be two zero-mean Gaussian variables
such that 02 = 02 = 02 and E(x1xy) = p
Therefore, Fix(axi, biiy g, bim) = E(f (arxx (n)+
bia)f (asoni (1) + bion)) p—g2.-
Using Price’s theorem we have:

E {W} _ OE[f (w1 -bia)f (Wamea +-bion)]
Ox10x7 - op .

Let U(p) =E {azf (a1 +bi)f (kax2+bkm)i| ’

Ox10x

Then: E[f (agix1 + bi)f (Grmxa + bkm)]ngg_

Elf (ax1 + bia)f (@im®s + bion)lp—o = Jo* Up)dp.
Thus, using the un-correlation criteria between x;
and x, for p=0, we have: E[f (aux1 + b )f (agmxa+
bkm)]p:() = E[f (axx1 + bi)|Elf (armx2 + bim)]. Thus:
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Figure 18 Identification of g, (x), case p=0.6.
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Figure 20 Identification of g, (x), case p=0.99.
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Figure 21 Example of two equivalent structures when the inputs are the same.

F(aki, b, dion, bion) = E[f (axix1 + bia)|E[f (aimx2+
b)) + [o* U(p)dp.

We have: U(p) = E [_{ﬂf <“kfx1+gf;1”(;i‘;kmx2+bkm)} =

f*oo f*oc ~L(agxi+bri)? e L (@smx2+Biom)
IR\_

2
e R X g1 dxy where X = [x1 %)  and R= [Zx (fz] .
x
Combining the terms in the exponentials and

completing the squares, the integrals can be

ﬂkzﬂkm
calculated: U(p) = £ s e
1+o03a +Ux o T 0% =P )akakm

exp [% [—bz b, 2+
k

Z
(bktﬂkL (ﬂk,+ 7 2) +brmkm 2 )
2 o2
o o2
a; = bt | a?
( ki '(7)2‘,/72) ( L ax, kim g —p2

Note that in the biasless case (i.e. all the bias terms
are set to 0) this expression reduces to:

b klakl

pz

U(P) _ z AkiGAkm
1+ 02+ 0, + (of — p)ata,

The integral is then simple to calculate:

2

[ 2 1
/ U(p)dpz;sin’
0 \/1 +02 ﬂkz +02 akm +U4ﬂ12(takm

2
Aki%kmO

In the other hand, since E[f(wix1)] = E[f (wix2)] = 0,
then:

-1 im0
F(dkz;akmvo O) —Sll’l < 2 2 2 >

2,42 2 4
\/1+0xaki+axakm+axakiakm

When the bias terms are not set to 0, a Taylor series
expansion on the bias terms can be used in order to
avoid the calculation of the integral.

2) Calculation of K

Ki(@my brm) = Elgi(xx)f (@rmk + iom)]

1 1 +0o0 B 7;(722 AfonX+bign 2
= ——/ arxe 2 e ¥ / e zdudx.
V 21 Oy o) 0

The inside integral can be eliminated by integrating
by parts on variable x.

The integral is then evaluated by combining the
terms in the exponentials and completing the
squares. This yields:

2 ax Akm
Ko, biom) = \[
i (@omy biom) B, ETERE

X ex _blz(’” 1-— 0’2‘
P 2 1+ Uazc (/))k + aim) .

Again, a Taylor series expansion can be used to
simplify this expression.
Note that in the biasless case we have:

2 «a Al
Ki(awm,0) = \/:
() n"%+ﬁk o2(at, +B) +1



Ibnkahla EURASIP Journal on Advances in Signal Processing 2012, 2012:179
http://asp.eurasipjournals.com/content/2012/1/179

Appendix Il

Page 21 of 22

The derivatives needed to compute the different recursions are expressed as follows:
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— 2#1(\/]\/[(1’1)12)(}(
+ 2UE [e%,(n)xvf (- 2;;)0(‘)}
t
+ 2UE [e%,(n)xvf (- 2;;)0(‘)}
+ 4 E [ XX* Ky, XX']
+ 4°E [e%%,(n)xxt}
(96)
The calculations are similar to [9] Appendix, the main
difference is that here we deal with a multi-dimensional
input. Therefore, we will follow the same methodology
as in [9].

Following [10] the expectation before the last one can
be calculated as:

E[XX'Ky,y,(n)XX"] = tr(RxxKy,v, (1)) Rxx

+ ZRX)(I(V/.V].(I’I)RX)(. (97)
The first expectation is expressed as:
E [e%(n)xvj(l - ﬂXXt)}
_E [e%.(n)xv;} — UE [e% (n)XVfXXt} (98)

toda, +ay)  T\1+0Xa, +ah)

The first term is Zero (orthogonality principle). The
second term is:

E e%,(n)xv;xxf} - E[(Hfg/ () + N(n)

—ngx(n))xvlf)cxf} (99)

The middle term is Zero (Zero-mean white noise), the
last expectation is:

E ngx(n)xvjxxf] - E[X(n)XWO v;(n)XXf}
~ tr(RXXWOE(v;(n)))RXX
+ 2R Wok (V (1) ) Rux
(100)

The first expectation in Eq. (99) E {Hfg(X)XVjt(n)XXt}

~ t t t| . .
~E [H] g(X)XE (V} (n))XX } involves the nonlinearity g;
(x7) and should be evaluated explicitly.

The remaining expectation in (96) is: E {egj(rz)XX t} .

E[egj(n)XXt} - E[(Hfg()() - ngx) 2xxf] + 02Rxx

(101)
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We have
E{(W&X)zxxf} = [XXtW Wf)o(f}

= tl"(RxxWO WO )RXX

+ 2Ry W Wi Ry (102)

The first term in (102) is:
2
E {([—Ijtg()()) th} — E[HyH!g(X)g" (X)Xx']
= E[g()g () HHXX'|
(96) is then expressed as:
K\//V}t(l’l + 1) = I(Vitvit(l’l) — 2//tRxxKv/vl(l’l)

— 2k, (n)Ryx + 4y ( [ o(X )XE(vf(n)) }

+tr(RxxW0E( ) )R+ Rex ok (V) ) Rax ) )
+4M2(*E { (V )XXZ}
+tr(RxxW0E( ))RXX+RXXW0E<V( ))RXX))t

+ 4/4 (tr(RX)([(V/V/(W))RXX + 2RXXI<\//W(W)RXX)
+ 4 (E [g(X) gt(X)]—[/Hj‘XX‘} + 02Rxy

_t}"(RX)(W()tWé)RXX — ZRX)(WéjWéijx)
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