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Abstract

Empirical mode decomposition (EMD) is a fully unsupervised and data-driven approach to the class of nonlinear
and non-stationary signals. A new approach is proposed, namely PHEEMD, to image analysis by using Peano–
Hilbert space filling curves to transform 2D data (image) into 1D data, followed by ensemble EMD (EEMD) analysis,
i.e., a more robust realization of EMD based on white noise excitation. Tests’ results have shown that PHEEMD
exhibits a substantially reduced computational cost compared to other 2D-EMD approaches, preserving,
simultaneously, the information lying at the EMD domain; hence, new perspectives for its use in low computational
power devices, like portable applications, are feasible.
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Introduction
In the real world, data from natural phenomena like life
science, social and economic systems are mostly non-
linear and non-stationary. Fourier and wavelet trans-
forms (built upon predefined basis functions) are
traditional methods that sometimes face difficulties to re-
veal the nature of real life complex data. The adoption of
adaptive basis functions introduced by Huang et al. [1]
provided the means for creating intrinsic a posteriori
base functions with meaningful instantaneous frequency
in the form of Hilbert spectrum expansion [1]. This ap-
proach is embedded into a new decomposition algo-
rithm, namely empirical mode decomposition (EMD) [1]
that provides a powerful tool for adaptive multi-scale
analysis of nonlinear and non-stationary signals. EMD is
a method of breaking down the signal without leaving
the time domain; it filters out functions which form a
complete and nearly orthogonal basis for the signal being
analyzed [1]. These functions, known as intrinsic mode
functions (IMFs), are sufficient to describe the signal,
even though they are not necessarily orthogonal [1].
IMFs, computed via an iterative ‘sifting process’ (SP), are
functions with zero local mean [1], having symmetric
upper and lower envelops [2]. The SP depends both on
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an interpolation method and on a stopping criterion that
ends the procedure. Some updates of the 1D-EMD have
been proposed which address the mode mixing effect
that sometimes occurs in the EMD domain. In this vein,
1D-ensemble EMD (1D-EEMD) has been proposed [3],
where the objective is to obtain a mean ensemble of IMFs
with mixed mode cancelation due to white noise addition
to the input signal. Moreover, EMD has been extended
to 2D image processing as a 2D-EMD realization and it
can generally be classified into three categories:

(1) Single direction EMD: applies 1D-EMD to each
image line, breaking down the correlation of the bi-
dimensional space [4].

(2) Bi-dimensional EMD (BEMD): adopts fully 2D local
extrema detection and 2D surface interpolation
processing, using, for example, cubic spline or radial
basis functions. BEMD, however, requires very high
computational cost [5].

(3) Directional EMD: selects a direction that maximizes
the power spectrum of the image and then uses 1D-
EMD along this direction [6]. This method has
shown some good results in texture analysis, but if
the selected direction in the image is not well
chosen it exhibits poor performance.

To overcome the problem of suitable direction selec-
tion, the use of the Peano–Hilbert space filling curves
Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:paulo.costa@ipleiria.pt
http://creativecommons.org/licenses/by/2.0


Costa et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:181 Page 2 of 9
http://asp.eurasipjournals.com/content/2012/1/181
(SFCs) is proposed, which produces a continuous and
unique function whose domain is the unit interval [0,1].
The proposed scheme, namely PHEEMD, involves the
Peano–Hilbert curve, which is initially applied to the in-
put image and results in a single continuous signal data-
set, upon which 1D-EEMD is then performed to
robustly decompose the signal into different characteris-
tic 1D-IMFs. An inverse procedure is finally involved to
transform the 1D-IMFs back to 2D-IMFs, resulting in
the 2D data decomposition. In this way, a significant
computational load is avoided, forming a fast realization
of 2D-EEMD. The objective of this study is a fast
realization of the 2D-EEMD by efficiently applying the
1D-EEMD algorithm to 2D signals, such as images,
without losing their spatial information; this would,
eventually, allow for faster image processing and
analysis.
The article is organized as follows. The following sec-

tion presents the mathematical background, i.e., the 1D-
EMD, the 1D-EEMD, and the 2D-EMD schemes, along
with the Peano–Hilbert SFCs. Section “The proposed
PHEEMD approach” describes the proposed PHEEMD
approach, whereas Section “Results and discussion” pre-
sents and discusses the testing results. Finally, Section
“Conclusion” concludes the article.

Mathematical background
1D-Empirical Mode Decomposition (1D-EMD)
1D-EMD considers a signal x(t) at the scale of its local
oscillations [1]. Locally, under the EMD concept, the sig-
nal x(t) is assumed as the sum of fast oscillations super-
imposed to slow oscillations. On each decomposition
step of the EMD, the upper and lower envelops are ini-
tially unknown; thus, an interactive SP is applied for
their approximation to obtain the IMFs and the residue,
the 1D-EMD scheme is fully described in [1].
The reconstructed signal x(t) after being decomposed

by the 1D-EMD is

x tð Þ ¼
XN
i¼1

ci tð Þ þ rN tð Þ; ð1Þ

where ci(t) is the ith IMF and rN(t)the final residue.

1D-Ensemble Empirical Mode Decomposition (1D-EEMD)
One of the major drawbacks of the original 1D-EMD is
the appearance of mode mixing, which is defined as a
single IMF consisting of signals widely disparate scales,
or a signal of similar scale residing in different IMF com-
ponents. By uniformly adding white noise through the
whole time-scale or time-frequency space, a reference
distribution that facilitates the decomposition method is
provided; hence, it helps to reveal the true signals in the
data [3]. 1D-EEMD performs this concept with the fol-
lowing steps:
(S1) Add Gaussian white noise w(t) of (0, σw) to the x

(t) data, i.e., X tð Þ ¼ x tð Þ þ w tð Þ;
(S2) Decompose X(t) into IMFs using 1D-EMD, i.e.,

X tð Þ ¼
XN
j¼1

cj tð Þ þ rN tð Þ;

(S3) Repeat S1 and S2M times (e.g., M = 10) with dif-
ferent noise realizations wi(t), Xi tð Þ ¼ x tð Þ þ wi tð Þ and
obtain the corresponding IMFs that result in

Xi tð Þ ¼
XN
j¼1

cij tð Þ þ riN tð Þ; i ¼ 1; 2; . . . ;M;

(S4) Finally, the corresponding IMFs of the decompos-
ition are given by

cj tð Þ ¼ 1
M

XM
i¼1

cij tð Þ;j ¼ 1; 2; . . . ;N ; ð2Þ

derived by IMF averaging across the M ensemble
members.

2D-Empirical Mode Decomposition (2D-EMD)
The sifting notion is essentially identical in 1D and 2D
cases of EMD. Nevertheless, due to the 2D nature of the
images, some issues should be handled with care.
In particular, in 1D space, the number of local extrema

and zero crossings of an IMF must be the same, or differ
by one [1]. In 2D space, the IMFs typically use the defin-
ition of symmetry of upper and lower envelops related
to local mean [7]. There are many ways to define the ex-
trema; hence, different local extrema detection algo-
rithms could be applied. Fast algorithms use the
comparison of the candidate extreme with its nearest 8-
connected neighbors, while more sophisticated methods,
like morphological reconstruction, are based on geodesic
operators [8]. Furthermore, the interpolation method
should rely on proper 2D spline interpolation of the
scattered extrema points. In [7], the thin-plate smooth-
ing spline interpolation is used. In BEMD [8], radial
basis functions are used for surface interpolation. This
combination of 2D extrema extraction and 2D surface
interpolation represents a very heavy computation
power, not suitable for real-time implementations or
applications for portable devices.

Peano–Hilbert Space Filling Curves
An SFC is a continuous scan that passes through every
pixel of the image only once. In order to transform an
image (2D data) on a signal (1D), the SFC must preserve
the neighborhood properties of the pixel [9]. These
curves were first studied by Peano and later by Hilbert
[10]. A Peano–Hilbert curve has three main interesting
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properties: (i) the curve is continuous; (ii) a scanning
curve is continuous almost everywhere; and (iii) some
parts of the curve are similar with the whole curve, sug-
gesting a fractal structure.
Peano’s definition of SFC was entirely analytical while

Hilbert followed a geometric description, which maps the
unit interval I = [0,1] onto the unit square S = [0,1] × [0,1].
The mapping is based on a quaternary expansion of t, for
t ∈ I, and is based on a geometric approach that divides a
square S into four subsequent subsquares according to the
orientation shown in Figure 1. We construct a one-to-one
correspondence between subintervals of I and the sub-
squares of S, so that adjacent subintervals correspond to
adjacent sub squares. Each subinterval can be divided into
another four new subintervals and each sub square into
another four new sub squares according to previous uni-
tary division. This process can be executed according to
the order of the curve (Figure 1).
According to [10], the Peano–Hilbert p(t) curve that

maps the unit interval to unit square can be written in
the complex form (3):

2p tð Þ ¼

�ıp 4tð Þ for 0≤t≤
1
4

iþ p 4t � 1ð Þ for
1
4
≤t≤

1
2

iþ 1þ p 4t � 2ð Þ for
1
2
≤t≤

3
4

iþ 2� �ıp 4t � 3ð Þ for
3
4
≤t≤1

;

8>>>>>>>><
>>>>>>>>:

ð3Þ

where i denotes imaginary unit and bar complex conjuga-
tion. According to (3), for the transition points (4) in the
interval I t = 0, t = 1/3, t = 2/3, and t = 1, we have on S:
2p 0ð Þ ¼ �ıp 0ð Þ ⇒ p 0ð Þ ¼ 0;

2p
1
3

� �
¼ iþ p

4
3
� 1

� �

¼ iþ p
1
3

� �
⇒ p

1
3

� �
¼ i;

2p
2
3

� �
¼ iþ 1þ p

8
3
� 1

� �

¼ iþ 1þ p
2
3

� �
⇒ p

2
3

� �
¼ iþ 1;

2p 1ð Þ ¼ iþ 2� �ıp 4� 3ð Þ
¼ iþ 2� �ıp 1ð Þ

⇒ p 1ð Þ ¼ 1:

ð4Þ
The proposed PHEEMD approach
The 2D EMD algorithms previously presented are very
time-consuming processes. In order to reduce the com-
putation demands, the PHEEMD algorithm is proposed.
This algorithm combines the advantages of SFCs with
the performance of the EEMD algorithm and transfers
them into the image processing domain. PHEEMD is
structured in the following three phases:
Phase 1: Perform image decomposition using the

Peano–Hilbert curve and get the equivalent 1D sig-
nal. For the Peano–Hilbert algorithm, a recursive
function operates on the S area to get the nth-order
curve. The obtained nth-order curve is adjusted to
the image resolution by the 2n × 2n relationship
(n ≥ 2). This procedure converts a 2D data into 1D
signal, yet, maintaining the local pixel spatial rela-
tions between neighbors.
When 2D data are sliced into 1D data along parallel

lines in some cases discontinuity between different slices
is introduced. This procedure can work well if a domin-
ant direction on 2D data could clearly be identified.
To overcome the problem of finding a suitable direc-

tion selection on 2D data, the Peano–Hilbert curve
was used to transform 2D data into 1D data. The adja-
cency property of these curves maintains spatial prop-
erties between neighbors and, if discontinuity is
introduced, it is distributed along different directions.
This procedure minimizes the discontinuity errors
introduced during the transformation of 2D data to
1D data.
Phase 2: Apply the 1D-EEMD to the linear signal to

compute the 1D IMFs that carry multi-scale space-
frequency information. Some indicative values for the
standard deviation of the Gaussian white noise and
the ensemble size are σw = 0.1σx and M = 8, respect-
ively; σx denotes the standard deviation of the original
data. Due to finite data samples, even data extension
should be implemented in the interpolation procedure
on the SP.
Phase 3: Apply the inverse procedure to reconstruct

the image from the data, using the Peano–Hilbert pixel
spatial relations to process the 1D IMFs to 2D IMFs,
according to the relationship of Phase 1. Figure 2 shows
a block diagram of the proposed method explained
previously.

Results and discussion
Computational cost
In order to test computational cost gain of the pro-
posed PHEEMD method when compared with
BEEMD [5] and LSEEMD [4], a set of different rep-
resentative images with different resolutions were
fully decomposed and decomposition times were
measured. Full decomposition was performed using
log2(n), where n is the number of points, to find the
signal number of IMFs [3].
The tests were realized in the same hardware and

the coding process was to maximize algorithm



Figure 1 Example of the Peano–Hilbert’s construction curve: (a) the unit interval to unit square mapping, the arrows denote the
direction of the division of the square S into four subspaces; (b,c) the second- and third-order curves [10].
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differences and minimizes code implementations de-
pendencies. The derived results are presented in Table 1;
for simplicity, all time values are referenced to the
BEEMD, to measure the execution time. As it can be
seen from this table, at a 512 × 512 image resolution
the PHEEMD runs approximately 22 times faster than
BEEMD, representing a significant reduction in comput-
ing demands. The previous results are consistent with
Table 2 which shows the complexity analysis of the SP
for the PHEEMD and BEEMD which analytically shows
a complexity reduction of our method. Table 3 presents
the number of maxima/minima with respect to IMFs
Figure 2 Block diagram of the proposed method.
for PHEEMD showing its ability to perform a full
decomposition.
The second evaluation perspective was the efficiency

of the PHEEMD compared with BEEMD and LSEEMD
to extract the image IMFs. Figure 3 shows the decom-
position for the first’s eight modes plus residue of the
Lena image at 256 × 256 pixel resolutions for the three
methods.
In particular, Figure 3a shows the BEEMD image de-

composition into eight IMFs plus residue; the first IMF
corresponds to higher frequencies (image transitions)
and practically there is no mixed mode, while the



Table 1 Execution speed ratios for the three xEMD
algorithmsa

Resolution BEMD LSEMD PHEEMD

64 × 64 1.0 1.1 10.4

128 × 128 1.0 1.8 15.7

256 × 256 1.0 2.0 20.6

512 × 512 1.0 4.9 22.4
aAll time values are referenced to the BEMD.

Table 3 Number of maxima, minima of IMFs and the
residual of the 256 × 256 Lena image for PHEEM

nb maxima nb minima

IMF1 7384 7489

IMF2 5536 5573

IMF3 3236 3199

IMF4 1778 1776

IMF5 877 907

IMF6 440 447

IMF7 225 222

IMF8 104 101

IMF9 54 55

IMF10 24 24

IMF11 12 11

IMF12 6 6

IMF13 4 3

IMF14 2 2

Residue 1 2
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residue corresponds to image lower frequencies. Because
the BEEMD algorithm is fully 2D, there are not any
effects associated to changes in pixels spatial relations.
Figure 3b illustrates the LSEMD image decomposition
into eight IMFs plus residue where the line artifacts
associated to column spatial brake relations related to al-
gorithm implementations clearly appear. Due to pixel
spatial brake relations, mixed mode (noise) is also intro-
duced in each IMF. Figure 3c depicts the PHEEMD
image decomposition into eight IMFs plus residue and
represents an improvement in IMF extraction related to
LSEEMD and execution speed when compared to
BEEMD. Due to the nature of the SFC (Peano–Hilbert)
the line scan artifacts (Figure 3b) and mixed mode
effects are minimized, as the first neighbor’s spatial rela-
tions are taken into account. Compared to the other two
methodologies, the PHEEMD reconstruction shows a
negligible difference in the quality of the reconstructed
image. Moreover, the ‘blockiness’-like seen in the higher
IMFs does not cause any serious obstacle since they usu-
ally are not the focus of the image processing proce-
dures. Furthermore, it can also be seen that the first
IMFs are more sharply defined whereas the lower IMFs
and the residue also reflect the image trend.
Wu et al. [11] have proposed a multidimensional

EEMD (MEEMD) in which EEMD is applied to spatial
data in one dimension (x-direction) and then applied in
the second dimension (y-direction) to the results of the
previous decomposition. By combining the appropriate
components they obtain the image decomposition IMFs.
Using the code provided in the article we have imple-

mented a series of tests using the Lena image to com-
pare computational costs with our method. For
Table 2 Complexity analysis of the SP for xEMD
algorithms

PHEEMD—SP steps C(n) BEMD—SP steps C(n)

Extrema definition O(n) Extrema definition O(n)

Data extension O(n) Data symmetrisation O(n)

Data interpolation O(n) Delaunay training O(n2)

Data interpolation O(n2)

Median envelop estimation O(n) Median envelop estimation O(n)

2D > 1D > 2D O(n) – –
resolutions of 64 × 64 and 128 × 128 our method runs
very fast while MEEMD is significantly slower.
Our method can also be used with multidimensional

data since the Peano–Hilbert curve exists in multiple
data dimensions. This factor is an advantage because it
reduces the data dimension to 1D with significant reduc-
tion in computer power demands.
As a final efficiency test, the image reconstruction

process was made according to (1) and the peak signal-
to-noise ratio (PSNR) with the original Lena image was
computed. The PSNR was found 42.8, 41.9, and 42.7 dB
for the BEEMD, LSEEMD, and PHEEMD reconstruc-
tions, respectively, showing a negligible difference in
quality of the reconstructed image among the three
methodologies.

PHEEMD as a filter bank
The next evaluation we put forward that PHEEMD cre-
ates a selective filter bank when applied to bidimensional
Gaussian white noise, as in 1D case [12]. For this test,
we consider the average Fourier transform of IMFs over
100 realizations. Figure 4 shows the derived results for
the first six IMFs, as expected the first modes contain
the highest frequencies, while the others contain lower
frequencies. For this configuration, bidimensional 128 ×
128 Gaussian white noise with σ = 1 was used.
Analyzing the results of the tree methods and taking

into account the isotropy of the Fourier transform we
can observe the effects of Gaussian white noise decom-
position for the three methods. Figure 4a depicts the
results for the first’s six modes of a full two-dimensional
Gaussian white noise decomposition using BEEMD, the



Figure 3 From top to bottom: the decomposition of Lena with (a) the BEMD algorithm [5], (b) the LSBEMD algorithm [4], and (c) the
PHEEMD algorithm.
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results are in line with those obtained by Rilling et al.
[12] and Damerval et al. [13]. Figure 4b shows the
results for the first’s six modes of a full two-dimensional
Gaussian white noise decomposition using LSEEMD,
resulting in a filter bank over each separated horizontal
line (noise image). Figure 4c shows the results for the
first’s six modes of a full two-dimensional Gaussian
white noise decomposition using our proposed method
PHEEMD.
Figure 4 From top to bottom: average Fourier transform of IMFs obta
for the three methods. The simulation with (a) the BEEMD algorithm [5],
The output shows that our method operates as a filter
bank over the directions of the Peano–Hilbert curve lead-
ing to an improvement over LSEEMD method. The filter
bank denotes some edge effects of the Peano–Hilbert
curve over the noisy image as can be seen in crosstabs of
the Fourier transform of IMFs. For future improvement of
the algorithm, this crosstabs have to be minimized effi-
ciently, i.e., removing the effects of high frequencies on
higher modes (smooth the higher IMFs).
ined over 100 realizations of bidimensional Gaussian white noise
(b) the LSBEEMD algorithm [4], and (c) the PHEEMD algorithm.



Figure 5 Edge detection of Lena with (a) the BEEMD algorithm [5], (b) the LSBEEMD algorithm [4], and (c) the PHEEMD algorithm.
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PHEEMD in image analysis
Real-world applications have been used to test and valid-
ate the proposed approach. A study is performed to
show the efficiency and performance of the PHEEMD
on edge detection [14], extraction of inhomogeneous il-
lumination [15], and image denoising [16].

(1) Edge detection: the goal of edge detection is to
produce a line drawing of an image. In practice,
operators will look for places in the image where
the intensity quickly changes revealing the
geometric/spatial information within the image. In
the EMD domain every mode (IMF) contains
spatial information at a specific scale conveniently
separated. The first’s modes contain higher
frequencies that correspond to image transitions;
based on this EMD property we will use the first’s
modes to obtain edge information. We use a four
phase’s algorithm to evaluate our method; first we
decompose the image using one of the tree
methods (BEEMD, LSEEMD, and PHEEMD),
second reconstruct the image based on (1) using
only the firsts IMFs, third perform a standard
deviation filtering using a 3 × 3 window and finally
Figure 6 Image denoising using PHEEMD algorithm: (a) original image,
(c) filtered image, and (d) RMSE minimization.
make a global image binarization using Otsu’s [17]
method. To determine the number of IMFs in the
second phase a root mean square error
minimization (RMSE) criteria of the overall method
compared with the Sobel operator was used. The
RMSE minimization occurs with only the first’s two
IMFs in the reconstruction phase and RMSE are
0.32, 0.33, and 0.36 for BEEMD, PHEEMD, and
LSEEMD, respectively. Figure 5 shows the
comparison of the BEEMD, LSEEMD, and
PHEEMD to perform edge detection.

(2) Image denoising: since EMD extracts first the
highest frequencies the first’s modes generally
correspond to the noise. The noise information is
spread over the first’s modes and in the residual
image. The image tendency is contained only in
the residue and lasts IMFs. The results in Figure 6
show the possibility of image denoising with our
method. After having applied PHEEMD, noise
removing is carried out by eliminating the first
two IMFs according to a criterion of RMSE
minimization. Figure 6d represents the RMSE
during the reconstruction phase of the image which
was corrupted by Gaussian white noise (σ = 0.1).
(b) original image corrupted with Gaussian white noise,



Figure 7 Inhomogeneous illumination correction using PHEEMD algorithm: (a) original image, (b) histogram of original image,
(c) corrected image, and (d) histogram of corrected image.
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The minimum error occurs when removing the
first two IMFs, where the reconstruction is

x tð Þ ¼
XN
i¼3

ci tð Þ þ rN tð Þ:

(3) Inhomogeneous illumination: since EMD extracts
firstly the highest frequencies the first’s modes
generally correspond to the noise and image fine
details and the image tendency is contained only in
the residue and lasts IMFs. The tendency can be
represented by a low-order polynomial generally 0,
1, or 2. The results in Figure 7 show the
inhomogeneous illumination correction of
represented image with our method. After having
applied PHEEMD, inhomogeneous illumination
correction is carried out by subtracting the residual
image from original image using (1).
Conclusion
The EMD algorithm in two dimensions is a powerful
tool for image processing; the drawback is, however, the
computing power demand. Several 1D-EMD techniques
exist that have less computing power demand; neverthe-
less, they break the image into independent lines, intro-
ducing image noise which, in turn, results in extended
mixed mode in the IMFs. The proposed method
(PHEEMD) uses the local vicinity properties of the
Peano–Hilbert curve to pre-process the data (image) for
using 1D-EEMD, enhancing the functionality of the
application of the 1D-EEMD to image processing.
This study focuses on SFCs that are continuous and

differentiable. Since these curves pass through every
point in the square (Figure 1) once and only once
they are said to be space filling. Due to the adjacency
property (Figure 1a) neighbor properties on 2D data
are preserved during the transformation to 1D data.
Future study is needed to see how different SFCs with
different local properties influence the robustness of
the decomposition.
PHEEMD represents an efficient cost-effective image
processing algorithm, allowing for fast EMD image
analysis within different image processing applications,
hence, new perspectives for its use in low computer
power devices, like portable applications.
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