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Abstract

Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer’s disease (AD). In this paper, we
present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity.
More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed
for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a
database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients
diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric,
performance results were compared with those obtained using EEG spectral peak parameters which were recently
shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on
area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in
accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by
50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein
provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD
as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes
with disease.
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Introduction
Alzheimer’s disease (AD) is considered to be the main
cause of dementia inWestern countries [1]. A recent study
suggests that 60–80% of dementia cases in the United
States are due to AD [2], amounting to $172 billion in
health care costs; worldwide, this number rises to $604
billion [3]. Alzheimer’s disease is commonly manifested
by loss of memory and other intellectual abilities which
often result in interference of daily life. Currently, diag-
nosis of AD is done via neuropsychological evaluations,
with accuracies ranging from 85–93% in university hospi-
tals. These evaluations require experienced professionals
as well as lengthy sessions. Notwithstanding, definitive
diagnosis can only be establishedwith a histo-pathological
analysis of the brain (i.e., autopsy or biopsy) [4]. Hence,
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the search for an accurate biological marker for early
diagnosis of the disease remains an open challenge.
In the last two decades, there has been a push to develop

objective tools capable of assisting physicians in the early
diagnosis of the disease. Since AD is a cortical demen-
tia, the quantitative electroencephalogram (qEEG) has
merged as a prominent candidate (henceforth, the termi-
nology ‘EEG’ will be used for simplicity). The EEG signal
reflects functional changes in the cerebral cortex of the
patient. For the purpose of AD diagnosis, two branches
of EEG signal analysis have emerged: spectral and non-
linear dynamics [5]. Pioneering spectral analysis studies
showed that AD patients presented increased activity in
the delta (0.1–4Hz) and theta (4–8Hz) frequency bands,
as well as decreased activity in the alpha (8–12Hz) and
beta (12–30Hz) bands [6-11], thus suggesting a slowing
of the EEG signal. Moreover, reduced spectral coherence
between the two hemispheres was shown between the
alpha and beta frequency bands [12-16]. These spectral
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differences were also shown to be correlated with disease
progression [13,17-19].
Nonlinear dynamics analysis, in turn, aims at measur-

ing the cortical complexity of the brain by quantifying the
complexity or “chaos” in EEG temporal patterns. Mathe-
matical complexity measures such as the Lyapunov expo-
nent, surrogate data analysis, entropy, or even artificial
neural networks have been proposed in the past. In gen-
eral, studies have agreed that AD causes a decrease in
EEG pattern complexity [20-26], a factor likely caused by
the reduction in non-linear connections between cortical
regions, neuronal death, or even deficiency of neurotrans-
mitters [27]. One major limiting factor in the widespread
use of nonlinear dynamic models in AD classification
is the high sensitivity of available methods to algorithm
parameter changes. As such, a large pool of patient data is
needed in order to obtain the optimal algorithm param-
eter values needed for reliable and repeatable analysis.
Recent studies have suggested, nonetheless, that the two
phenomena described above are strongly related, i.e., a
strong correlation exists between EEG slowing and loss of
complexity [28].
In this article, we propose an alternate nonstationary

EEG analysis method for (semi-)automated AD diagno-
sis, based on extending earlier study reported in [29].
More specifically, we measure the rate at which subband
EEG amplitude modulations change over short periods of
time (circa 5 s) and compare such “spectro-temporal” sig-
nal representations between healthy controls and patients
with varying AD severity levels (ranging from mild to
severe). The study was motivated by recent findings in
the AD treatment literature which suggested that neuro-
modulatory deficits seen with AD could be treated via
deep brain stimulation [30]. According to the hemoneu-
ral hypothesis, cerebral hemodynamics play an important
role in information processing via the modulation of neu-
ral activity [31]. Since impaired cerebral blood flow is
a hallmark in AD (e.g., [32,33]), quantitative measure-
ment of neuromodulatory activity may provide a useful
tool for automated characterization of Alzheimer’s dis-
ease. In addition, the proposed spectro-temporal analy-
sis technique allows for direct characterization of cross-
frequency interaction effects (by measuring rates at which
EEG subbands are modulated), thus provides comple-
mentary information to conventional frequency and time-

frequency methods. For example, relative to conventional
spectral power analyzes which have shown overall EEG
“slowing,” [28], the proposed measure allows for insights
into which “waves” (i.e., modulation frequencies) ride
each EEG subband signal and their interactions over time.
The remainder of this article is organized as follows.

Section ‘Materials and methods’ describes the materi-
als and methods used in the experiment, including the
proposed and benchmark parameters. This is followed
by Sections ‘Experimental results’, ‘Discussion’, and
‘Conclusion’, respectively.

Materials andmethods
Participants
Data used in this study were extracted from a clini-
cal database comprised of resting-awake multi-channel
EEG recordings from 32 individuals, separated into
three groups of roughly the same size. Alzheimer’s dis-
ease diagnosis was made by experienced physicians at
the Reference Center of Behavioral Disturbances and
Dementia, School of Medicine, at the Universidade de
São Paulo (Brazil) according to the well-established
NINCDS-ADRDA criteria [34] and classified according
to the mini-mental state examination (MMSE) and the
the clinical dementia rating (CDR) scale. Table 1 shows
the demographics of the participants. All three groups are
education-matched and groups ‘control’ and ‘moderate-
to-severe’ are also age-matched (according to a statistical
t-test with 5% significance level). Participants had no
history of diabetes mellitus, kidney diseases, thyroid dis-
eases, alcoholism, liver disease, lung disease, or vitamin
B12 deficiency, factors which could also lead to cognitive
impairment. Ethics approval was obtained from the affili-
ated institutes and participants provided written consent.

Data collection and pre-processing
Multi-channel EEG (19 channels) signals were collected
using the Braintech 3.0 instrumentation (EMSA Equipa-
mentos Médicos Inc., Brazil), digitized with a 12-bit
analog-to-digital converter and sampled at a rate of
200Hz; impedance was maintained below 10 k�. Place-
ment of scalp electrodes (referential montage) followed
the international 10–20 system. Biauricular referen-
tial electrodes were attached, as recommended by the
Brazilian Society of Clinical Neurophysiology and the

Table 1 Participant demographics: last three columns represent average± standard deviation and columns labeled ‘Age’
and ‘Education’ are given in years

Group Total Female Age Education MMSE

Controls 11 6 68.1 ± 7.1 7.9 ± 5.1 26.6 ± 2.7

Mild AD 11 8 75.9 ± 4.1 4.2 ± 3.5 18.5 ± 4.7

Moderate-to-severe AD 10 9 68.4 ± 8.8 5.0 ± 4.0 14.8 ± 3.9
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American EEG Society. Motivated by our recent find-
ings [35,36], from the referential montage we derived a
virtual interhemispheric bipolar montage, as there is evi-
dence of an interhemispheric disconnection in AD [27].
The so-called “bipolar signal” was obtained by simply sub-
tracting the two bi-auricular referenced signals involved
[37]. In our experiments, the electrode pairs included: F3–
F4, F7–F8, C3–C4, T3–T4, P3–P4, T5–T6, and O1–O2.
During examination, EEG was recorded with the partici-
pants awake and resting with their eyes closed. An infinite
impulse response low-pass elliptic filter with a zero at
60Hz was applied to eliminate any power grid interfer-
ence. For each participant, 48 s epochs were selected per
EEG channel by an experienced physician. The selected
epochs were free of eye movement, electromyographic
activity, and head motion artifacts. Given this human
intervention requirement, the proposed system is deemed
“semi-automated;” nonetheless, a fully automated system
may be possible with the use of intelligent artifact removal
techniques such as independent component analysis
(see Section ‘Discussion’).

Spectro-temporal EEG amplitude modulation analysis
Spectro-temporal signal analysis has been shown useful in
other physiological domains, such as heart and lung sound
separation [38], pulmonary adventitious sound analysis
[39], dysphonia recognition [40], and speech acoustics
analysis [41]. As argued by [42], “the presence of ampli-
tude modulation in bioelectrical processes is of funda-
mental nature, since it is a direct reflection of the control,
synchronization, regulation, and intersystem interaction
in the nervous and other body systems.” With AD, a
neuromodulatory deficit may exist due to impaired cere-
bral blood flow [31], particularly involving the so-called
resting state networks [43]. By quantitatively characteriz-
ing resting-awake EEG amplitude modulation differences
between healthy and AD patients, automated disease
characterizationmay bemade possible, thus assisting clin-
icians with diagnostics. This study describes the first steps
towards the development of one such (semi-)automated
diagnostic tool.
Figure 1 depicts the signal processing steps involved in

the calculation of spectro-temporal EEG amplitude mod-
ulation representation. First, the fullband resting-awake
EEG signal s(n) is decomposed into five subband signals
si(n) = s(n) ∗ hi(n), where hi(n), i = 1, . . . , 5 are the
impulse responses of elliptic bandpass filters used to sep-
arate delta (0.1–4Hz), theta (4–8Hz), alpha (8–12Hz),
beta (12–30Hz), and gamma (30–100Hz) bands [44]. The
temporal amplitude envelope of each of the five subband
EEG signals is then computed by means of a Hilbert
transform H{·} (the interested reader is referred to [45]
and references therein for more details). The temporal
envelopes ei(n), or amplitude modulations, are computed

as the magnitude of the complex analytic signal s̃i(n) =
si(n) + jH{si(n)}, i.e.,

ei(n) =
√
si(n)2 + H{si(n)}2. (1)

The subplots on the right of Figure 1 illustrate repre-
sentative EEG subband signals (gray) and their respective
Hilbert amplitude envelopes (black).
Temporal envelopes are then multiplied by a 5 s Ham-

ming window with 500ms shifts; the windowed envelope
for frame m is represented as ei(m, n), where n is the
time variable. Frames of 5 s duration are used in order to
obtain accurate resolution in the new so-called modula-
tion frequency domain and to keep consistency with the
benchmark parameter described in Section ‘Benchmark
parameters’. The so-called “modulation spectral” repre-
sentation for EEG subband i is obtained by taking the
discrete Fourier transform F{·} of the temporal envelope
ei(m, n), i.e.,

Ei(m; f ) = |F{ei(m, n)}|, (2)

where f denotes modulation frequency. In order to
directly quantify the rate of change of the subband tempo-
ral envelopes and possible cross-frequency interactions,
modulation frequency bins are further grouped into four
bands empirically designed to coincide with the range of
the first four conventional frequency bands (i.e., delta-
beta). This choice was driven by the fact that, by definition
of the Hilbert transform, the envelope signal can only
contain frequencies (i.e., modulation frequencies) up to
the maximum frequency of its originating signal (i.e.,
following the so-called Bedrosian’s theorem [46,47]). As
such, gamma-level modulation frequencies would only be
present in the gamma frequency band. Hence, to reduce
data dimensionality, the so-called gamma modulation
band is not considered here.
Henceforth, to distinguish between modulation and fre-

quency bands, we will refer to the former as m-delta
(0.1–4Hz), m-theta (4–8Hz), m-alpha (8–12Hz), and m-
beta (12–30Hz). The notation Ei,j(m) and E i,j will be used
to denote the per-frame and average (over all frames in
an EEG epoch) modulation energy of the ith subband sig-
nal grouped by the jth modulation filter. The latter can
be viewed as an average modulation spectrogram which
conveys information as to how fast (horizontal axis) each
of the five subband envelopes (vertical axis) are modu-
lated over short periods of time (i.e., 5 s in our analyzes).
The bottom left and right plots of Figure 1, for example,
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Figure 1 Signal processing steps used to compute the EEG spectro-temporal signal representation. Subplots on the top right illustrate the
five subband EEG signals (gray) and their respective Hilbert temporal envelopes (black). The subplots on the bottom depict the average modulation
spectrograms for the beta frequency and m-delta modulation bands (i.e., E4,1, where only a part of them-delta band is depicted for visualization
purposes) for healthy control (left subplot) and AD (right subplot) patients.

depict E4,1 (i.e., beta frequency, m-delta modulation fre-
quency) for healthy control and moderate AD patients,
respectively. From the plots it can be seen that decreased
activity in the beta frequency band is observed with AD
(see solid-line rectangle centered at ∼0Hz modulation
frequency), thus corroborating previous findings [27]. The
modulation spectrum, however, provides an additional
dimension to extract information from. For example, in
the dashed rectangle centered at ∼0.5Hz modulation
frequency, it can be seen that with AD, decreased mod-
ulation frequency content is also observed. Modulation
energy “ratio” parameters are computed by means of a

new proposed parameter termed percentage modulation
energy (PME), which is given by:

PMEi,j = E i,j
5∑

i=1

4∑

j=1
E i,j

× 100%, (3)

for each of the 7 bipolar signals. In total, 140 (20 PMEs ×
7 bipolar signals) features are extracted. As mentioned
above, however, due to Bedrosian’s theorem, only 98 of
these features (14 PMEs × 7 bipolar signals) convey use-
ful information, thus are used throughout the remainder



Falk et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:192 Page 5 of 9
http://asp.eurasipjournals.com/content/2012/1/192

of this article. In our experiments, feature selection is
used in order to sift only salient features for the classifi-
cation task at hand. Feature selection and classifier design
are described in Section ‘Salient feature selection and
classifier design’.

Benchmark parameters
In order to gauge the benefits of the proposed PME
parameters, a classifier trained on EEG ‘spectral peak’
parameters was used as benchmark. Spectral peak, as the
name suggests, corresponds to the frequency at which the
magnitude of the EEG spectrum reaches its maximum
value. Its computation involves the use of a fast fourier
transform (FFT) of windowed EEG segments. Since the
EEG signals used in this study were recorded with sub-
jects resting and with eyes closed, they reflect only the
spontaneous brain activity, which is in most part nonsta-
tionary [44]. Consequently, this demands the need to use
sliding windows in order to deal with the nonstationarity.
Each epoch comprises 8 s and we used 5 s Hamming win-
dows with 90% overlap, thus leading to seven frames for
each epoch. Previous studies have suggested that classi-
fiers trained on the spectral peak parameter outperform
those trained with more conventional parameters, such as
spectral coherence [48]. As with the PME features, five
frequency bands were used (delta, theta, alpha, beta, and
gamma) and spectral peak parameters were computed for
each band. Additionally, our previous experiments have
suggested that spectral peak parameters computed from
a bipolar electrode montage are more reliable than those
computed from a referential montage [35]. As a con-
sequence, the same inter-hemispheric bipolar montage
used to compute the PME features was used (i.e., elec-
trode pairs F3–F4, F7–F8, C3–C4, T3–T4, P3–P4, T5–T6,
and O1–O2) totaling 35 possible spectral peak features
(5 bands × 7 bipolar signals).

Salient feature selection and classifier design
In order to reduce the high-dimensional PME feature
space into one that is feasible for classifier design, a feature
selection algorithm based on maximization of the area
under the curve (AUC) was used; the reader is referred to
[49] for more details. In our experiments, 10 EEG epochs
(out of a total of 40 epochs) per participant were randomly
selected and set aside for feature selection. The remain-
ing 30 epochs were used for classifier training/testing
using a leave-one-out cross-validation paradigm. A total
of 35 salient PME features were selected in order for fair
comparisons to be made with the benchmark parameters
(see Section ‘Benchmark parameters’); such dimension-
ality is inline with those reported in the literature (e.g.,
[50]). Table 2 shows the top-35 salient PME features and
their ranks. In the table, features are represented using a
“Bipol-Band-ModBand” notation where ‘Bipol’ indicates
the bipolar signal (e.g., T5–T6), ‘Band’ indicates the fre-
quency band, and ‘ModBand’ the modulation band.
Once salient features were selected, a support vec-

tor machine classifier (SVC) was designed. SVCs pro-
vide numerous computational and algorithmic advantages
over artificial neural networks, as highlighted in [51],
and have been shown useful for automated AD diag-
nosis based on spectral peak [48] and other conven-
tional parameters [50]. A complete description of SVM
classification is beyond the scope of this article and
only a brief summary is presented here; the interested
reader is referred to [52,53] and the references therein
for more detail. The basic principle behind SVM clas-
sification is to map features into a higher dimension by
means of a kernel function. In the higher-dimensional
space, features between different classes become linearly
separable and (maximum-margin) hyperplanes can be
obtained [52,53]. SVM classification is a supervised learn-
ing method, thus labeled data are needed. Commonly,

Table 2 Top-35 salient PME features selected via an AUC-maximization based feature selection algorithm

Feature Rank Feature Rank Feature Rank

F7-F8−theta−m-delta 1 F3-F4−theta−m-delta 13 T3-T4−beta−m-theta 25

O1-O2−beta−m-alpha 2 C3-C4−theta−m-theta 14 F7-F8−beta−m-alpha 26

T5-T6−beta−m-theta 3 O1-O2−beta−m-delta 15 C3-C4−beta−m-delta 27

P3-P4−beta−m-delta 4 F3-F4−theta−m-theta 16 F7-F8−beta−m-delta 28

F7-F8−theta−m-theta 5 P3-P4−beta−m-theta 17 T3-T4−beta−m-delta 29

C3-C4−beta−m-theta 6 T5-T6−beta−m-alpha 18 O1-O2−theta−m-theta 30

O1-O2−theta−m-delta 7 C3-C4−beta−m-alpha 19 F3-F4−gamma−m-beta 31

T5-T6−theta−m-theta 8 C3-C4−theta−m-delta 20 F7-F8−alpha−m-delta 32

P3-P4−beta−m-alpha 9 C3-C4−beta−m-beta 21 P3-P4−theta−m-theta 33

T5-T6−beta−m-delta 10 T3-T4−theta−m-theta 22 T3-T4−beta−m-alpha 34

T5-T6−theta−m-delta 11 F7-F8−beta−m-theta 23 T5-T6−delta−m-delta 35

T3-T4−theta−m-delta 12 O1-O2−beta−m-theta 24
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a radial basis function (RBF) is used as the kernel. In
our experiments, the Weka RBF-SVC implementation
was used [54] with the following default parameter val-
ues: regularization coefficient C = 1 and γ = 0.01).
A leave-one(epoch)-out (LOO) cross-validation paradigm
was used for classifier design and testing.

Experimental results
Based on the LOO paradigm, different performance met-
rics are used. First, classifier accuracy is reported for the
three-class discrimination task (i.e., control vs. mild vs.
moderate/severe). Second, classifier overall accuracy, sen-
sitivity, and specificity are reported for a two-class ‘control
vs. AD’ discrimination task where mild and moderate-
to-severe patients are pooled into one group. Classifier
sensitivity measures the percentage of correctly classi-
fied epochs belonging to AD patients, whereas specificity
measures the percentage of correctly classified epochs
belonging to healthy controls; all metrics are expressed in
percentage values. For the three-class task, overall accu-
racies of 65.6 and 56.3% were obtained with PME and
spectral peak parameters, respectively, thus were signif-
icantly greater than chance (p < 10−5 and p < 0.003,
respectively, using a t-test). In order to quantify improve-
ments obtained by using the proposed parameters, a rela-
tive “accuracy-gain”metric is used, thus characterizing the
relative improvement to perfect classification. The metric
is given by:

Acc-Gain = AccPME − Accpeak
100 − Accpeak

× 100%, (4)

where ‘AccPME’ and ‘Accpeak’ denote the accuracy (or
sensitivity/specificity) obtained with the proposed and
benchmark parameters, respectively. As such, a 21.3%
relative accuracy gain is obtained. Additionally, Table 3
reports the overall classifier accuracy, sensitivity and
specificity for the proposed PME features along with the
benchmark spectral peak parameters for the two-class
task. As can be seen, specificity gains of up to 67% can be
attained with the proposed parameters.

Table 3 Performance comparison between proposed and
benchmark parameters

Metric PME (%) Spectral peak (%) Acc-Gain (%)

Accuracy 90.6 81.3 49.7

Sensitivity 90.5 85.7 33.6

Specificity 90.9 72.7 66.7

Column labeled ‘Acc-Gain’ represents the percentage “accuracy-gain” obtained
with proposed PME parameters, as per Equation (4).

Discussion
Feature ranking
As observed from Table 2, features extracted from the
frontal, occipital, temporal, and parietal regions constitute
the five highest ranking features with two of them repre-
senting long-distance connections (F7–F8). Interestingly,
these are areas that are critically affected by Alzheimer’s
disease [55] and that have also been shown to be prone to
impaired cerebral blood flow [56]. Future studies should
focus on multimodal neuroimaging techniques to further
explore the possibility of a neurovascular coupling deficit
with AD. Moreover, it was observed that salient PME fea-
tures were extracted almost exclusively from theta and
beta frequency bands with delta and alpha band features
being completely discarded. Previous studies based on
spectral coherence parameters, on the other hand, have
reported significant differences between AD and healthy
control groups in the alpha band over several regions of
the brain (e.g., [57]). EEG complexity/chaoticity experi-
ments have also uncovered significant differences between
the two groups in the alpha band, particularly in the right
frontal and left parieto-occipital regions [58], as well as
in the beta band across multiple brain regions [59]. The
findings reported here suggest that the proposed PME
parameters may be complementary to such conventional
EEG parameters, thus further improvements in classifi-
cation accuracy may be possible by combining multiple
parameters. Our experiments with combined PME and
spectral peak parameters, however, did not suggest com-
plementarity between these two modalities. Lastly, it was
observed that the majority of the selected features corre-
sponded to m-delta and m-theta modulation frequencies,
suggesting that the most significant impairments occur in
slowly-varying amplitude modulations.

Semi-automated disease characterization
In regards to classification, the proposed PME features
were shown to outperform the benchmark parameters
both on the two- and three-class discrimination tasks.
As part of an exploratory analysis, three other two-class
tasks were performed, namely: controls vs. mild; controls
vs. moderate/severe; and mild vs. moderate/severe. It
was observed that for all three experiments above, the
accuracies of the classifiers trained using spectral peak
parameters were: 54.5% (p > 0.26), 66.7% (p < 0.04), and
47.6% (p > 0.5), respectively, thus only ‘controls vs. mod-
erate/severe’ accuracy was significantly different from
chance (binomial test). On the other hand, for the PME
parameters, the accuracies were: 74.1% (p < 0.008), 71.4%
(p < 0.014), and 53.8% (p > 0.33), respectively, thus
the ‘controls vs. mild’ and ‘controls vs. moderate/severe’
classification accuracies were significantly greater than
chance (binomial test). These results suggest that the pro-
posed PME parameters are promising features for semi-
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AD and healthy controls Plots are for the P3–P4 bipolar signal.

automated (early) diagnosis of AD. Regarding the latter
scenario (mild versus moderate/severe), it is conjectured
that the observed drop in performance was due to the
sensitiveness of the PME parameters to the wide range
of disease severity levels (2 ≤ CDR ≤ 3) pooled into
the moderate/severe group. Given the size limitations
of the available dataset, it was not possible for the mod-
erate/severe class to be separated into two, such that
this hypothesis could be tested; this is left for future
investigation.

Cross-frequency interaction
As mentioned previously, the proposed spectro-temporal
analysis technique allows for direct characterization of
EEG cross-frequency interaction effects and their changes
with AD. Beta-theta interaction, for example, has been
previously linked to working memory performance [60]
and reward-gain motivation [61] in healthy adults. Inter-
estingly, in our experiments it was observed that PME4,2
(i.e., beta rhythms modulated at a theta rate) was more
pronounced in healthy controls than in AD patients, as
depicted by Figure 2. Such findings suggest that resting-
awake EEG theta-beta interaction is impaired with AD.
While the plot is representative of the parietal region
(P3-P4), similar behavior was observed across themidline,
central, temporal, and frontal regions. It is hypothesized
that the reduced cross-frequency interaction observed in
the AD population may be related to certain behavioral
and psychological symptoms observed with the disease,
such as lack of interest [62]. Ultimately, it is hoped that the
proposed parameters will allow for other cross-frequency
interactions to be explored, such as theta-gamma which
was recently linked to memory impairment [63].

Study limitations
Findings reported here are based on a limited sample size
of 32 participants, 21 of which have been diagnosed with

AD of varying severity levels ranging from mild to severe.
This limited number of participants may cause issues with
classifier over-training, which would lead to poor general-
ization ability on “unseen” patients. In order to investigate
if the developed classifiers were overfit to the available
data, an additional leave-one-patient-out cross-validation
test was performed where data from 31 patients were
used during training and data from the remaining patient
was used for testing. Accuracy, sensitivity and specificity
of approximately 91% were obtained, thus inline with
those reported in Table 3. These findings suggest that the
developed classifiers were not overfit and provide good
generalization ability. Future studies, nonetheless, should
focus on a larger, more gender-balanced participant pool,
as gender differences may also play a factor, as reported by
[64]. Moreover, our findings have been based on artefact-
free EEG epochs manually selected by an experienced
neurophysiologist. In order to develop a fully automated
diagnostic tool, automated artifact removal techniques,
such as independent component analysis [65], need to
be explored and their effects on the PME parameters
need to be quantified. This is the focus of our ongoing
investigations.

Conclusion
This article proposed an innovative spectro-temporal
EEG signal representation with which salient features
were extracted for semi-automated characterization of
Alzheimer’s disease (AD). When tested on a limited
dataset of 32 participants (11 controls, 11 mild AD, and
10 moderate-to-severe AD), experimental results showed
that classifiers trained on the proposed features outper-
formed those trained on benchmark spectral peak param-
eters. The proposed parameters also seem to be useful for
EEG cross-frequency interaction investigations and sug-
gested that theta-beta interaction may be reduced with
AD.
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