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Abstract

This article introduces a new adaptive method for image interpolation. In order to obtain a high resolution (HR) image
from its low resolution (LR) counterpart (original image), an interpolator function (array) is used, and the main focus of
this manuscript is to formulate and define this function. By applying this interpolator function to each row and
column of a LR image, it is possible to construct its HR counterpart. One of the main challenges of image interpolation
algorithms is to maintain the edge structures while developing an HR image from the LR replica. The proposed
approach overcomes this challenge and exhibits remarkable results at the image edges. The peak signal to noise ratio
and structural similarity criteria by using this innovative technique are notably better than those achieved by
alternative schemes. Also, in terms of implementation speed, this method displays a clear advantage and outperforms
the high performance algorithms in the ability to decrease the artifact results of image enlargement such as blurring
and zigzagging.
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Introduction
Image interpolation in this article refers to algorithms
that transform a low resolution (LR) image to high res-
olution (HR) one and has many applications. In medical
applications, it is highly preferred for images to have
high resolutionwhilemedical equipments cannot produce
images with resolutions higher than a specific standard.
In another application, with the development of digi-
tal monitors, we need to transform Standard Definition
TeleVision (SDTV) video frames to High Definition Tele-
Vision (HDTV) equivalents. Another application of this
technology is to find missing pixels or blocks in an image.
Traditional methods such as bilinear, bicubic, and cubic

convolution [1,2] are the common methods in image
enlargement. Although the merits of these techniques are
simplicity and fast implementation, they suffer from visual
degradations such as jagged edges, blurring, and ringing
around the image edges.
Human visual system is sensitive to the edges of

the objects in an image. As a result, there are sev-
eral mechanisms which improve the edges of an image.
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Undoubtedly, as the quality of image enhances, the
computational complexity increases. Hence, in all of
these methods, there is a trade off between perfor-
mance and affordable complexity. In the last few decades,
several authors have carried out researches on this
topic. Along the same line, we briefly introduce [3-10]
as follows.
In NEDI [3], the aim is to maintain the edge structure

in HR images. This is a nonlinear algorithm whose basic
idea is to estimate the covariance of HR image from the
covariance of LR counterpart. The estimation is based
on the geometric duality between low and high resolu-
tion. The algorithm presented in [4] which is based on
directional filtering and data fusion to find the missing
pixel, considers two orthogonal sets which produce an
estimation of the pixel value. In SAI [5], using a mov-
ing window in the input LR image, one can find the
model parameters. The pixel structure obtained in this
way can be led to a block of both available and estimated
pixels using a soft-decision estimation process. In WZP-
CS [6], wavelet transformation is applied to LR image.
Using sub-bands of the resultant image, one can estimate
sub-bands of HR image. Afterwards, the HR image can
be obtained by applying the inverse wavelet transform.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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In Optimized spline [7], by taking advantages of cal-
culus of variations, the optimization problem is sim-
plified from a nonlinear infinite dimensional case to a
linear finite dimensional one in order to design compact-
support interpolation kernels for a class of signals. The
method presented in [8] tries to create up-scaled images
that are suitable for real time applications and appear
natural to human observer. In this algorithm a two
step grid filling is used. Then, an iterative correction is
obtained by minimizing an objective function depending
on the second order directional derivatives of the image
intensity.
In [9], in order to enlarge the image, it is down-

sampled by using the bilinear method and then, the
missing pixels are estimated by using a combina-
tion of the other pixels, while the desired coefficients
are optimized by using a least mean square tech-
nique. In [10], the authors have extended the algo-
rithm presented in [9] to display products such as video
restoration.
In our approach, we work out the parameters that are

used to enlarge an image from its LR counterpart. These
parameters depend on the original image and the factor
which we want to enlarge the image by. In order to enlarge
an image or find the missing pixels in it, an interpolation
array which is constructed by the mentioned parameters
is convolved by the matrix that contains the values of the
image pixels.
The rest of the article is organized as follows:

The following section describes the proposed inter-
polation method for one-dimensional vectors. The
two-dimensional application is proposed in section
“Two-dimensional algorithm”. Simulation results and
comparisons are given in section “Simulation results” , and
section “Conclusion” concludes the paper.

Algorithm description
In order to describe the proposed algorithm for image
interpolation, we first apply it to one-dimensional vectors.
Let XLR be a 1×N vector. Suppose we wish to enlarge XLR
to a kN sized vector XHR using the following steps:

We put k−1 zeros between any two successive entries of
vector XLR.
In order to achieve these kN −N new entries of XHR, we

choose 2M of N entries of XLR.
The new value will be a linear combination of these 2M

entries.

In order to find the 2M indeterminate multipliers of this
linear combination, we should follow the procedure stated
below, bearing in mind that for each fixed vector of any
size the procedure and the multipliers applied to enlarge
the vector are fixed. This means that, the multipliers used

for obtaining a 1 × N vector from its 1×[ N
k ] counterpart

are the same as the ones used to calculate a 1×[ N
k ] vector

from its 1×[ N
k2 ] counterpart.

Step(1-1): As presented in (1) and (2), we down-sample
the original vector XLR by a factor of k to find X′

1×[Nk ]
.

Step(1-2): Again we down-sample X′
1×[Nk ]

by a factor of k
to obtain X′′

1×[ N
k2

]
vector.

Step(1-3): Now, by constructing 1×[ N
k ] vector X

′ from
vector X′′ of size 1×[ N

k2 ], we can find the multipliers used
to obtain the enlarged image. To approach this, we must
zero-pad X′′ by a factor of k to build vector X′′

ZP. This
means that, k − 1 zeros are inserted between every two
successive entries of X′′.

As it was stated earlier, by using these multipliers, we
can find a new vector XHR from X′

1×[Nk ]
.

In order to evaluate the enlarged image, we take advan-
tages of the criteria peak signal to noise ratio (PSNR) and
Structural SIMilarity (SSIM) [11] by down-sampling the
original vector by a factor of k and interpolating it using
the proposed algorithm.

X = (
x1 x2 . . . xN

)
(1)

down-sample by a factor of k ↓

X′ =
(
x1 xk+1 x2k+1 . . . x

([Nk ]−1)k+1

)
(2)

down-sample by a factor of k ↓

X′′ =
(
x′
1 x′

k+1 x′
2k+1 . . . x′

([ N
k2

]−1)k+1

)
(3)

Zero padding ↓

X′′
ZP =

(
x′′
1 0 · · · 0︸ ︷︷ ︸

(k−1)times

x′′
2 0 · · · 0︸ ︷︷ ︸

(k−1)times

x′′
3 · · · 0 x′′

[ N
k2

]
)

(4)

Step(1-4): In order to compute vector X′ from X′′
ZP, we

must insert a linear combination of x′′
i ’s; i = 1 : [ N

k2 ]
instead of each zero in X′′

ZP. For this purpose, we can
convolve X′′

ZP with an interpolator vector, A (which is
determined by (5)).
In this equation, A is a 1× (1+ 2(M − 1) + 2M(k − 1))

vector. The 1+(M−1)+M(k−1)st entry, which is located
at the middle of the vector, is 1. Except for the mentioned
entry, the entries with the indices that are multiples of k
are 0, and there are (k − 1) a′

is and (k − 1) ais between
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any two successive zeros at the left and right side of the
entry 1, respectively which can be calculated by using the
proposed algorithm.
In (5), the parameterM can take an optional value which

is set to 2 in our experiments. However, by setting M
higher than this value, implementation speed decreases
while image quality increases.

A =[ a′
M(k−1)a

′
M(k−1)−1

. . . a′
(M−1)(k−1)+10 a

′
(M−1)(k−1)a

′
(M−1)(k−1)−1

. . . a′
(M−2)(k−1)+10 . . . a′

k−1 . . . a′
2a

′
11a1a2

. . . ak−10 . . . a(M−2)(k−1)+1

. . . a(M−1)(k−1)0 a(M−1)(k−1)+1 . . . aM(k−1)]

(5)

X′ = X′′
ZP ∗ A (6)

In (6), X′ and X′′
ZP are known and A is unknown, and

there are [ N
k ]−[ N

k2 ] equations and 2M(k − 1) unknown
variables. This statement means that, if (6) is to have
a solution, [ N

k ]−[ N
k2 ] must be greater than or equal to

2M(k − 1).
Step(1-5): To solve (6), we have the following matrix
equation:

B[Nk ]×(1+2(M−1)+2M(k−1))

× A(1+2(M−1)+2M(k−1))×1 = C[Nk ]×1
(7)

where C = X′ T , and A denotes the interpolator matrix.
Step(1-6): In order to find matrix B, We add (Mk − 1)

Figure 1 A zero-padded image by factors of k1 = k2 = 2.

zeros to the beginning and the end of vector X′′
ZP to obtain

vector X′′
ZP0.

X′′
ZP0 =

(
0 · · · 0 x′′

ZP,1 x′′
ZP,2 · · · x′′

ZP,[Nk ]
0 · · · 0 )

(8)

where x′′
ZP,i is the i

th entry of vector X′′
ZP.

Step(1-7): By using X′′
ZP0, we can find matrix B as follows:

Bi∗ = X′′
ZP0(i : i + size(A) − 1)

= X′′
ZP0(i : i + 2M(k − 1) − 1) (9)

i = 1 : size(X′) = 1 : [ N
k ]

where Bi∗ is the ith row of matrix B.
Now, following Step(1-5) and then Step(1-4), we can

obtain the multipliers used for image enlargement.
To understand the above algorithm, we can illustrate the

above relation with an example in which N = 36,K =
3,M = 2.
Step(1-1):

X′ = downsample(X, 3)
= (

x1 x4 x7 x10 · · · x25 x28 x31 x34
)

= (
x′
1 x′

2 x′
3 x′

4 · · · x′
9 x′

10 x′
11 x′

12
)

(10)

Step(1-2):

X′′ = downsample(X′, 3)
= (

x′
1 x′

4 x′
7 x′

10
)

(11)

Figure 2 Blocks containing circles are obtained by applying step
(1), and those with diamonds are obtained by applying step (2)
to Figure 1.
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Table 1 PSNR

Images Bilinear Bicubic WZP-CS SAI NEDI Optimized spline Proposedmethod

Lena 29.8768 29.7936 29.7871 32.5795 32.999 32.2976 33.4913

Couple 26.7166 26.5342 26.6294 27.4276 27.8451 27.912 28.6865

Barbara 23.6373 23.0442 23.5365 23.0267 21.1754 25.1 25.3936

Fishing boat 26.8857 26.7076 26.8139 28.1566 28.1784 28.5054 28.8645

Cameraman 30.0606 30.2018 29.972 32.2363 32.995 33.2886 38.1691

Crowd 19.8674 19.6677 19.7829 20.7484 21.2964 21.8277 21.906

Lake 27.1699 27.0709 27.0786 28.6805 28.5925 28.4984 29.8961

Baboon 22.0974 21.7332 22.0273 22.6396 23.1457 22.509 23.0153

Girl 30.2527 29.8225 30.1298 29.2056 31.7538 30.9017 31.605

Average 26.2849 26.0639 26.1952 27.1889 27.5534 27.8711 29.0030

Step(1-3):

X′′
ZP = (

x′
1 0 0 x′

4 0 0 x′
7 0 0 x′

10
)

(12)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 x′
1 0 0 x′

4 0 0
0 0 0 0 x′

1 0 0 x′
4 0 0 x′

7
0 0 0 x′

1 0 0 x′
4 0 0 x′

7 0
0 0 x′

1 0 0 x′
4 0 0 x′

7 0 0
0 x′

1 0 0 x′
4 0 0 x′

7 0 0 x′
10

x′
1 0 0 x′

4 0 0 x′
7 0 0 x′

10 0
0 0 x′

4 0 0 x′
7 0 0 x′

10 0 0
0 x′

4 0 0 x′
7 0 0 x′

10 0 0 0
x′
4 0 0 x′

7 0 0 x′
10 0 0 0 0

0 0 x′
7 0 0 x′

10 0 0 0 0 0
0 x′

7 0 0 x′
10 0 0 0 0 0 0

x′
7 0 0 x′

10 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

Two-dimensional algorithm
A typical image is a matrix of N rows and N columns
which can be enlarged by a factor of k to kN × kN
by applying the one-dimensional algorithm discussed in
the previous section to each row and column separately.
Enlargement requires that we first down-sample the given
matrix by factors of k1 and k2, then up-sample the modi-
fied [ N

k1 ]×[ N
k2 ] matrix by factors of k1 and k2 to obtain a

new N × N matrix. In order to illustrate the mentioned
statement, we assume a 16× 16 matrix F. We also define a
matrix F ′ with entries that are the odd entries of F. Down-
sampling F ′ by a factor of k = 2, we can obtain F ′′, and
up-sampling F ′′ by a factor of k = 2 leads us to F ′′

up.
In this case, we know all the entries of F. Equation (7)

can be applied to each row and column of F ′. As an illus-
tration, let us consider the following statement for the first
row: C is the first row of matrix F ′, B is obtained using
(9), and matrix A is unknown. As a result, we should use
(7) eight times, four times for the rows, and four times
for the columns of matrix F. In as much as (7), itself,
contains n equations, where n is the size of vector C, we
have 4 × 8 = 32 equations (where four is the number
of equations:[ N

k ]−[ N
k2 ]=[ 16

2 ]−[ 16
4 ]). We use matrices B

and C that are obtained from (7) as the blocks of new
matrices named B′ and C′, respectively. Then, these 32
equations are solved using linear least square method;
moreover, A can be calculated as follows:

B′ × A = C′ (14)

Hence:

A = (B′TB′)−1B′TC′ (15)

Table 2 SSIM

Images Bilinear Bicubic WZP-CS SAI NEDI Optimized spline Proposedmethod

Lena 0.8735 0.8737 0.8728 0.8843 0.9076 0.9046 0.9075

Couple 0.7809 0.7863 0.7825 0.8062 0.8304 0.8306 0.8356

Barbara 0.7346 0.7414 0.7397 0.7646 0.7473 0.7885 0.7592

Fishing boat 0.7868 0.7882 0.7871 0.8115 0.8252 0.8339 0.8348

Cameraman 0.937 0.9448 0.9374 0.9368 0.9568 0.9621 0.9648

Crowd 0.7091 0.7229 0.7129 0.7718 0.783 0.801 0.7984

Lake 0.8032 0.802 0.8028 0.8232 0.8374 0.8474 0.8392

Baboon 0.6182 0.6367 0.6262 0.6899 0.7195 0.6766 0.7026

Girl 0.7486 0.7337 0.7462 0.7491 0.7802 0.7616 0.7648

Average 0.7768 0.7810 0.7786 0.8041 0.8208 0.8228 0.8229
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(a) (b) (c)

(f)(e)(d)

(g) (h)
Figure 3 Comparison of different methods for the Lena image: (a) the original image, (b) bilinear interpolation, (c) bicubic interpolation,
(d)WZP cycle-spinning [6], (e) SAI [5], (f) NEDI [3], (g) optimized spline [7], and (h) the proposedmethod.

Now, using A, we zero pad matrix F ′ by factors of k1 and
k1, through the following steps:

F ′
8×8 =

⎛
⎜⎜⎜⎝

f1,1 f1,3 · · · f1,15
f3,1 f3,3 · · · f3,3
...

...
. . .

...
f15,1 f15,3 · · · f15,15

⎞
⎟⎟⎟⎠ (16)

F ′′
4×4 =

⎛
⎜⎜⎝

f1,1 f1,5 f1,9 f1,13
f5,1 f5,5 f5,9 f5,13
f9,1 f9,5 f9,9 f9,13
f13,1 f13,5 f13,9 f13,13

⎞
⎟⎟⎠ (17)

F ′′
up =

⎛
⎜⎜⎜⎜⎜⎝

f1,1 0 f1,5 0 · · · f1,13
0 0 0 0 · · · 0
f5,1 0 f5,5 0 · · · f5,13
...

...
...

...
. . .

...
sf13,1 0 f13,5 0 · · · f13,13

⎞
⎟⎟⎟⎟⎟⎠ (18)

Figure 1 shows an [ N
k ]×[ N

k ] image that is zero-padded
by factors of k1 = k2 = 2.

The gray blocks in Figure 1 contain the pixels of
the main N × N image and the remaining blocks
contain zero. Now, in order to apply the proposed
method to this figure, we need to take the following
steps:

Step (2-1): We first inspect the odd rows and then
apply the rule mentioned before to each
one to determine the amounts which must
be replaced with zeros in the white blocks
in Figure 1, using the amounts of adjacent
blocks.

Step (2-2): Next, we apply step (1) to the odd columns.

As can be seen from Figure 1, even rows and even
columns contain zeros; therefore by using steps (1) and
(2), the values that some of these blocks contain can
be calculated. In Figure 2, blocks that contain circles
are obtained by applying step (1), and those containing
diamonds are obtained by applying step (2) to Figure 1.
Consequently, only the blocks in even rows and columns

hold zeros (white blocks in Figure 2), and the goal is to
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(a)

(d) (e) (f)

(g) (h)

(b) (c)

Figure 4 Comparison of different methods for the Cameraman image: (a) the original image, (b) bilinear interpolation, (c) bicubic
interpolation, (d)WZP cycle-spinning [6], (e) SAI [5], (f) NEDI [3], (g) optimized spline [7], and (h) the proposedmethod.

determine the values of these blocks. To overcome this
challenge, we can use one of the following approaches:

Method (1): After applying step (1), the blocks that
contain circles in Figure 2 are identified.
Now, by applying step (2) to the same
columns, we can obtain the remaining
unknown blocks.

Method (2): After applying step (2), the blocks that
contain diamonds in Figure 2 are spotted.
Then, by applying step (1) to the same
rows, the remaining unknown blocks are
extracted.

Method (3): We can average the amounts obtained
through methods (1) and (2) to each block
to work out a new value.

In this way, the proposed method can provide
us a high resolution image from a low resolution
one. We can find the interpolator multipliers by

employing the downsampled version of the origi-
nal image. Then, the HR image can be estimated
by using the original LR image and the computed
multipliers.

Simulation results
The proposed image interpolation algorithm was imple-
mented and its performance was compared with some
existing methods. The results of the proposed method
simulation are benchmarked against some classic meth-
ods such as bilinear, bicubic, and some recent methods
such as SAI [5] andWZP-CS [6] that are based on wavelet
transform, and the results are tabulated in Tables 1 and 2.
Table 1 shows the PSNR of implementing the mentioned
methods on nine 256 × 256 images, in order to enlarge
them by a factor of 2, and the SSIM of them is indicated
in Table 2. The simulations are implemented usingMatlab
7.10.0.499(R2010a) software on a VAIO SR 490 DCB lap-
top with an Intel Core2 Duo P8800 2.66GHz CPU and a
4GB RAM.
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Table 3 Average calculation time for enlarging a 256 * 256 image by a factor of 2

Images Bilinear Bicubic WZP-CS SAI NEDI Optimized spline Proposedmethod

Average calculation time (in seconds) 0.0112 0.0137 2.85 8.6846 1.4103 3.7137 1.7579

As can be seen from these two tables, the results
achieved by our proposed approach outperform those
from other solutions. The bold values given in each row
of these two tables indicate that the proposed method
outperforms the other compared methods when applied
to the images of the mentioned rows. The average PSNR
of implementing the proposed method, is 29.0030 dB,
which is higher than the other values of the compared
solutions. On the other hand, the average SSIM of imple-
menting the proposed method on the mentioned images
is 0.8229 dB which is higher than the average SSIM for
the other compared algorithms. In order to compare
the methods objectively, Figure 3 shows that, applying
the bilinear method yields blurring and also has less
implementation speed than the proposed method. In
addition, the scheme based on WZP-CS causes dam-
ages at the edges of the image. In the Cameraman
image (Figure 4), applying the proposed method pro-
duces a better visual quality compared to other known
models.
Also, since we do not use blocks in this presentation,

unlike the SAI method, there is no blocking result in the
obtained image.
Moreover, one of the most important criteria that

should be taken into account for comparison is com-
putational complexity of the algorithms, which can be
computed by considering the number of operations in the
algorithms. In the proposedmethod, the number of multi-
plications and summations in order to calculate thematrix
A from expression (15) for an N ×N image to be enlarged
by a factor of K are [ (NK )(2MK − 1)(2MK) + (2MK −
1)!+(2MK − 1)(6MK − 1)] and [ (NK )(2MK − 1)(2MK)+
0.5(2MK − 1)!−3(2MK − 1)], respectively; where 2M is
the number of entries of the LR image that are used for
interpolation of each pixel. By assuming M = K = 2 in
our experiments, there will be (28N + 5201) multiplica-
tions and (28N + 2499) summations for calculating the
matrix A. On the other hand, after calculating the matrix
A, the number of multiplications and summations to esti-
mate the value of each pixel are 2M(N × N − N

K × N
K )

and (2M− 1)(N ×N − N
K × N

K ), respectively. By assuming
M = K = 2 in our experiments, there will be 3N2 mul-
tiplications and 9

4N
2 summations for estimating the value

of each pixel. The number of operations to estimate the
value of each pixel is approximately on the same order in
the compared methods, and the difference is in the num-
ber of operations in order to calculate the multipliers of

the linear combination, hence, in order to compare the
proposedmethod with the other mentioned ones, we con-
sider the number of operations in order to calculate the
matrix A, where, this number of operations is acceptable
for our purpose.
In addition to this, since all algorithms are simulated in

the same situation, running time may have a better sense
of complexity. As it is indicated in Table 3, the proposed
method outperforms the high performance algorithms
such as SAI and optimized spline in terms of the average
time that is needed to simulate the algorithm, and features
a higher implementation speed.
The linear least square study unveiled in this article also

offers an advantage when transmitting an image where
we have memory limitation; i.e. instead of transmitting
the enlarged version of the original image by a factor of
k, we can transmit the original image and the interpo-
lator matrix A, and then use the interpolator matrix to
enlarge the original image by a factor of k at the receiv-
ing end. Accordingly, less memory is used in transmitting
the image. In the images that are simulated, the interpo-
lator matrix entries are decimal numbers with three digits
to the right of the decimal point; hence, ten bits would be
sufficient in order to send the interpolator matrix as side
information.

Conclusion
In this article, we presented a novel image interpo-
lation method. For each image to be interpolated,
we found an interpolator function which was applied
to each row and column of the image separately by
convolving this interpolator function with the vec-
tor considered for interpolation. PSNR and SSIM cri-
teria were then used to compare our results ver-
sus those obtained by other algorithms. Experimen-
tal results demonstrated that the solution revealed in
this article achieves better results both objectively and
subjectively.
Another key feature of the proposed method is that it

allows enlargement of the image by any factor of k =
2, 3, 4, 5, . . . by simply setting this parameter to the desired
value.
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