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Abstract

Remote sensing images have been used productively for land cover identification to accurately manage and control
agricultural and environmental resources. However, these images have often been interpreted interactively due to the
lack of effective automated methods. We propose such a method using self-organizing maps (SOM) based spectral
clustering, for agriculture management. By combining the powerful aspects of the SOM (adaptive vector quantization
in a topology preserving manner) and of the spectral clustering (a manifold learning based on eigendecomposition of
pairwise similarities), the proposed method achieves successful results, as shown on three study areas with images
from RapidEye (a recent constellation of satellites with a specific focus on agricultural applications).
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Introduction
Since the very beginning of the 1990s, one of the main
application areas of remote sensing in agriculture in
Europe has been the control of area-based agricultural
subsidies given to the farmers in the framework of the
common agricultural policy (CAP) [1]. For many years,
this activity, also referred to as controls with remote sens-
ing (CwRS), has consisted in checking whether the area
and the crop type declared by the farmer are in line with
the real situation as identifiedmainly from satellite remote
sensing data. In the early years, when the identification
of crop types was very important, both computer aided
photo-interpretationmethods (CAPI) and automatic clas-
sification procedures were involved in CwRS. Recent
changes in the CAP decreased the importance of crop-
type identification during the control procedure, while
increasing the importance of the detection of anomalies
related to the compliance with the rules defined as good
agricultural and environmental conditions (GAEC).While
CwRS covers the control aspect of the CAP management
there is another important element: the land parcel identi-
fication system (LPIS). The LPIS is the so called reference
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system for locating and identifying each agricultural par-
cel in the EU that is declared in the farmers’ annual
applications. The LPIS has to be as up to date as pos-
sible in order to reflect the real situation on the ground
inside the LPIS parcels in terms of the correct quantifi-
cation of the maximum eligible area in each LPIS parcel.
For identification of these parcels, the use of digital geo-
graphic information system (GIS) techniques has been
compulsory since January 2005, by a legislation change in
2000 [2].
The EU member states set up different strategies to

update their LPIS, mainly by acquiring new very high
resolution (VHR) orthoimage, but also including some
field checks. In addition to their efforts to keep the LPIS
updated, the member states have to assess the quality
of this system for agricultural parcels annually. For LPIS
assessment, they often use current year VHR orthoim-
ages that are acquired annually in the frame of CwRS on
a sample basis (control zones), or they acquire new air-
borne or spaceborne orthoimages. The actual inspection
is usually done by the CAPI of these VHR images. How-
ever, automated methods are of great importance for fast
and accurate assessment, because automated detection of
problems in LPIS can guide yearly updates, reducing the
risk of paying sanctions due to the inappropriate identi-
fication. Our study addresses this need for an automated
LPIS quality check, based on land cover identification.
We choose high resolution image provided by the recent
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RapidEye constellation (launched in 2008, with a specific
target of agricultural applications) due to its consider-
able potential to determine the land cover encompassing a
whole country, thanks to its spatial and spectral resolution
(additional Red Edge band) and daily overpass [3].
For land cover identification from remotely sensed

image, both supervised and unsupervised methods are
considered in previous research [4,5]. To accurately deter-
mine class boundaries, supervised (classification) algo-
rithms require labeled training samples that can only
be obtained from field inspections and through man-
ual expert labeling [6], whereas unsupervised (clustering)
methods depend on pixel similarity, determined accord-
ing to some criteria [7]. For annual control of the LPIS,
we focus on unsupervised methods, due to the fact that
supervised methods need costly field inspections and sig-
nificant processing time to collect the necessary training
samples throughout the whole country.
A successful unsupervised method that is common for

cluster extraction from remotely sensed images is the use
of self-organizingmaps (SOM) [8-12]. The SOM is an arti-
ficial neural network introduced by Kohonen [13] based
on observed properties of neural maps. It maps a high-
dimensional data space onto (often) a lower-dimensional
lattice (usually 2-D or 3-D) in a topology preserving man-
ner (as much as possible with the given rigid lattice), while
providing a faithful vector quantization of the data space
[14]. This enables informative SOM visualizations of high-
dimensional spaces, facilitating interactive extraction of
clusters (see [14,15] and references therein). In addition,
automatedmethods, which often use hierarchical agglom-
erative clustering (HAC) [16-19], also exist for fast and
accurate SOM based clustering. Moreover, a recent study
[20] introduced another HAC that exploits the SOMprop-
erties by introducing a similarity measure (CONN) based
on detailed local density distribution to achieve an accu-
racy higher than the accuracy obtained by distance-based
approaches.
Apart from remotely sensed images (which are often

large datasets), spectral methods [21-23], which exploit
pairwise similarities of data instances using eigendecom-
position of a distance-based similarity matrix, are becom-
ing popular for clustering, due to supporting empirical
studies, their ability of extracting irregularly-shaped clus-
ters, and their easy implementation [24]. However, they
are infeasible for large datasets, due to their high compu-
tational complexity and memory requirement. Therefore,
several studies [25-27] select data representatives (either
sampled randomly or by a vector quantization method)
and apply spectral clustering to those selected represen-
tatives. The approach of partitioning randomly selected
samples (data representatives) in [25] is used in few stud-
ies exploiting spectral clustering for remotely sensed data
[28,29].

Our contribution in this study is to utilize both the
SOM properties and the advantages of spectral cluster-
ing, by obtaining the data representatives (prototypes)
with the SOM and clustering the SOM prototypes by
spectral partitioning using a local density-based similarity
CONN instead of a distance-based similarity, for agricul-
ture monitoring. We develop an LPIS quality assessment
based on this SOM based spectral clustering, and show
that it is successful using three test zones in Hungary.
We also compare the proposed method to other SOM
based HAC methods and also to neural gas [30] based
clustering. The rest of this article is organized as follows:
Section ‘Neural networks for unsupervised clustering ’
briefly describes the SOM and the neural gas, whereas
Section ‘Automated SOM clustering for LPIS assess-
ment’ explains the clustering methods (HAC and spec-
tral clustering) for these neural networks. Section ‘Study
area and images’ describes three test zones and the
remote sensing images used in this study. Section ‘Results
and discussions’ discusses the clustering performance
for these zones, and Section ‘Conclusions’ concludes the
article.

Neural networks for unsupervised clustering
Self-organizing maps
The self-organizing map (SOM) [13] is composed of neu-
ral units ordered on a (usually 2-D) fixed lattice, where
each unit has an associated weight vector with the same
dimensionality of the data space. The weight vectors of
the SOM units are adapted to become quantization proto-
types of the data samples, by an iterative learning process
composed of three steps: competition, cooperation, and
adaptation. For a D-dimensional dataset M and an SOM
grid G (most frequently a 2D rectangular grid) with N
neural units, where wi is the D-dimensional weight vec-
tor associated with the neural unit i, the sequential SOM
learning can be summarized as follows:

1. (competition) randomly select a data sample v ∈ M
and find its best matching unit (BMU) i whose wi
satisfies

‖v − wi‖ ≤ ‖v − wj‖∀j ∈ G (1)

2. (cooperation) excite the grid neighbors j of the BMU
i determined by a neighborhood function hi,j(t)
(usually defined as a Gaussian around the BMU i,
based on the grid distance between neural units
i and j),

3. (adaptation) adapt wi and its grid neighbors using

wj(t + 1) = wj(t) + α(t)hi,j(t)(v − wj(t)) (2)

where α(t) is a learning parameter decreasing with
time.
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These steps are repeated until either a predefined error
criterion or a maximum number of iterations is reached.
After learning, adapted weight vectors of neural units (the
SOM prototypes) produce a Voronoi tessellation of the
data space, where each prototype is the geometric cen-
ter of its Voronoi polyhedron (receptive field) where it
is the BMU for the data samples. Thanks to the SOM
rigid grid and cooperative adaptation, the SOM produces
a topology preserving mapping of the data space onto
a (lower-dimensional) fixed grid on the prototype level.
Namely, the prototypes neighbors on the grid are ideally
neighbors in the data space (their Voronoi polyhedrons
share an edge) and vice versa. The SOM learning also pro-
vides a faithful representation of the data distribution on
the prototype level, which can be controlled by a mag-
nification parameter with slight changes in the learning
algorithm [31].
Topology preservingmapping onto a lower-dimensional

grid enables interactive cluster extraction using various
informative SOM visualization schemes (see [14,15] and
references therein). Despite the success of the interactive
process [9,10,12], practiced knowledge is usually neces-
sary to evaluate visualized SOM information, which in
turn makes it difficult for inexperienced users, and time
consuming even for the experienced users. This neces-
sitates automated methods for fast and effective SOM
segmentation, especially for applications that require pro-
cessing many large datasets, such as monitoring environ-
mental and agricultural resources, relying on remotely-
sensed data acquired on a yearly basis. Automated meth-
ods, described in Section “Automated SOM clustering
for LPIS assessment”, exploit how the SOM prototypes
quantize the dataset by determining prototype similari-
ties (such as distances, neighborhood relations, density
distribution) with respect to data space. Due to the rare
consideration of the SOM grid in automated methods,
a neural network paradigm with no rigid grid, neural
gas [32], described in the following section, is also used
to obtain prototypes for comparison in terms of clus-
tering accuracies. Even though the neural gas is not a
topology-preserving mapping (contrary to the SOM), it
is shown to reach relatively small quantization errors
[32,33].

Neural gas
The neural gas [32] has also a learning algorithm based
on finding the BMU unit wi (as in Equation (1)) and
adaptation of wi and its neighbors. Contrary to the SOM
which forces a grid layout of the neural units, the neural
gas defines the neighbors using distance ranks (ρwjs) of
neural units (wjs) to the presented data sample v, which
are calculated at each learning step. Noting that ρwi = 0
for the BMU wi, the neighborhood function hλ(wj) is
constructed by ρwj and a characteristic decay λ as

hλ(wj) = exp(−ρwj/λ). Then adaptation rule for neural
gas is

wj(t + 1) = wj(t) + α(t)hλ(wj)(v − wj(t)) (3)

with α(t) ∈[ 0, 1] decreasing with time t.

Automated SOM clustering for LPIS assessment
Hierarchical agglomerative clustering for SOMs
Due to the fact that hierarchical agglomerative clustering
(HAC) can find arbitrary cluster shapes with appropri-
ate criterion for cluster similarity, and can suit high-
dimensional data which are often hard to describe with
parametric models, it is often preferred for SOM cluster-
ing [11,16-18,20,34]. Each SOM prototype is considered
as a singleton cluster and two clusters that are the most
similar according to a predefined (dis)similarity criterion
are merged iteratively until a predetermined number of
clusters is obtained. A common approach is to use a
criterion based on (Euclidean) distances between SOM
prototypes, such as centroid linkage in [16,18] andWard’s
measure in [17,34]. Since any similarity measure solely
based on the distances between SOM prototypes under-
utilizes available SOM knowledge such as data topology
and data distribution, recent studies merges distance and
density information. Brugger et al. [35] uses a recursive
flooding of a Gaussian surface based on pairwise distances
and receptive field sizes of SOM prototypes, resulting in
partitionings similar to that of k-means clustering. Wu
and Chow [19] evaluates similarity by single linkage and
density distribution at the separation boundaries using a
cluster validity index in [36], producing good partitionings
for datasets with well-separated clusters.
A recent study [20] proposes CONN linkage, which is

average linkage with CONN similarity based on detailed
local density distribution, instead of traditional distance
based similarity. CONN, originally proposed in [14] for
informative SOM visualization, is a symmetric matrix,
showing pairwise similarities of the SOM prototypes.
Each pairwise similarity, CONN(i,j), is

CONN(i, j) = |RFij| + |RFji| (4)

with RFij is that portion of RFi (receptive field ofwi) where
wj is the second BMU, and |.| is the cardinality of the
set. Therefore, CONN(i, j) not only indicates neighbor-
hood relations of prototypes with respect to the dataset
but also indicates how data samples are distributed within
their receptive fields with respect to the neighboring pro-
totypes, providing a density information more detailed
than on the prototype level. Consequently, CONN linkage
is shown to outperform distance-based linkages for sev-
eral real datasets including a remote sensing image [20].
In addition, since CONN does not depend on SOM grid
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structure, it can be used as a similarity measure for proto-
types obtained by any other quantization method (such as
neural gas, k-means).

Spectral clustering for SOMs
Similarly to HAC, spectral clustering (SC) can extract
arbitrary shapes and can be easily implemented with high
accuracies, as supported by empirical studies [24]. Con-
trary to HAC, SC is principally a manifold learning based
on eigendecomposition of a similarity matrix, aiming at
changing data representation to easily capture subman-
ifolds (i.e., clusters). Being associated with relaxed opti-
mization of graph-cut problems, by a graph Laplacian
matrix, L, various methods exist for SC [21,22,37]; how-
ever no clear advantage exists among them as long as a
normalized L is considered [23,38]. Referring to [23,39] for
detailed overview on different methods, we briefly explain
the method in [22] utilized for this study.
Let G = (V , S) be a weighted, undirected graph, nodes

(V ) represent N samples (prototypes in this study) W =
{w1,w2, . . . ,wN } to be clustered, and S, a N ×N similarity
matrix, defines edges. A common way to construct edges
is to define pairwise similarities based on the (Euclidean)
distances,

s(i, j) = e−
||wi−wj ||

2σ2 (5)

with a decaying parameter σ to be determined properly,
either by experimentally finding the optimum σ value [22]
or by an automated setting of σ (different σi for each pro-
totype wi, changing the denominator to 2σiσj) [28,40,41].
The latter is done by defining σi as the distance to the kth
nearest neighbor of wi, introducing another parameter (k)
to be set by the user.
Let D be the diagonal matrix denoting the degree of N

nodes where di = ∑
j s(i, j). Then the Laplacianmatrix, L,

is constructed in various ways depending on the approach
for graph-cut optimization [23,39]. Ng et al. [22] define a
normalized Laplacian matrix, Lnorm, based on S and D,

Lnorm = D−1/2SD−1/2. (6)

Then, K clusters are extracted using K eigenvectors
associated with the K greatest eigenvalues, by the follow-
ing algorithm [22]:

1. Calculate the similarity matrix S (Equation (5)), its
degree matrix D, and normalized Laplacian, Lnorm
(Equation (6))

2. Find the K eigenvectors {e1, e2, . . . , eK } of Lnorm,
associated with the K greatest eigenvalues
{λ1, λ3, . . . , λK }

3. Construct the N × K matrix E =[ e1e2 . . . eK ] and
obtain N × K matrix U by normalizing the rows of E
to have unit norm, i.e., uij = eij√∑

k e2ik

4. Cluster the N rows of U with the k-means algorithm
into K clusters.

Recently, we utilize this algorithm as an SOM clustering
method [42], using similarity matrices calculated either by
σ or local σi. This approach often outperforms HAC with
the distance-based linkages or with CONN linkage, for
synthetic and real datasets [42]. However, a σ or k value
(to determine local σi), specific to the dataset, is required
to be set optimally [42,43]. Contrary to the distance-based
similarity requiring user-set parameters, CONN similar-
ity can be advantageous for SC due to its construction
using intrinsic data details without any parameter, its
sparse nature by definition, and previous studies [20,44]
showing its outperformance. Therefore we modify the
algorithm above by replacing S (Equation (5)) with CONN
(Equation (4)).

Proposedmethod for the LPIS assessment
The proposed method aims to find the anomalies in
the LPIS. Based on the SOM based spectral clustering
described in previous section and the current LPIS, the
method first finds a land cover mapping (with a prede-
termined number of clusters) in an unsupervised manner,
then constructs an eligibility mask by checking whether
clusters are eligible or ineligible according to the current
LPIS. The difference between the resulting eligibility mask
and the LPIS indicates possible anomalies in the system. A
step-by-step explanation of the proposed method for the
LPIS assessment is below:

1. Set the number of neural units, N , and the number of
clusters, K .

2. Train the SOM with N units to obtain the prototypes
(Section ‘Self-organizing maps’).

3. Construct the similarity measure CONN for the
SOM prototypes (Equation (4)).

4. Obtain K clusters of the SOM prototypes by spectral
clustering with CONN (Section ‘Spectral clustering
for SOMs’).

5. Assign the cluster label of prototypes to the data
samples in their corresponding receptive fields.

6. Use current LPIS (eligible-ineligible) to determine
eligibility of each cluster, i.e., if the majority of the
data samples in a cluster is eligible in LPIS, then that
cluster is eligible, and vice versa.

7. Determine the areas where the resulting eligibility
mask and LPIS have different labels.

The proposed method is automated, given that N and k
are known a priori. Since the SOM is used as an interme-
diate quantization of the remote sensing images, and k can
be determined from the LPIS, setting of N and k is not a
limitation for this study.
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Figure 1 Location of the test zones in Hungary. Each test zone is a
24 km × 24 km square region. For each zone, a 5-band (blue, green,
red, red-edge and near-infrared) 4800 × 4800 pixel RapidEye image is
used for LPIS assessment with the proposed method.

Study area and images
For automated LPIS assessment with the proposed
method, we use study areas in Hungary. According to the
rules related to the direct support schemes for farmers
under the Common Agricultural Policy (CAP) Hungary
applies the Single Area Payment (SAPS) scheme. For SAPS
the eligibility criteria are defined in Council Regulation
(EC) No. 73/2009 of 19 January 2009, Article 124: the
eligible agricultural area under the single area payment
scheme shall be part of the total area taken up by arable
land, permanent grassland, permanent crops and kitchen
gardens. We select three test zones from the northern
central part of Hungary (Figure 1). Zone1 is a transition
area between the Hungarian Great Plain and the hilly area
of the Northern Hungarian low mountain range, while
Zone2 is between the two hills (Mátra and Bükk) of the
Northern Hungarian low mountain range. Zone3 cov-
ers the geographic area called Cserhát. These zones are
selected due to the availability of new airborne very high
resolution (VHR) orthophotos with 50 cm ground sam-
pling distance, acquired in 2010 for the same regions. The
synergy between the RapidEye data and the new VHR
orthophotos makes it possible to compare the cluster-
ing results with the VHR orthophotos of the same year.
The systematic update of the LPIS using the new VHR
orthophotos is carried out by the Hungarian administra-
tion parallel to the current project so the results of the
“manual” update can also be used to evaluate the results
obtained by the proposed method.
The first zone, Zone1, is dominantly agricultural (64%

eligible), with mostly arable lands but with an intensive

presence of vineyards. The zone covers partly two wine-
growing regions: Mátraalja and Eger. The north-west
corner of the zone partially covers the forests of Mátra
Hills. The mid-west part of the zone is dominated by
the outcrop lignite mines that are partially recultivated
(covered by soils to be able to grow some vegetation).
Figure 2a shows a false color composite of the RapidEye

Figure 2 Zone1: (a) False color composite (RGB bands
correspond to near-infrared, red-edge, and red bands,
respectively), (b) Resulting LPIS mask obtained by spectral
clustering with CONN similarity (SC CONN) and k=30 clusters.
White: eligible lands detected as eligible; Blue: ineligible lands
detected as eligible; Red: eligible lands detected as ineligible; Black:
ineligible lands detected as ineligible. Blue and red indicate possible
anomalies in the LPIS according to the automated assessment. The
outlined regions are discussed in the text.
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image for this zone acquired on 10 July 2010. Contrary
to Zone1, the second zone, Zone2, is dominantly non-
agriculture (35% eligible). The zone partially covers Mátra
Hills (West), Bükk Hills (East), and Heves-Borsod Hills
(North). The agricultural land is represented mainly
by pastures and fodder crops with a limited number of
arable parcels. A false color composite of the RapidEye
image for the zone acquired on 10 July 2010 is shown in

Figure 3 Zone2: (a) False color composite (RGB bands
correspond to near-infrared, red-edge, and red bands,
respectively), (b) Resulting LPIS mask obtained by SC CONN and
k=30, for LPIS assessment.White indicates eligible lands detected
as eligible, blue stands for ineligible lands detected as eligible, red
indicates eligible lands detected as ineligible, and black is for
ineligible lands detected as ineligible. The outlined regions are
discussed in the text.

Figure 3a. The third zone, Zone3, is balanced between
agriculture and non-agriculture (45% eligible). The non-
agricultural land cover is mainly forest stretching west,
south and north-east from the center of the zone. The
RapidEye image for the zone was acquired very early in
the vegetation season, on 3 April 2010. As the false color
composite on Figure 4a shows, the forests are still leafless.
The areas appearing as yellow, orange and light brown
are winter crops (winter wheat, rapeseed), pastures and

Figure 4 Zone3: (a) False color composite (RGB bands
correspond to near-infrared, red-edge, and red bands,
respectively). This image is acquired in early spring, before
vegetation growth. (b) Resulting LPIS mask. White: eligible lands; blue:
ineligible lands detected as eligible; red: eligible lands detected as
eligible; black: ineligible lands.



Taşdemir and Wirnhardt EURASIP Journal on Advances in Signal Processing 2012, 2012:200 Page 7 of 13
http://asp.eurasipjournals.com/content/2012/1/200

alfalfa. Coniferous woods appearing as dark brown on the
false color composite are very distinct on the early spring
image. Zone3 was selected to test whether the proposed
method can be applied to images acquired very early in
the vegetation season.
RapidEye images are used in this study, based on their

successful applications in previous studies: [3] shows that
they can help effectively determine land parcels which are
in good agricultural condition (GAC) and are potentially
applicable for payments in Bulgaria in the frame of the
CommonAgricultural Policy of the European Union (EU);
[45] shows their use in agricultural applications, especially
during the controls of agricultural subsidies. In addition,
with its background mission, RapidEye aims at covering
Europe at least once a year cloud free at 5m resolution
during the vegetation season. Thanks to its spectral res-
olution (including red-edge band) at a spatial resolution
of 5m, and its large area coverage, RapidEye can pro-
vide a huge opportunity to detect LPIS anomalies at the
EU level, if an automated method—robust enough to be
applicable from the Mediterranean to Northern conti-
nental regions of the EU and using images acquired on
different dates throughout the vegetation season—can be
developed.

Results and discussions
For the LPIS assessment with the SOM based clustering,
first we obtain the SOM prototypes by Matlab SOM-
toolbox (developed by Helsinki University of Technology)
using a 50 × 50 rectangular lattice with sequential learn-
ing andGaussian neighborhood.We also train a neural gas
with 2500 prototypes using default learning parameters
in the SOMtoolbox. We select the number of prototypes
(2500) to be of O(

√
n) where n is the number of data

samples (pixels in the 4800 × 4800 image of each zone,
covering an area of 24 km×24 km). Then we cluster these
prototypes by spectral clustering with CONN similarity
(SC CONN). For comparison, we also use spectral clus-
tering with distance-based similarity (SC) and hierarchical

Table 1 Accuracies for different clusteringmethods with
different number of clusters (k): Zone1

k HAC AVG HAC CONN SC SC CONN

SOM 30 81.9 81.3 80.5 82.9

20 77.0 81.2 77.8 81.1

10 74.7 78.6 76.3 80.3

NG 30 65.7 80.4 80.4 80.8

20 65.7 71.7 80.2 82.3

10 65.7 66.1 78.6 79.6

HAC AVG: Hierarchical agglomerative clustering (HAC) with average linkage,
HAC CONN: HAC with CONN linkage, SC: spectral clustering, SC CONN: spectral
clustering with CONN similarity.

Table 2 Accuracies for different clusteringmethods with
different number of clusters (k): Zone2

k HAC AVG HAC CONN SC SC CONN

SOM 30 83.2 83.7 83.3 83.9

20 82.9 83.7 81.5 81.4

10 79.2 81.6 81.0 83.1

NG 30 78.3 81.2 83.1 81.9

20 78.2 81.1 83.4 83.4

10 68.0 80.9 83.0 83.3

HAC AVG: Hierarchical agglomerative clustering (HAC) with average linkage,
HAC CONN: HAC with CONN linkage, SC: spectral clustering, SC CONN: spectral
clustering with CONN similarity.

agglomerative clustering (HAC) with average and CONN
linkages.We set themaximumnumber of clusters, k = 30,
according to the different land use and vegetation types
declared in the zones, whereas we also choose two smaller
values (k = 10 and k = 20). Based on our experiments,
we also experience that using a k value greater than the
number of existing natural clusters in the zone (number
of declared vegetation types in the LPIS) would not help
achieve higher accuracies. Since the expected number of
clusters (k) is determined from the LPIS information a
priori, setting k in advance does not represent a limita-
tion here. Then we assign the clusters as eligible/ineligible
using LPIS, based on the assumption that LPIS has to be
(mostly) correct even though it may have anomalies due
to changes in land cover or land use.
Tables 1, 2, and 3 show the resulting accuracies (% of

pixels correctly identified as eligible or ineligible over all
pixels) for three zones, different methods and three k val-
ues. The proposed SC of SOM prototypes with CONN
similarity achieves the best accuracies for all three zones
(82.9% for Zone1; 83.9% for Zone2; 81.2% for Zone3).
The decreases in accuracies with decreasing k values indi-
cate that a high k (30) is still necessary for better delin-
eation of the boundaries, even though the accuracies are
calculated based on eligibility/ineligibility (i.e., 2 clusters).

Table 3 Accuracies for different clusteringmethods with
different number of clusters (k): Zone3

k HAC AVG HAC CONN SC SC CONN

SOM 30 77.2 81.2 77.9 81.2

20 76.2 79.3 79.3 80.8

10 76.2 78.4 80.5 78.9

NG 30 71.2 73.1 74.8 80.3

20 55.4 59.0 76.6 77.6

10 54.5 54.8 74.4 77.1

HAC AVG: Hierarchical agglomerative clustering (HAC) with average linkage,
HAC CONN: HAC with CONN linkage, SC: spectral clustering, SC CONN: spectral
clustering with CONN similarity.
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Figure 5 Ratio of eligible pixels in each cluster: (a) for Zone1 (b) for Zone3. Compared to other methods, SC CONN produces purer clusters, for
all zones. (We note that clusters (indexed from 1 to 30) obtained by different methods do not have a one-to-one correspondence.

Surprisingly, despite having smaller quantization errors
than the SOM [33], NG based clustering produces slightly
lower accuracies than SOM based clustering, for this
study.
To evaluate the clusters obtained by different meth-

ods, we also calculate the purity of the clusters. The
purity of a cluster is the ratio of the most frequent class
in that cluster. For our 2-class (eligible/ineligible) case,
purity(i) = max(religible(i), rineligible(i)), where religible(i)
and rineligible(i) are the ratios of eligible and ineligible pix-
els in the cluster Ci, respectively. Note that religible(i) =
1 − rineligible(i). If religible(i) ≥ 0.5, the cluster Ci is eli-
gible, otherwise it is ineligible. The closer the religible(i)
(and hence purity(i)) to 0.5, the more mixed the cluster
Ci is. The religible(i) of k = 30 clusters obtained by differ-
ent methods are shown in Figure 5. The clusters extracted
by SC CONN have relatively low confusion: for example
for Zone1, religible(i) > 0.7 (eligible) or religible(i) < 0.3
(ineligible) whereas other methods have a few clusters
within 0.6 > religible(i) > 0.4. For all zones, the aver-
age purities, given in Table 4, indicate that the resulting
partitions obtained by SC CONN are purer than those
obtained by other methods. They also show that density-
based CONN similarity and SC produce purer partitions
than distance-based similarity and HAC, correspondingly.
For visual evaluation, Figures 2, 3, and 4 show the false

color composites for three zones and the resulting LPIS
evaluation masks. These masks significantly diminish the
necessary interactive process to find anomalies in the

Table 4 Average purity for k = 30 clusters for each zone

Method Zone1 Zone2 Zone3

SC CONN 0.84 0.82 0.81

SC 0.83 0.78 0.80

HAC CONN 0.81 0.82 0.79

HAC AVG 0.79 0.74 0.77

LPIS only to those blue and red areas. Some reference
parcels in the LPIS are originally set as ineligible thanks
to the additional ancillary information (such as land use
or no subsidy applications within the respective LPIS
parcel for 4 years), even though they are eligible with

Table 5 Confusionmatrix of SOM based spectral clustering
with CONN similarity, for Zone1

SC CONN, k = 30
Ineligible Eligible Producer accuracy

Ineligible 5,168,7341 3,091,4972 62.57

Eligible 845,3423 13,934,4274 94.28

User accuracy 85.94 81.84 82.91

The elements indicate the numbers of pixels in Figure 2b: 1black, 2blue, 3red,
and 4white.

Table 6 Confusionmatrix of SOM based spectral clustering
with CONN similarity, for Zone2

SC CONN, k = 30
Ineligible Eligible Producer accuracy

Ineligible 12,427,0721 2,775,1122 81.75

Eligible 960,6393 7,069,1774 88.04

User accuracy 92.82 71.81 83.92

The elements indicate the numbers of pixels in Figure 3b: 1black, 2blue, 3red, 4white.

Table 7 Confusionmatrix of SOM based spectral clustering
with CONN similarity, for Zone3

SC CONN, k = 30
Ineligible Eligible Producer accuracy

Ineligible 10,228,5281 2,334,5752 81.42

Eligible 1,994,0773 8,482,8204 80.97

User accuracy 83.60 78.42 81.21

The elements indicate the numbers of pixels in Figure 4b: 1black, 2blue, 3red, and
4white.
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respect to the land cover (spectral information). There-
fore those regions—such as grasslands within woodlands
for which no subsidy claims were launched (examples are
those blue regions outlined by the green rectangles) or in
non-agricultural regions (a recultivated mining region in
Figure 2 and a deforested area in Figure 3, outlined by
black rectangles), small fields along the roads (outlined by

black dashed rectangles)—are extracted as eligible in the
resulting masks. Grassland or vegetation within the urban
areas (blue regions within red rectangles) are extracted as
eligible due to the same reason and also due to the spectral
mixing because of 5m spatial resolution. However urban
regions can be removed easily by additional thematic
data. An eligible crop (maize) is incorrectly captured as

Figure 6 An example anomaly detection in LPIS for a selected region in Zone1. The LPIS is overlaid on the figures: red lines show the
boundaries of the LPIS physical blocks whereas cyan lines are the boundaries of eligible/ineligible regions with cyan dotted areas are ineligible (a)
RapidEye false color composite (RGB bands are NIR-Rededge- Red bands, respectively) (b) The resulting LPIS mask obtained by the proposed
SC CONN method. Red/blue regions show possible anomalies in the LPIS (c) VHR orthophoto with 0.5 m spatial resolution, acquired in 2010 by the
National Administration in Hungary for the LPIS update with visual evaluation (d) The same LPIS mask in (b) but with the LPIS updated by computer
aided photo-interpretation. A, B, and D are real anomalies with respect to the land cover (D is made ineligible according to additional ancillary data),
where C (maize parcels) is a false-alarm because of the spectral resemblance due to the 5 m spatial resolution.
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ineligible due to its spectral resemblance to the woodlands
(ineligible) when it is grown. The spectral resemblance
can be seen in the false color composite in Figure 2: red-
dish regions at the top-left are woodlands whereas those
within black ellipses are maize. Clouds and their shad-
ows (outlined by yellow ellipse in Figure 2) may result in
extracting eligible regions as ineligible.
Tables 5, 6, and 7 show the confusion matrices of the

produced masks in Figures 2, 3, and 4, correspondingly.
They also show producer accuracies, PA (percentage of
correctly clustered eligible/ineligible pixels over all eligi-
ble/ineligible pixels in the LPIS), and user accuracies, UA
(percentage of correctly clustered eligible/ineligible pix-
els over all eligible/ineligible pixels in the mask). Since
Zone1—which has mostly eligible pixels (almost 2/3 of all
pixels)—has an image acquired in the middle of the veg-
etation season, agricultural vegetation and grasslands can
be easily delineated from woodlands and water bodies,
resulting in high PA (94.3%), compared to other zones.
Due to the same reason, urban vegetation—whichmay not
be differentiated using only spectral values, but requires
land use information—is confused, resulting in a low PA
for ineligible areas. Zone2 has also an image in the middle
of the vegetation season, but it has mainly ineligible pix-
els (mainly woodlands). PA for both eligible and ineligible
areas are over 80%. Despite having an image in the early
vegetation development, PA for Zone3 are also acceptable,
providing help for further evaluation of those incorrect
labeling to detect anomalies in the LPIS.

Figure 6 shows an example region (from Zone1) on
how the resulting LPIS mask can guide for the LPIS
assessment. Figure 6a is a false color composite of the
5-band RapidEye image (used for clustering) with the
current LPIS. Figure 6b shows the mask automatically
obtained by the proposed method: white/black stand for
eligible/ineligible regions which require no adjustments
whereas red/blue indicate possible anomalies in the LPIS.
For example, the red area labeled with “A” is eligible in
the LPIS, however it should be ineligible according to the
mask. In this case the detected anomaly corresponds to
a forest parcel (as it can be visually identified from the
RapidEye false color composite in Figure 6a and from
the VHR image in Figure 6c), which is not eligible under
the single area payment scheme applied in Hungary and
therefore should be part of the LPIS ineligible mask.
Similarly, the areasmarked with “B” also show real anoma-
lies detected: forest patches along a watercourse (visually
identifiable both from RapidEye and VHR image) that
should have been marked as ineligible in the LPIS mask.
Another type of anomaly is in the parcel “D” which is
ineligible in the LPIS but the mask recommends it to be
eligible. Visual interpretation of both RapidEye and VHR
images suggests that this parcel may indeed be agricultural
according to its land cover. For the evaluation of mask-
based anomalies, Figure 6d shows a newer LPIS updated
using interactive interpretation of VHR image and ancil-
lary data. (We note that this newer LPIS is partly available
only for some regions). Both A and B are in line with

Figure 7 A false-alarm example (from Zone1) for LPIS anomaly assessment, due to mono-temporal image. (a) RapidEye false color
composite (RGB are NIR-Rededge- Red, respectively) (b) The LPIS mask produced by the proposed method. The red areas on the upper-half of the
scene are temporary waterlog due to heavy rains, producing an incorrect labelling as ineligible, even though those are eligible.
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the manual update, however D and its surrounding are
excluded (made ineligible) because no subsidy application
has been submitted for those parcels within the previous 4
years, despite their eligible land cover. A similar area that
is detected potentially eligible, but marked as ineligible in
the LPIS is the region B in Figure 7.
Some anomalies detected by the proposed method may

be false alarms due to 5m spatial resolution, mono-
temporal image, the use of only multispectral image with

no additional ancillary information, and land cover type.
For example, due to the spectral resemblance of the maize
(eligible) to the woodlands (ineligible) in 5m resolution
image during the vegetation season, two maize parcels
(marked with “C”) in Figure 6 are detected as ineligi-
ble even though they are eligible. This resemblance is
reduced in the VHR image, as it can be seen in Figure 6:
they are similar to agricultural vegetation in Figure 6c
while they are more similar to woodlands in Figure 6a.

Figure 8 False-alarm examples (from Zone3) for LPIS anomaly assessment, due to land cover type andmono-temporal image. The LPIS is
overlaid: red lines are physical blocks whereas blue lines are boundaries between eligible/ineligible areas, with dotted areas are ineligible. (a)
RapidEye false color composite (NIR-Rededge- Red are assigned to RGB) of 3 April 2010. (b) The resulting LPIS mask obtained by the proposed
method. (c) VHR orthophoto (0.5m spatial resolution), acquired in 2010. (d) The region outlined by black rectangle in (c) to show the details of the
grassland (“B”) and the grassland with encroachment of bushes and small trees (“A”).
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Another false alarm example is a temporary waterlog in
Figure 7 (the area marked with “A”), which is detected as
potentially ineligible, even though it is actually eligible;
yet themono-temporal spectral information is insufficient
in those cases. Spectral information may also be insuffi-
cient to differentiate small difference in the radiometric
response of grassland and forest in early April. Therefore,
grassland (“B” in Figure 8) may be incorrectly detected as
ineligible. Decisions on the eligibility of pasture parcels
similar to the one marked with “A” in Figure 8 are dif-
ficult not only using very high resolution orthophotos
(Figure 8c,d) but also on the ground. To decrease the false
alarms and achieve even more precise determination of
the anomalies for the entire country, further interactive
evaluation of the resulting mask or additional decision
rule-based classifier exploiting other available information
(such as land use, farmer declarations, VHR image, etc.)
is necessary despite the success of the proposed clustering
method based on mono-temporal spectral image.

Conclusions
For agriculture management (at large cartographic scale)
by mono-temporal multi-spectral remote sensing images,
we develop a method using self-organizing maps (SOM)
based spectral clustering (SC). By providing two con-
secutive mapping (SOM: a topology-preserving mapping
together with an adaptive vector quantization; SC: a man-
ifold learning based on eigendecomposition) and local
density-based similarity, the proposed method outper-
forms both other SOM based and neural gas based clus-
tering methods, for three test zones in this study. It can be
an effective tool to reduce the extensive time required for
interactive computer-aided photointerpretation for pre-
cise delineation of eligible/ineligible agricultural regions.
However, in addition to mono-temporal multi-spectral
image, other ancillary data—which can be exploited by
decision rules—may be necessary for fine tuning of the
resulting eligibility mask.
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3. B Tapsall, P Milenov, K Taşdemir, in ISPRS TC VII Symposium 100 Years ISPRS,
The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, ed. by W Wagner, vol. XXXVIII B Szekely Part
7B. Analysis of rapideye imagery for annual landcover mapping as an aid
to European Union (EU) Common Agricultural Policy, Vienna, Austria,
2010). 568–573

4. GG Wilkinson, Results and implications of a study of fifteen years of
satellite image classification experiments. IEEE Trans. Geosci. Rem. Sens.
43(3), pp. 433–440 (2005)

5. BG Frizzelle, A Moody, Mapping continuous distributions of land cover: A
comparison of maximum-likelihood estimation and artificial neural
networks. Photogramm. Eng. Rem. Sens. 67(6), pp. 693–705 (2001)

6. P Mitra, U Shankar, SK Pal, Segmentation of multispectral remote sensing
images using active support vector machines. Pattern Recogn. Lett. 25(9),
pp. 1067–1074 (2004)

7. D R Xu, II Wunsch, Survey of clustering algorithms. IEEE Trans. Neural
Netw. 16(3), pp. 645–678 (2005)

8. CY Ji, Land-use classification of remotely sensed data using kohonen
self-organizing feature map neural networks. Photogramm. Eng. Rem.
Sens. 66(12), pp. 1451–1460 (2000)
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