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Abstract

Respiratory activity introduces oscillations both in arterial pressure and heart period, through mechanical and
autonomic mechanisms. Respiration, arterial pressure, and heart period are, generally, non-stationary processes and
the interactions between them are dynamic. In this study we present a methodology to robustly estimate the time
course of cross spectral indices to characterize dynamic interactions between respiratory oscillations of heart period
and blood pressure, as well as their interactions with respiratory activity. Time-frequency distributions belonging to
Cohen’s class are used to estimate time-frequency (TF) representations of coherence, partial coherence and phase
difference. The characterization is based on the estimation of the time course of cross spectral indices estimated in
specific TF regions around the respiratory frequency. We used this methodology to describe the interactions between
respiration, heart period variability (HPV) and systolic arterial pressure variability (SAPV) during tilt table test with both
spontaneous and controlled respiratory patterns. The effect of selective autonomic blockade was also studied. Results
suggest the presence of common underling mechanisms of regulation between cardiovascular signals, whose
interactions are time-varying. SAPV changes followed respiratory flow both in supine and standing positions and even
after selective autonomic blockade. During head-up tilt, phase differences between respiration and SAPV increased.
Phase differences between respiration and HPV were comparable to those between respiration and SAPV during
supine position, and significantly increased during standing. As a result, respiratory oscillations in SAPV preceded
respiratory oscillations in HPV during standing. Partial coherence was the most sensitive index to orthostatic stress.
Phase difference estimates were consistent among spontaneous and controlled breathing patterns, whereas
coherence was higher in spontaneous breathing. Parasympathetic blockade did not affect interactions between
respiration and SAPV, reduced the coherence between SAPV and HPV and between respiration and HPV. Our results
support the hypothesis that non-autonomic, possibly mechanically mediated, mechanisms also contributes to the
respiratory oscillations in HPV. A small contribution of sympathetic activity on HPV-SAPV interactions around the
respiratory frequency was also observed.
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Introduction
Non-stationary signal processing techniques applied to
electrophysiological signals have been successful in the
assessment of important features of cardiovascular con-
trol physiology.
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Although it is well known that respiratory activity
affects cardiovascular regulation [1-4], the mechanisms
responsible for the coordination between the autonomic
control of circulation and respiration are still unclear
and currently matter of debate [5-7]. Respiration affects
both heart period length and arterial pressure, which in
turn are mutually related. Interconnections between these
three physiological parameters can be broadly reduced
to four interactions: (i) Blood pressure decreases dur-
ing inspiration and increases during expiration, following
the changes in intrathoracic pressure. (ii) Heart period
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decreases during inspiration and increased during expi-
ration, a phenomenon called respiratory sinus arrhyth-
mia (RSA) [1,2], that may be due to direct central
nervous modulation, reflex phenomena and mechanical
influence of respiration [5-7]. (iii) A decrease (increase)
in blood pressure provokes a decrease (increase) in heart
period, via the baroreflex, a negative feedback mecha-
nism that buffers short-term fluctuations in arterial pres-
sure. (iv) A change in heart period causes a change
in blood pressure through direct mechanical effects.
As a result, the respiratory induced oscillations in the
heart period and arterial pressure variability are mutually
related.
To assess the functioning of the cardiovascular system

in both normal and impaired conditions, it is important
to reliably characterize the dynamic interactions between
physiological signals involved in its regulation, i.e., heart
period, arterial pressure and respiration. Cross spectral
analysis has been widely used to study the cardiovascu-
lar system [3,8-10]. Cross spectral indices include spectral
coherence, partial spectral coherence, phase difference,
and time delay. Spectral coherence measures the strength
of the coupling between the spectral components of
two signals. Partial coherence measures the coherence
between two signals after removing the influence that
a third signal has over them [11,12]. Phase difference
and time delay measure the latencies between two cor-
related oscillations. A limitation of spectral analysis is
that it requires signals to be stationary and does not
provide a dynamic characterization of the interactions
among them. The purpose of this study is to present
a methodology to robustly estimate the time course of
cross spectral indices to characterize dynamic interac-
tions between cardiovascular signals in non-stationary
conditions. In particular, an assessment of the coupling
between respiratory induced oscillations of heart period
and blood pressure, as well as their interactions with respi-
ratory activity is proposed. The characterization is based
on the estimation of the time course of coherence, partial
coherence, phase difference and time delay. The purpose
of this study is to present a methodology to robustly
estimate the time course of cross spectral indices to char-
acterize dynamic interactions between respiration, heart
period and arterial pressure, simultaneously. The char-
acterization of the cardiovascular function is based on
the estimation of the time course of coherence, partial
coherence, phase difference, and time delay. Recently, dis-
tributions belonging to the Cohen’s class were used to
estimate time-frequency (TF) coherence between cardio-
vascular signals [13], and time-varying baroreflex sensi-
tivity [14]. In this article, we present a comprehensive
framework which also includes TF phase difference and
TF partial coherence to simultaneously characterize the
dynamic interactions between these signals during tilt

table test in spontaneous and controlled breathing, and
after autonomic blockade.

Study populations
In this study, we used data from two experiments. In the
first experiment, subjects performed a tilt table test under
spontaneous respiration [15]. In the second experiment,
subjects performed both a tilt table test and autonomic
blockade under controlled respiration [3]. Tilt table test is
one of the most well-established test for the assessment of
cardiovascular autonomic function [9], while autonomic
blockade data offers the unique possibility of studying
the influence of sympathetic and parasympathetic activity
separately [3]. As explained in the following, in this study
we divided these data in three groups.

Tilt table test during spontaneous respiration (TTSR)
Fourteen subjects (9 males, 24–34 yr, median 28 yr) with-
out any previous cardiovascular history underwent a
head-up tilt table test according to the following protocol:
4min in early supine position (TES), 5min tilted head-up
to an angle of 70° (THT) and 4min back to later supine
position (TLS) [15].
12-lead ECG were recorded with Biopac MP150 system,

with a sampling frequency of 1000Hz. Blood pressure
was measured at the finger by means of Finometer device
with sampling frequency of 250Hz. During the proce-
dure, the Finometer was recalibrated at the beginning
of THT and TLS. The recalibration took few seconds and
introduced artefacts which were detected and corrected
by interpolation. Arterial pressure from the finger was
not corrected for the hydrostatic gradient change dur-
ing tilt. Respiratory signal was recorded with a sampling
frequency of 125Hz, by using TSD201 transducer which
measure thoracic expansion while breathing. This signal
gives a measure correlated with lung volume changes.

Tilt table test during controlled respiration (TTCR)
Data set TTCR [3,4], composed of 14 subjects under-
going a tilt table test, is used as control for the results
obtained in TTSR. Fourteen subjects (aged 19–38 year,
median 21 years) participated in the study according to
the following protocol: 13min in supine position and
13min head-up tilted. During the entire experiment, sub-
jects were instructed to breath at a controlled rate, by
following auditory cues. The time between the onset of
two consecutive inspirations was randomly chosen from
a Poisson distribution with mean 0.2Hz. These data were
originally used in [3], with the purpose of assessing the fre-
quency response of the cardiovascular system. The ratio-
nale for randomizing the respiratory cycle was to whiten
the power spectral density of the respiratory signal, which
is seen as the input of the cardiovascular system.
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Lung volume changes were measured with a two belt
chest-abdomen inductance plethysmograph (Respitrace
Systems). Arterial pressure was measured with a 22-gauge
Teflon catheter in the radial artery of the nondominant
hand. For each participant, intervals of about 7min, TES

and THT, recorded during supine and head-up tilt condi-
tions, respectively, were selected for the analysis.

Autonomic blockade during controlled respiration (ABCR)
After having been tilted, subjects of TTCR data set
were returned to the supine position and given either
atropine or propranolol. Atropine (0.03mg/kg) was used
for parasympathetic blockade in seven subjects, while pro-
pranolol (0.2mg/kg) was used to sympathetic blockade in
the other seven subjects. Physiological data were recorded
in supine position following the same controlled respira-
tory protocol used in TTCR data set. Intervals of about
7min, where stationarity was assumed were selected for
the analysis of blockade condition. Data from TTCR
recorded in supine position (TES) are used as control for
autonomic blockade conditions.

Methods
Signal processing
QRS complexes in the ECG were detected by using
a methodology described in [16]. Instantaneous heart
rate was derived by integral pulse frequency modulation
(IPFM) model, which also accounts for the presence of
ectopic beats [17], and then evenly resampled at 4Hz,
using spline interpolation. Instantaneous heart period was
then obtained as the reciprocal of instantaneous heart
rate. The heart period variability (HPV) signal, xH(t), was
obtained by high pass filtering the heart period signal with
a cut-off frequency of 0.03Hz. The systolic arterial pres-
sure series was obtained by taking the maximum of the
pressure signal within a short interval following a QRS
detection. The time series were subsequently interpolated
at the time of occurrence of the systolic peak by splines
with a sampling frequency of 4Hz, and the SAPV signal,
xS(t), was obtained by high-pass filtering with a cut-off
frequency of 0.03Hz. The signal from the thoracic belt
was decimated to 4Hz to get the respiratory signal, xR(t),
which gives a measure correlated with instantaneous lung
volume.

Cross time-frequency analysis
In the following, signals {xi(t), xk(t)} ∈ {xH(t), xS(t),−
xR(t)}, indicate the complex analytical signal representa-
tion of HPV, SAPV and inverse respiratory signal, respec-
tively. Owing to the inversion of the respiratory signal,
and under physiological conditions, all themembers of the
triplet {xH(t), xS(t),−xR(t)} are expected to increase and
decrease together.

The TF cross spectrum, Sik(t, f ), is estimated by using a
TF distribution (TFD) belonging to the Cohen’s class [18]:

Sik(t, f ) =
∫∫ ∞

−∞
φd-D(τ , ν)Aik(τ , ν)ej2π(tν−f τ)dνdτ

(1)

Aik(τ , ν) =
∫ −∞

−∞
xi

(
t + τ

2

)
x∗
k

(
t − τ

2

)
e−j2πνtdt, (2)

where Aik(τ , ν) is the narrow-band symmetric ambiguity
function [19] of signals xi(t) and xk(t), that in (1) is win-
dowed by an elliptical exponential kernel, defined in the
ambiguity function domain as [13]:

φd-D(τ , ν) = exp
{
−π

[(
ν

ν0

)2

+
(

τ

τ0

)2]2λ}
(3)

The kernel function φd-D(τ , ν) can be equivalently
defined in the TF domain as:

φt-f(t, f ) =
+∞∫∫
−∞

φd-D(τ , ν)ej2π(tν−τ f )dτdν (4)

The choice of the kernel function is discussed in Section
‘Time-frequency filtering’.
Time-frequency coherence is estimated as [13]:

γik(t, f ) =
∣∣Sik(t, f )

∣∣√
Sii(t, f )Skk(t, f )

; γik(t, f ) ∈[ 0, 1] (5)

Time-frequency coherence quantifies the strength of the
local coupling between two non-stationary signals, being
γik(t, f ) = 1 in the TF regions where the signals are per-
fectly coupled and γik(t, f ) = 0 in the regions where signals
are uncorrelated. Note that in [13] it was shown that
the local averaging performed in (1) can be used to esti-
mate non-stationary spectra, whose 4 definition includes
expectation over different realizations of a given process.
This implies that (5) can be used to estimate coherence
function from only one pair of signals. Partial coherence
is used to assess the coupling of two signals xi(t) and xk(t),
after having removed the influence of a third signal xz(t)
[20]. Time-frequency partial coherence can be defined as:

γik/z(t, f )

=
∣∣Sik/z(t, f )

∣∣√
Sii/z(t, f )Skk/z(t, f )

=
∣∣Ski(t, f )Szz(t, f )−Skz(t, f )Szi(t, f )

∣∣√
(Skk(t, f )Szz(t, f )−|Skz(t, f )|2)(Sii(t, f )Szz(t, f )−|Siz(t, f )|2)

(6)

In the TF regions where xz(t) is uncorrelated
with xi(t) and xk(t), i.e., wherever Szi(t, f ) = 0 and
Szk(t, f ) = 0, TF partial coherence is equal to TF coher-
ence, γik/z(t, f ) = γik(t, f ). Furthermore, partial coherence
vanished, γik/z(t, f ) = 0, wherever xi(t) = axz(t) and
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xk(t) = bxz(t), with {a, b} ∈ R. For any triplet of signals,
the interpretation of TF partial coherence is as follows:
if around a TF point (t0, f0) γik/z(t, f ) << γik(t, f ), then it
follows that the TF structure of signal xz(t) matches with
that of xi(t) and xk(t) around (t0, f0). Moreover, if in a
given TF region γik/z(t, f ) < γiz/k(t, f ) < γkz/i(t, f ), it follows
that xz(t) better represents the communality shared by
the three signals [21].
Partial spectra in (6) can be obtained as:

Sik/z(t, f ) = Sik(t, f ) − Siz(t, f )Szk(t, f )
Szz(t, f )

=
(∣∣Sik(t, f )

∣∣ −
∣∣Siz(t, f )

∣∣ ∣∣Szk(t, f )
∣∣

Szz(t, f )

)
ejθik(t,f )

(7)

Sii/z(t, f ) = Sii(t, f ) − Siz(t, f )Szi(t, f )
Szz(t, f )

= (1 − γ 2
iz(t, f ))Sii(t, f ) (8)

Expression (7) shows that Sik(t, f ) and Sik/z(t, f ) are com-
plex functions characterized by same phase and differ-
ent magnitude. Time-frequency phase difference (TFPD)
spectrum is defined as:

θik(t, f ) = arg
[
Sik(t, f )

]

= arctan
[

� [
Sik(t, f )

]
� [

Sik(t, f )
]
]
; θik(t, f ) ∈[−π ,π ]

(9)

Within this framework, in a given TF region, a change
in xi(t) precedes (leads) a correlated change in xk(t) wher-
ever θi k (t, f ) ∈[ 0,π ], while a change in xi(t) lags behind a
correlated change in xk(t) wherever θik(t, f ) ∈[−π , 0].
Note that according to the open-loop assumption of

cross spectral analysis, θik(t, f ) = −θki(t, f ). Moreover,
phase spectra θRS(t, f ), θRH(t, f ) and θSH(t, f ) are related by
θSH(t, f ) = θRH(t, f ) − θRS(t, f ). Finally, it is worth mention-
ing that, given two signals {xi(t), xk(t)}, if xz(t) = −xk(t) ⇒
θiz(t, f ) = θik(t, f ) ± π .

Time-frequency filtering
The kernel function determines the degree of TF filter-
ing, and, consequently, the TF resolution of the spectra
and the interference terms (ITs) reduction. In this study,
time resolution is quantified by 	t, the full width at half
maximum of φt-f(t, 0), while frequency resolution is quan-
tified by 	f, the full width at half maximum of φt-f(0, f ).
These quantities measure the degree of spreading of a line
in the TF domain: 	t and 	f are equal to the full width
at half maximum of the TFD of a Dirac impulse, eval-
uated along t for a given frequency, and of a sinusoid,

evaluated along f for a given time instant, whose ideal
TF representations would be straight lines [13]. The ker-
nel function used in this study gives a TF resolution of
{	t,	f} = {10.9 s, 0.039 Hz}.
The choice of the kernel is especially important in

coherence analysis, because to obtain reliable coherence
estimates, i.e., γik(t, f ) ∈[ 0, 1], the filtering provided by
the kernel should be able to completely remove the ITs
that characterize the Wigner-Ville distribution [13,22]. A
necessary, but not sufficient, condition to obtain reliable
coherence estimates is the positiveness of the auto-spectra
[13]. This condition is not sufficient, since residual (oscil-
lating) ITs present in positive TFDs may cause coherence
estimates to be higher than 1. Reducing ITs and obtaining
reliable coherence estimates are two aspects of the same
problem. Thus, our strategy consists in finding a kernel
function able to provide γik(t, f ) ∈[ 0, 1], which in turn
implies ITs canceling.
In this study, we used a kernel function (3) that is a par-

ticular case of the multiform, tiltable exponential kernel
proposed in [23]. Among all the possibilities given by this
kernel, we used a function whose isocontours are, in the
ambiguity function domain, ellipses withmajor andminor
axes along τ and ν [24]. The choice of an elliptical shape
is motivated by its good concentration around the ori-
gin of the ambiguity function domain (where auto-terms
are located). Parameters ν0 and τ0 are used to change
the length of the ellipse axes aligned along ν (the degree
of time filtering) and τ (the degree of frequency filter-
ing), respectively. The parameter λ sets the roll-off of the
filter as well as the size of the tails of the kernel. Sev-
eral simulation studies demonstrated the effectiveness of
this kernel in reducing ITs [13,14,25,26]. In particular, in
[13], it was shown that this kernel offers the possibility
of obtaining TF coherence estimates bounded between
0 and 1, as well as spectra characterized by a better TF
resolution than multitaper spectrogram and continuous
wavelet transform. The simulation study carried out in
Section ‘Simulation study’ confirms these previous results.
The choice of the parameters was made as follows:

First, the desired TF resolution {	t,	f }, corresponding to
the minimum amount of TF filtering, is decided based
on a-priori information about the signals and the exper-
imental settings. The set of parameters {τ0, ν0, λ} that
provides the desired TF resolution is used as starting
point. If using this set of parameters γik(t, f ) /∈[ 0, 1], the
degree of time (or frequency) filtering is maintained con-
stant, while the frequency (or time) filtering is increased
until reaching meaningful estimates over the entire TF
domain. If at the end of the process, the frequency (or
time) resolution is not satisfactory, the time (or frequency)
resolution is decreased, i.e., the corresponding ν0 (or τ0 )
is increased, and the process iterates. This process allows
to adjust the TF filtering to the specific needs of analysis.
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In this study, we used {τ0, ν0, λ} = {0.05, 0.046, 0.300},
with 2048 frequency points (corresponding to {	t,	f} =
{10.9 s, 0.039 Hz}), because among all the explored com-
bination of parameters which gave γik(t, f ) ∈[ 0, 1], this
was associated to the minimum degree of TF filtering. An
example of this scheme was given in [14].

Estimation of synchronization indices
The time course of coherence, partial coherence, and
phase difference is extracted by averaging the correspond-
ing TF representation in specific TF regions.
The region where γik(t, f ) is significant, i.e., that where

the two signals are sharing approximately the same instan-
taneous frequencies, is defined as:


ik ≡
{
(t, f ) ∈ (R+ × R

+)
∣∣ γik(t, f ) > γTH(t, f )

}
; (10)

where γTH(t, f ) is a threshold function, estimated by using
surrogate data [13], and which depends on the TF res-
olution of the spectra. Briefly, γTH(t, f ) is obtained by
estimating the TF coherence between several realizations
of uncorrelated white Gaussian noises, and taking at each
TF point the 95th percentile of TF coherence estimates
[13].
Given that we are interested in assessing the influence

of respiration on HPV and SAPV, the TF region where the
time course of spectral coherence is estimated is centered
around respiratory rate, fR(t), and is defined as:


(γ ) ≡
{
(t, f ) ∈ (R+ × R

+)
∣∣ f = fR(t) ± 	f

2

}
(11)

where 	f is a term related to the frequency resolution.
Respiratory rate, fR(t), is estimated from the TF spectrum
of the respiratory signal, as the frequency corresponding
to the maximum of the instantaneous spectral peak.
The TF region


(θ )
ik where the time course of phase differ-

ence index is estimated is composed of those part of 
(γ )

in which coherence is statistically significant:


(θ )
ik ≡ {


(γ ) ∩ 
ik

} ◦ R(t, f ); (12)

In this expression, R(t, f ) is a rectangle of sides
2 s×	f

2 Hz and ◦ denotes the opening (processing tech-
nique which involves erosion and dilation). The opening
excludes from {
(γ )

ik ∩ 
ik

}
the portions of TF domain that

are smaller than R(t, f ), thus adding robustness to the final
estimates.
The time course of the band coherence, as well as the

time course of partial coherence, is then obtained by
averaging γik(t, f ) and γik/z(t, f ) in 
(γ ):

γik(t) = 1
	f

∫

(γ )

γik(t, f )df ; γik/z(t) = 1
	f

∫

(γ )

γik/z(t, f )df

(13)

Index θik(t) is estimated (in radians) by averaging the
TFPD spectrum in 


(θ )
ik :

θik(t) =
[∫



(θ )
ik

θik(t, f )df
] / [∫



(θ )
ik

df
]

(14)

The time delay associated to θik(t) is estimated (in sec-
onds) by indexDik(t), defined as:

Dik(t) = θik(t)
2π fR(t)

(15)

Amethod to reduce the uncertainty of phase difference in
non-stationary signals
The cross spectra Sik(t, f ) are complex functions, and as
such, their phase is θik(t, f ) = arg[ Sik(t, f )exp(j2nπ)], with
n ∈ Z. The periodicity of 2π introduces an uncertainty
over the actual value of θik(t, f ), which may prevent one
from drawing conclusions about the temporal sequence
of events described by xi(t) and xk(t). For instance, it is
not possible to determine whether xi(t) precedes or lags
behind xk(t), since values for θik(t) + n 2π and Dik(t) +
nTR(t), where TR(t) = 1/fR(t), are positive for n > 1 and
negative for n < 1. Although in cardiovascular applica-
tions the range of values for n is usually reduced to
n = {−1, 0, 1} by considering physiological informa-
tion [10], the uncertainty still remains. In the contest of
non-stationary signals, we propose to use TF coherence
estimates as control parameters to reduce this uncer-
tainty. The idea is that, the lowest the time delay between
non-stationary spectral components, the highest the TF
coherence. This is due to the fact that TF coherence is a
measure of local correlation. Thus, to determine the actual
time delay among {Dik(t) − TR(t),Dik(t),Dik(t) + TR(t)},
that is associated to phase difference θik(t), one can use
the following procedure: (i) Generate a set of pairs of
delayed signals {xi(t), xk(t+ rt0)}, with r ∈ Z and being t0 a
small time delay. (ii) Estimate γik(t; r), θik(t; r) and Dik(t; r)
between each pair of signals for each r, as well as their
temporal median γ

(m)
ik (r), θ

(m)
ik (r) and D(m)

ik (r). (iii) Find rm,
as the sample for which γ

(m)
ik (r) is maximal. (iv) Among the

possible time delays {Dik(t) − TR(t),Dik(t),Dik(t) + TR(t)},
the closest to rmt0 is the actual one.

Statistical analysis
Statistical analysis of each data set is performed as fol-
lows. The time course of each general index from one
subject s is denoted as I(t, s), with I(t, s) ∈ {γik(t, s),
γik/z(t, s), θik(t, s),Dik(t, s)}, with {xi(t), xk(t)} ∈ {xH(t), xS(t),
−xR(t)}, and s ∈ {1, . . . ,N}, being N the number of
subjects.
The median time course of I(t, s), I (m)(t), estimated

across subjects, as well as the interquartile range, is used
to describe the pattern of response of the population
during a given condition.
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The temporal median values of indices I(t, s), denoted
as I (m)(s), are estimated during epochs where stationar-
ity is assumed, and are used to: (i) Assess inter-conditions
differences, i.e., whether I (m)(s) estimated during a given
condition are statistically different from I (m)(s) estimated
during another condition. (ii) Assess the inter-indices dif-
ferences, i.e., whether I (m)

ik (s) estimated during a given
condition are statistically different from I (m)

pq (s) estimated
during the same condition, with (i, k) �= (p, q).
Pairwise comparisons between the same indices eval-

uated in different epochs are performed by using the
Wilcoxon signed rank test, while comparisons between
different indices or between the same indices but in dif-
ferent data sets are performed by using the Wilcoxon
ranksum test. Statistical significance is assumed for
P < 0.05.

Results
Simulation study
A simulation study was carried out to verify that TFDs
can be used to correctly estimate the time delay between
two non-stationary spectral components of signals xi(t)
and xk(t), even when θik(t) > 2π . The SAPV signal from
subjects of TTSR data were used to create pairs of signals
characterized by a known time delay T :

{
x1(t) = xS(t, s) + u1(t)
x2(t) = xS(t − T , s) + u2(t)

(16)

where T = 3
2f (m)

R
= 3

2T
(m)
R , xS(t, s) is the complex analyt-

ical signal representation of SAPV of subject s, f (m)
R is the

median value of the respiratory rate, and u1(t) and u2(t)
are two zero-mean complex white Gaussian noises asso-
ciated to a SNR equal to 10 dB. The procedure described
in the previous section was applied, and coherence, phase
difference and time delay between {x1(t), x2(t + rt0)}, with
r ∈ {−30,−29, . . . , 30} and t0 = 0.5 s, were estimated.
Results are shown in Figure 1. In panel (a), the results

from only two signals {x1(t), x2(t)}, obtained from the
same xS(t), are shown. The highest coherence estimates
(median value γ (m)

12 = 0.997) were obtained for a time
shift rt0 = 7.5 s, that is very close to the actual time delay
T = 7.28 s. As expected, for rt0 = 7.5 s, phase differences
and time delay were almost zero.
For n ∈ {−1, 0, 1}, median time delay estimates

D(m)
12 + nT (m)

R were equal to {−2.49, 2.37, 7.22} s, respec-
tively. Given that coherence estimates assessed for the
closest rt0 to D(m)

12 + nT (m)
R , {−2.50, 2.50, 7.00} s, were equal

to {0.884, 0.936, 0.997}, phase difference and time delay
were chosen for n = 1, i.e., θ12(t) = θ12(t) + 2π and
D12(t) = D12(t)+T (m)

R = 7.22 s. In Figure 1b, global results
obtained considering all 14 pairs of signals are shown.
Time delays T are plotted over their estimatesD(m)

12 +nT (m)
R ,

with n ∈ {−1, 0, 1}. Owing to the assessment of the coher-
ence estimates, the correct time delay values, those for
n = 1, were estimated.
These results confirm those from previous studies, and

demonstrate that the methodology described in Sections
‘Cross time-frequency analysis’ offers the possibility of
estimating TF coherence and time-varying phase differ-
ence accurately [14,25,26].

Dynamic interactions during tilt table test
Results from TTSR data set
An illustrative example of subject-based cross TF analy-
sis of signals {xi(t), xk(t)} ∈ {xH(t), xS(t),−xR(t)} by TFD
is shown in Figure 2. Time-frequency coherence func-
tions γik(t, f ), partial coherence γik/z(t, f ) and phase dif-
ference spectra θik(t, f ) are shown in panels a–c, d–f,
and g–i, respectively. The time course of the synchro-
nization indices are shown below each TF representa-
tion. These indices changed during time, showing that
correlations between cardiovascular oscillations are time-
varying. Although the respiratory rate fR(t) changed fast
during the entire test, the signals were highly correlated
inside 
( γ ), which in a–c and d–f is delimited by white
and black contour, respectively. The time-course of coher-
ence indicates that the strength of the coupling, although
high, was intermittent (see γik(t) around 250 and 400 s).
As expected, in (t, f ) ∈ 
(γ ), partial coherence γSH/R(t, f )
was lower than γSH(t, f ). Importantly, the influence of res-
piration was removed even when the respiratory rate was
inside the traditional LF range, fR(t) < 0.15Hz. The same
held true for γRS/H(t, f ), coherence between −xR(t) and
xS(t) after having removed xH(t), and γRH/S(t, f ), coher-
ence between −xR(t) and xH(t) after having removed xS(t).
Region 


(θ )
ik , which in panels g–i is delimited by a black

contour, only includes portions of 
(γ ), where coherence
estimates were statistically significant. In this particular
example, differences between 
(γ ) and 


(θ )
ik are visible dur-

ing the transition from supine to head-up tilt positions
and around 400 s. Interestingly, in this subject, the posi-
tion changes caused fast changes in partial coherence,
phase difference and time delay indices.
Indices extracted from population TTSR are given in

Figure 3, where black lines and shadowed area represent
median trends and interquartile ranges across the 14 sub-
jects, respectively. For all indices, the interquartile range
is low, indicating that in all subjects cardiovascular signals
are related by a common mechanism. In median, spectral
coherence, shown in Figure 3a–c, was very high during
the entire test and decreased after the position changes.
The interquartile range of γRS(t, s) was lower than that of
γSH(t, s) and γRH(t, s), indicating that the coupling between
respiration and SAPV was less affected by inter subject
variability. Partial spectral coherence, γik/z(t, s) shown in
Figure 3d–f, was always lower than spectral coherence
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Figure 1 Results of the simulation study. (a) Results from only two signals. Actual time delay wasT = 7.28 s. Highest coherence estimates γ12(t; r)
were obtained for rt0 = 7.5 s. For rt0 = 7.5 s, phase difference θ12(t; r) and time delayD12(t; r) indices were almost zero. (b) Global results obtained
considering all the 14 pairs of signals. EstimatesD(m)

12 +nT (m)
R are plotted over actual time delayT , for n ∈ {−1, 0, 1}. Owing to coherence analysis, the

correct time delay values, those for n = 1, were selected. Red cross indicates time delay estimate for the signals whose results are shown in panel (a).

γik(t, s). Importantly, during the test, γik/z(t, s) changed
regardless of γik(t, s), thus showing that partial coher-
ence reveals new information that is independent from
coherence estimates. Orthostatic stress due to position
changes caused phase difference and time delay, shown in
Figure 3g–l, to change. The most pronounced change was
that between {−xR(t), xH(t)}. Notably, changes observed in
θik(t)were not due to changes in fR(t), sinceDik(t) changed
as well.
To further portray the comparison between the esti-

mated indices, the median trends I (m)(t) are shown in
Figure 4, while the distributions of the temporal median,
I (m)(s), are given in Figure 5. Note that in TTSR, median
values I (m)(s) were estimated in the intervals which are
denoted by bold gray lines in Figure 4. Numeric values
are reported in Table 1. Spectral coherence between the
three pairs of signals, shown in Figures 4a and 5a, fol-
lowed very similar patterns. After upward and downward
movement, from TES to THT and from THT to TLS, coher-
ence abruptly decreased. Previous values were restored in
about 1–2min. During head-up tilt, γ (m)

RS (s) was statisti-
cally higher than during TES and TLS (P < 5 · 10-4). During
head-up tilt, the coupling between −xR(t) and xS(t) was
also higher than the coupling between −xR(t) and xH(t),
γ (m)
RS (s) > γ (m)

RH (s) (P < 0.023).
Partial coherence estimates, shown in Figures 4b and

5b, were always lower than the corresponding coher-
ence estimates γ

(m)
ik (s) < γ

(m)
ik/z (s)(P < 2 · 10-5). This is not

surprising since according to the physiological model,
respiratory activity affects both HPV and SAPV. Dur-
ing head-up tilt, γ (m)

RS/H(s) was higher than during both

TES and TLS (P < 0.043), γ (m)
RH/S(s) was lower than dur-

ing TLS (P < 0.011), and γ (m)
SH/R(s) was lower than during

TES (P < 0.025). The increase in γ (m)
RS/H(s) during head-

up tilt indicates that, owing to the position change, the
respiratory component in xH(t), was no longer able to
explain the coupling between the respiratory components
in xR(t) and in xS(t). The fact that γ (m)

SH/R(s) was higher
during TES indicates that in supine position, the respi-
ratory induced oscillations in SAPV and HPV were not
perfectly fitted by −xR(t), and that after removing respira-
tion, the residual coupling represents mutual SAPV-HPV
interactions.
The comparison between γik/z(t, s) for different {i, k, z}

shows that during TES, γ (m)
RH/S(s) < γ (m)

SH/R(s) (P < 0.011). Dur-
ing THT, γ (m)

RH/S(s) < γ (m)
RS/H(s) (P < 3 · 10-4), and γ (m)

SH/R(s) <

γ (m)
RS/H(s) (P < 0.026). During TLS, no differences were found

between partial coherence estimates. The fact that the
coupling between {xS(t), xH(t)} after removing −xR(t),
γSH/R(t, s), was not lower than both γRS/H(t, s) and γRH/S(t, s)
indicates that RSA and the respiratory induced oscilla-
tion in SAPV were not merely reflecting −xR(t), and that
closed loop interactions between SAPV and HPV had an
important role in determining the strength of the coupling
between them around the respiratory frequency.
In Figures 4c and 5c, a comparison between phase dif-

ference estimates is shown. Head-up tilt caused θ (m)
RH (s)

to statistically change from both TES and TLS (P < 0.002).
Similarly, θ (m)

RS (s) changes from TES to THT (P < 0.035). Dur-
ing supine position, no differences were found between
θ (m)
RS (s) and θ (m)

RH (s), while during head-up tilt the differ-
ences between θ

(m)
ik (s) and θ (m)

pq (s), for (i, k) �= (p, q), were
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Figure 2 Cross TF representations between SAPV (S), respiration (R) and HPV (H) from a subject of TTSR data set. (a)–(c) Time-frequency
coherence γik(t, f ); 
(γ ) is delimited by white contour. The time course of γik(t) is reported below. (d)–(f) Partial TF coherence γik/z(t, f ); 
(γ ) is
delimited by black contour. The time course of γik/k(t) is reported below.(g)–(i) Phase difference spectra θik(t, f ) with (t, f ) ∈ 


(θ )
ik . The time course of

θik(t) andDik(t) are reported below.

significant. The same changes observed in θik(t) are also
observed inDik(t).

Comparison between TTSR and TTCR data set
The distribution of the temporal median I (m)(s) extracted
from TTCR data set is shown in Figure 5e–h, while
numerical results are reported in Table 1. A segment of
two representative respiratory signals, xR(t), from TTSR
and TTCR data sets, as well as their TF spectra are shown
in Figure 6a,b. Respiratory signals from TTSR are non-
stationary and relatively narrow band, while xR(t) from
TTCR are characterized by a wider instantaneous spectra.

The distribution of the median respiratory frequency, f (m)
R ,

reported in Figure 6c,d, shows that respiratory frequency
had a higher inter-subject variability in TTSR, (respiratory
protocol in TTCR was the same for all the participants),
while intra-subject variability was higher in TTCR.
Although in the two data set the respiratory pattern

differs substantially, results obtained with the same pro-
cedure are consistent. Pairwise comparisons between all
indices I (m)(s) extracted from TTSR and TTCR show that
differences were never significant, except for coherence
estimates obtained during head-up tilt, that in TTCRwere
lower than in TTSR (P < 0.001).
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Figure 3 Results from population TTSR (see Section ‘Tilt table test during spontaneous respiration (TTSR)’). Black line and shadowed area
denote the median trend and the interquartile range of estimates across subjects. From left to right: interactions between {xH(t), xS(t)} (SAPV-HPV),
{−xR(t), xH(t)} (RESP-HPV), {−xR(t), xS(t)} (RESP-SAPV). From top to bottom: time course of: (a)–(c) coherence γik(t), (d)–(f) partial coherence γik/z(t),
(g)–(i) phase difference θik(t) and (j)–(l) time delayDik(t). Vertical lines denote early supine TES, head-up tilt THT and later supine TLS conditions.
Dashed lines in (a)–(c) represent the mean value of the threshold function used to assess the significance of coherence estimates.

Changes during autonomic blockade
The distribution of median indices I (m)(s) from the auto-
nomic blockade data set are shown in Figure 7, while
numerical values are reported in Table 2. The compar-
isons between control and blockade conditions included
only those subjects in which a given index was esti-
mated for at least 3min. As expected, parasympathetic
blockade due to atropine injection had a much stronger
effect than propranolol sympathetic blockade, especially
on the interactions that involve HPV. Atropine had virtu-
ally no effect on the interaction between {−xR(t), xS(t)},
while it reduced the strength of coupling between

{xS(t), xH(t)} (P < 0.047). Although the coupling between
{−xR(t), xH(t)} decreased, this decrease was not sta-
tistically significant (P < 0.078). The decrease in par-
tial coherence γ (m)

SH/R(s) from 0.623 ± 0.297 to 0.365 ±
0.172 (P < 0.047) indicates that the amount of coupling
between {xS(t), xH(t)} that still remained after atropine
injection was mainly due to respiration. After atropine
injection, γ (m)

RS/H(s) increased toward values of γ (m)
RS (s). This is

likely due to the fact that after parasympathetic blockade,
respiratory HPV oscillations decreased; consequently,
xH(t) was no longer able to estimate the communality
shared by {−xR(t), xS(t)} around respiratory frequency.
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Figure 4 Results from TTSR data set.Median trend estimated across 14 subjects of indices. (a) Coherence γ (m)
ik (t); (b) Phase difference θ (m)

ik (t); (c)
Partial coherence γ (m)

ik/z (t); (d) Time delayD(m)
ik (t). Interactions between {xS(t), xH(t)}, {−xR(t), xH(t)}, {−xR(t), xS(t)} are reported in black, red, and

blue, respectively. Solid gray lines in panel (a) mark the intervals in which temporal median I (m)(s) are estimated.

Due to coherence reduction, θ (m)
SH (s) and θ (m)

RH (s) were esti-
mated in only four subjects. In these subjects, parasym-
pathetic blockade caused the latency between respiratory
oscillations in {xS(t), xH(t)} to change of about 1.2 s. These
changes were not significant, probably due to the small
number of subjects involved in the comparison. Interest-
ingly, within this framework, this change may imply a
reverse of the causality in HPV-SAPV interactions, that
after atropine injection would be characterized by respira-
tory oscillations in HPV preceding respiratory oscillations
in SAPV.
Propranolol caused γ (m)

SH (s) to slightly decrease
(P < 0.078). This may indicate that sympathetic mod-
ulation is also involved in the HPV-SAPV interactions.
Phase difference θ (m)

RS (s) also slightly changed (P < 0.078),
i.e., after sympathetic blockade phase differences between
−xR(t) and xS(t) decreased.

Discussion
The main purpose of this study was to describe a new
framework for characterizing the dynamic interactions
between non-stationary signals and to demonstrate its
usefulness in the analysis of cardiovascular control. The
most important contributions of the study are: For the
first time, non-parametric time-frequency analysis is used
to explore the interactions between the three most rel-
evant cardiovascular signals (heart period, arterial pres-
sure and respiration) simultaneously. Non-parametric

time-frequency partial coherence is used, for the first
time, in the assessment of the cardiovascular regulation. A
new method for reducing the limitation of phase period-
icity in the estimation of the latencies between two non-
stationary spectral components is proposed. Additionally,
in this article we had the unique opportunity to analyze
the changes in the interactions between cardiovascular
signals after autonomic blockade.

Cross time-frequency analysis
The methodology presented in this article is based on
TFD and provides a robust and fast tracking of coher-
ence, partial coherence, phase difference and time delay,
by means of a procedure composed of the following steps:
(i) TF representations of spectra, coherence, partial coher-
ence and phase differences are estimated through (1)–(9);
(ii) A statistical test is performed to localize TF regions,

ik, where the strength of the local coupling between sig-
nals {xi(t), xk(t)} is significant [13]; (iii) A time-varying
spectral band, 
(γ ), whose bandwidth is related to the
frequency resolution of the TF representation, is defined
around the respiratory rate. (iv) Time-varying spectral
bands, 


(θ)

ik , which include the portions of 
(γ ) in which
coherence estimates are significant are localized. A mini-
mum bandwidth and duration, given by R(t, f ), is imposed
to 


(θ)

ik by the opening. (v) The time course of coher-
ence and partial coherence is estimated by averaging the
corresponding TF representations in 
(γ), while phase
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Figure 5 (a)-(d): Results from the TTSR data-set. (e)-(h) Results from the TTCR data-set. Circles and bars represent the median and the
interquartile range of the temporal median of indices I(t) ∈ {γik(t), γik/z(t), θik(t),Dik(t)}. In TTSR, on the left, temporal median are estimated in early
supine (TES), head-up tilt (THT) and later supine (TLS) positions. In TTCR, on the right, temporal median are estimated in supine (TES) and head-up tilt
(THT) positions. Dashed lines in (a) and (e) represent the mean value of the threshold function used to assess the significance of coherence estimates.

difference changes are estimated by averaging the phase
difference spectrum in 


(θ)

ik . (vi) Time delay is estimated
to reduce the influence of instantaneous frequency over
phase difference estimates.
In this study, the respiratory rate is used to localize


(γ) and to convert phase difference into time delay esti-
mates. However, in the case in which the respiratory signal
was not available or the interest focused on interactions
around another spectral component, the respiratory fre-
quency should be replaced by the central frequency of the
instantaneous spectral peak of interest in |Sik(t, f )|.
One of the most important aspects of this procedure

is the localization of specific TF regions to estimate any
given index. This offers the possibility of solving the
problem of estimating the time course of indices that
are reliable only around specific time-varying oscillations.
Moreover, the statistical assessment of coherence level in

the phase difference estimation add further robustness to
the estimates.
This TFD has been used because it offers the possibil-

ity of independently controlling the time and frequency
filtering, and it is characterized by fine resolution. Its
capability of accurately estimating the TF structure of
physiological and synthetic real-like cardiovascular sig-
nals has been demonstrated in different studies [27-31].
In a recent study, TFD has been shown to provide more
accurate coherence estimates than multitaper spectro-
gram and continuous wavelet transform [13]. The estima-
tion of the phase differences in the joint TF domain was
used in few studies, where it was performed by wavelet
[32,33], Rihaczek [34], and reduced interference distribu-
tions [35]. Among them, no one focuses on the character-
ization of cardiovascular dynamics. The simulation study
performed in this article shows that TFD gives accurate
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Table 1 Results of tilt table test

TTSR data set TTCR data set

Index TES THT TLS TES THT

γ (m)
SH (s) [nu] 0.965/0.062 0.974/0.033 0.957/0.067 0.950/0.072† 0.906/0.078

γ (m)
RH (s) [nu] 0.962/0.037 0.965/0.049 0.950/0.038 0.940/0.028† 0.883/0.101

γ (m)
RS (s) [nu] 0.974/0.044† 0.986/0.021 0.954/0.061† 0.952/0.032 0.940/0.052

γ (m)
SH/R(s) [nu] 0.650/0.166† 0.531/0.238 0.595/0.266 0.612/0.317 0.647/0.217

γ (m)
RH/S(s) [nu] 0.508/0.176 0.407/0.181 0.607/0.256† 0.550/0.170† 0.493/0.166

γ (m)
RS/H(s) [nu] 0.534/0.268† 0.710/0.280 0.577/0.197† 0.714/0.121 0.719/0.161

θ (m)
SH (s) [rad] 0.340/0.595 0.835/0.850 0.427/0.710 0.511/0.396† 0.835/0.231

θ (m)
RH (s) [rad] −0.527/0.920† 0.170/1.089 −0.621/0.705† −0.274/0.559 −0.154/0.995

θ (m)
RS (s) [rad] −1.110/1.465† −0.447/1.291 −0.369/1.339 −0.867/0.498† −0.546/0.490

D(m)
SH (s) [s] 0.308/1.015 0.577/0.797 0.270/0.637 0.485/0.413 0.798/0.371

D(m)
RH (s) [s] −0.345/1.203† 0.133/0.914 −0.419/0.852† −0.281/0.764 −0.153/0.966

D(m)
RS (s) [s] −0.751/2.191† −0.326/1.740 −0.276/1.058 −0.862/0.817† −0.509/0.547

a†: values are statistically different from head-up tilt condition P < 0.05.
bFor each indexI(t, s), values are given as the median and the interquartile range (med/iq) ofI (m)(s), whereI (m)(s) is the temporal median ofI(t, s).

estimates of phase difference and time delay, and confirm
previous results [14,26].
To the extent of our knowledge, this is the first time that

TF partial coherence is used. Partial coherence includes
information from three signals sharing a similar oscilla-
tion [20]. It was shown that in a given triplet, the lowest

partial coherence estimate is obtained when the signal
which contains the shared oscillation with the better sig-
nal to noise ratio is extracted [21]. In other words, the
better the extracted signal estimates (explains) the other
two, the lower the partial coherence. In this study, par-
tial coherence was the most sensitive index to orthostatic

Figure 6 Respiratory protocols in TTSR and TTCR. Representative examples of respiratory signal xR(t) as well as its TF spectrum from (a) TTCR; (b)
TTSR. Signal segments were recorded in supine position. (c), (d): circles and bars represent medians and the interquartile ranges of median
respiratory rate (f (med)

R ) and interquartile range of respiratory rate (f (IQ)R ), during supine and head-up positions for both TTSR and TTCR data-sets.
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Figure 7 Results from autonomic blockade experiment. Circles represent the median value of a given index from a single subject, I (m)(s).
Crosses represent the median of I (m)(s). On the left: comparison between indices from control condition and after atropine injection. On the right:
comparison between indices from control condition and after propranolol injection. Dashed line in (a), (b) represent the mean value of the
threshold function used to assess the significance of coherence estimates.

stress, in the sense that in γik/z(t) changes due to head-up
tilt were more pronounced than in other indices, at least
in spontaneous breathing.

Dependence of phase difference on signal representations
Phase difference estimates depend on how the informa-
tion carried by a signal is organized on the temporal axis.
Thus, the phase of a cross spectrum is sensitive to any
transformation thatmay involve the analyzed signals, such
as change of sign, inversion, derivative etc. Continuous
cardiovascular signals are often obtained by interpola-
tion of discrete values unevenly distributed in time. The
interpolation process directly affects phase difference esti-
mates. Figure 8 shows the distribution of θ (m)

SH (s) and θ (m)
RH (s)

in TTSR data set obtained by using three different rep-
resentations of HPV. The HPV signal is estimated by
interpolating on the first beat (INT1), on the second beat

(INT2) or by using the IPFM model as in this study. It
is shown that by using INT1 instead of INT2, phase dif-
ferences are reduced of about 1 rad, which supposing a
respiratory rate of 0.2Hz corresponds to about 800ms,
consistent with an average heart beat. The IPFM model
provides estimates in between INT1 and INT2. Impor-
tantly, these differences are sufficient to change the sign
of θik(t) and consequently the interpretation of the tem-
poral sequence of events in cardiovascular interactions.
A reduction of the dependence of phase difference esti-
mates on interpolation may be obtained by modeling the
heart period as a point process [36], thus providing a
continuous assessment of HPV and cardiovascular inter-
actions [37,38]. The estimation of SAPV is also critical.
For instance, when arterial pressure is estimated in the
periphery, its temporal structure also includes the pulse
transit time [30]. Taking together, these considerations
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Table 2 Results of autonomic blockade study

ABCR data set

Index Control Atropine Control Propranolol

γ (m)
SH (s) [nu] 0.942/0.039 0.814/0.133 † 0.958/0.072 0.880/0.094

γ (m)
RH (s) [nu] 0.940/0.028 0.871/0.154 0.939/0.039 0.921/0.116

γ (m)
RS (s) [nu] 0.961/0.031 0.961/0.018 0.944/0.022 0.938/0.044

γ (m)
SH/R(s) [nu] 0.623/0.297 0.365/0.172 † 0.565/0.299 0.513/0.138

γ (m)
RH/S(s) [nu] 0.555/0.190 0.509/0.293 0.530/0.156 0.508/0.123

γ (m)
RS/H(s) [nu] 0.730/0.221 0.847/0.148 0.711/0.090 0.659/0.095

θ (m)
SH (s) [rad] 0.646/0.385 −0.749/1.313 0.497/0.316 0.419/0.254

θ (m)
RH (s) [rad] −0.283/0.370 −1.495/1.285 −0.232/0.633 −0.064/0.546

θ (m)
RS (s) [rad] −0.836/0.240 −0.923/0.408 −0.951/0.511 −0.609/0.662

D(m)
SH (s) [s] 0.652/0.391 −0.499/0.887 0.379/0.404 0.327/0.272

D(m)
RH (s) [s] −0.281/0.379 −0.934/1.428 −0.142/0.795 −0.038/0.526

D(m)
RS (s) [s] −0.842/0.316 −0.987/0.501 −0.882/0.882 −0.461/0.833

a†: values are statistically different from control condition P < 0.05.
bFor each indexI(t, s), values are given as the median and the interquartile range (med/iq) ofI (m)(s), whereI (m)(s) is the temporal median ofI(t, s).

suggest that caution should be used in interpreting phase
difference estimates, especially when they are used to infer
causality. However, these issues do not affect the relative
changes of the indices over time, which describe how the
synchronization of physiological oscillations responds to
changes in external conditions.

Limitations
The main limitation of multivariate analysis based on
cross-spectral identification is the assumption of an
implicit open loop model for the system. This implies
that, although causal information may be inferred, to a

certain degree, by phase difference estimation [9], our
approach is not able to describe feedback and feedforward
pathways of closed loops separately, neither to discrimi-
nate between direct and indirect interactions [39]. Causal
coherence [40-42] or partial directed coherence [43,44],
based on multivariate autoregressive modeling may be
used for this purpose. However, multivariate autoregres-
sive analysis is usually applied in stationary conditions and
strongly depends on the goodness of fit of the model.
Another limitation is that spectral analysis, con-

trary to parametric modeling [45] or information based
algorithms [46], accounts for linear interactions only.

Figure 8 The influence of three different representations of HPV over phase difference estimates in the TTSR data set. HPV is estimated by
interpolating on the first (INT1) and on the second (INT2) QRS complex, or by using the IPFM model, as in the rest of the study. On the left: phase
difference between {xS(t), xH(t)}. On the right: phase difference between {−xR(t), xH(t)}. Markers and bars represent medians and interquartile
ranges of median phase differences θ (m)

ik (s).
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Although cardiovascular variability is known to be
affected by non linear phenomena, such as saturation or
hysteresis, a linear model characterizes a system by means
of indices, such as power, coherence, phase difference,
etc. that have a straightforward physical meaning, which
in turn can be more useful for the interpretation of the
ongoing processes [47].
Finally, cross spectral analysis is not able to assess hemo-

dynamic changes during inspiration and expiration sepa-
rately, neither to capture morphological information from
the analyzed oscillations, thus disregarding potentially
valuable information [48,49].

Physiological results
Major findings were: Intra-subject variability in indices
characterizing the dynamic interactions between car-
diovascular parameters shows that coupling between
physiological rhythms is time-varying and intermit-
tent. In spite of this intra-subject variability, these
indices were consistent among subjects, thus suggest-
ing the presence of common underling mechanisms
of regulation between HPV, SAPV, and respiration.
Systolic arterial pressure changes followed respiratory
flow (see Section ‘Interactions between respiration and
SAPV’) both in supine and standing positions and even
after selective autonomic blockade. During head-up tilt,
latencies between inspiratory/expiratory flow and SAPV
reduction/increase augmented (see Section ‘Interactions
between respiration and SAPV’). Latencies between res-
piration and HPV were comparable to those between
respiration and SAPV during supine position, and signif-
icantly increased during standing. As a result, respiratory
oscillations in SAPV preceded respiratory oscillations in
HPV during standing. In spontaneous breathing, partial
coherence was the most sensitive index to orthostatic
stress. Phase difference estimates were consistent among
spontaneous and controlled breathing patterns, whereas
coherence was higher in spontaneous breathing, espe-
cially during tilt.
Although in line with other studies [3,4,48,50], caution

should be used in drawing conclusions from the results
shown in this study, due to the small number of subjects
involved in the experiments (14 in TTSR and TTCR, and
7 in ABCR data sets).

Interactions between respiration and SAPV
During inspiration and expiration, intrathoracic pressure
changes cause fluctuations in the venous return and car-
diac output, which in turn cause respiratory oscillations
in arterial pressure [3]. Our results show that xS(t) pre-
ceded −xR(t) both in supine and head-up tilt position,
both in spontaneous and controlled breathing and even
after parasympathetic or sympathetic blockade. This tem-
poral relationship was also documented in other studies

[3,48,50], and has been explained by suggesting a close
mechanical dependence between arterial pressure and
the derivative of respiratory volume, i.e., the respiratory
flow [3]. Considering the phase shift due to the deriva-
tive, −d(xR(t))/dt, if −xR(t) and xS(t) were synchronous
θRS(t) = −π/2. Since we found that θRS(t) > −π/2,
our results suggest that SAPV always follows−d(xR(t))/dt
with a short time delay. This delay increased in standing
position [3,50], and the pattern reported in Figure 3c,d
show that this change was fast. The local coupling
between respirations and SAPV increases after 1–2 min
from tilting during spontaneous breathing but decreased
during controlled breathing. Interestingly, during head-
up tilt, respiratory SAPV better explained the coupling
between all the three variables. Autonomic blockade did
not affect the interactions between SAPV and respira-
tion significantly, even if it seems that propranolol slightly
increased the latencies between them.

Interactions between respiration and HPV
Respiratory sinus arrhythmia, the heart rate variability
in synchrony with respiration [2], has both clinical and
physiological relevance [1]. Several hypothesis have been
made to explain the origin of the respiratory oscillations
in HPV. They include a central mechanism [5,11], the
baroreflex [7,8,51], the mechanical stretch of the sinus
node [3], which is enhanced during exercise [52], and a
mixture of them [6,48,50]. However, most of the mech-
anisms underlying RSA are still unclear, and there is no
general consensus about its origin [5]. Importantly, the
estimation of the time delay between HPV and SAPV
around the respiratory frequency is a central point of this
debate [5]. Although the discussion of the origin of RSA
is beyond the scope of this study, it is important to stress
that the presented methodology, which provides robust
and reliable phase difference estimates, may be useful to
gain some insight into this debate.
Our results show that xH(t) preceded −xR(t), proba-

bly due to a similar mechanism as that illustrated in
the previous section, i.e., respiratory oscillations in HPV
followed changes in the respiratory flow. The fact that
changes in HPV anticipated changes in the instantaneous
lung volume was also documented in [3,48,50]. Change
from supine to standing position increased the time delay
between respiratory flow and HPV. This increase may be
related to an increase of baroreflex contribution to the
respiratory oscillations in HPV [3].
Partial coherence analysis shows that during standing,

HPV was not able to explain the coupling between respi-
ration and SAPV, likely due to a decrease in the amplitude
of respiratory HPV. Parasympathetic blockade reduced
the strength of the coupling between HPV and respira-
tion. However, this decrease was not statistically signifi-
cant and did not reduce coherence estimates below the
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significance threshold. The amount of HPV not abolished
by atropine injection was characterized by a phase differ-
ence with respect to−xR(t) close to−π/2, which indicates
very short time delay with respect to respiratory flow.
This supports the hypothesis that non-autonomic, possi-
bly mechanically mediated, mechanisms also contributes
to RSA [3].

Interactions between SAPV and HPV
With intact autonomic modulation the removal of res-
piration influence reduced, but did not abolish, the cou-
pling between respiratory oscillation in SAPV and in
HPV. This indicates that some correlation that cannot
be perfectly captured by respiration is present in the
closed loop between HPV and SAPV around the res-
piratory frequency. Parasympathetic blockade dampened
the local coupling below significance level. Since during
parasympathetic blockade vagal baroreflex is abolished,
while mechanical influences of respiration on SAPV are
intact, the residual interactions between HPV and SAPV
are likely due to correlation between residual mechanical
oscillations in HPV and respiratory induced oscillations
in SAPV. In absence of vagal control, phase differences
were consistent to the direction of the feedforward path.
During parasympathetic blockade, the amount of residual
coupling almost disappeared after removing the influence
of respiration. Interestingly, propranolol slightly reduced
the strength of the coupling, suggesting a small contri-
bution of sympathetic activity on HPV-SAPV interactions
around the respiratory frequency.

Conclusions
In this paper, a new framework for characterizing the
dynamic interactions between non-stationary signals was
presented and its usefulness in the analysis of cardio-
vascular control was demonstrated. The most important
contributions of this methodology are: For the first time,
non-parametric time-frequency analysis is used to explore
the interactions between the three most relevant cardio-
vascular signals (heart period, arterial pressure and res-
piration) simultaneously. Non-parametric time-frequency
partial coherence is used, for the first time, in the assess-
ment of the cardiovascular regulation. A new method for
reducing the limitation of phase periodicity in the esti-
mation of the latencies between two non-stationary spec-
tral components is proposed. Additionally, in this article
we had the unique opportunity to analyze the changes
in the interactions between cardiovascular signals after
autonomic blockade.
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