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Abstract

We consider high-rate systematic recursive convolutional encoders to be adopted as constituent encoders in turbo
schemes. Douillard and Berrou showed that, despite its complexity, the construction of high-rate turbo codes by
means of high-rate constituent encoders is advantageous over the construction based on puncturing rate-1/2
constituent encoders. To reduce the decoding complexity of high-rate codes, we introduce the construction of the
minimal trellis for a systematic recursive convolutional encoding matrix. A code search is conducted and examples are
provided which indicate that a more finely grained decoding complexity-error performance trade-off is obtained.

1 Introduction
The typical turbo code configuration is the parallel con-
catenation of two systematic recursive constituent convo-
lutional encoders of rate 1/2 connected via an interleaver,
resulting in a code of rate 1/3. However, higher rate turbo
codes may be useful in modern wireless, magnetic record-
ing and fiber optics applications [1]. The usual approach
to increase the overall rate is to puncture selected bits
of the turbo codeword [2]. An alternative is to use high-
rate constituent encoders [1,3,4] what, according to [3],
offers several advantages, such as better convergence of
the iterative process, higher throughput, reduced latency,
and robustness of the decoder. If puncturing is still needed
to achieve a required rate, fewer bits have to be discarded
when compared to the conventional rate-1/2 constituent
encoders, resulting in less degradation of the correcting
capability of the constituent code [3].
In [1], a class of systematic recursive convolutional

encoders restricted to be of rate k/(k+1) is proposed. The
codes are optimized in terms of the pairs (di,Ni), where di
is the minimum weight of codewords generated by input
sequences of weight i and Ni are their multiplicities, and
thus suited to be used as constituent encoders of turbo
codes [5]. Good systematic recursive encoding matrices
with increasing values of encoder memory sizes for a
fixed code rate are listed. Turbo codes constructed with
the family of constituent encoders given in [1] are shown
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to outperform some high-rate turbo codes obtained by
puncturing a rate-1/2 constituent encoder.
One major drawback of high-rate constituent encoders

is the decoding complexity since it increases exponentially
with k and with the constraint length for various decod-
ing algorithms. With the motivation of proposing a class
of turbo codes with low complexity, high-rate constituent
encoders, Daneshgaran et al. [4] constructed recursive
constituent encoders of rate k/(k + 1) by puncturing a
rate-1/2 recursive mother encoder. However, a reduction
in decoding complexity is obtained at the expense of a
reduced spectrum (di,Ni) when compared to that of the
best recursive encoder of rate k/(k + 1) [1].
An alternative to reduce the decoding complexity is

to consider trellis representations for the constituent
codes other than the conventional trellis usually adopted.
For nonrecursive convolutional encodes, there is a trel-
lis structure, the minimal trellis [6], which represents
the coded sequences minimally under various complexity
measures. The interest on the minimal trellis represen-
tation comes from its good error performance versus
decoding complexity trade-off [7-10] and its potential
power consumption and hardware utilization reductions
[11]. However, the minimal trellis construction presented
in [6] cannot be readily applied to turbo codes. The rea-
son is that the mapping between information bits and
coded bits produced by the minimal trellis corresponds
to nonrecursive convolutional encoders, while systematic,
recursive mappings are required in turbo coding. This
article presents a method which can fill this gap.
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In this article, we introduce the construction of the
minimal trellis for a systematic recursive convolutional
encoding matrix, the encoding required for the con-
stituent codes of a turbo code. Our goal is to reduce
the decoding complexity of a turbo decoder operating
with high-rate constituent encoders. We also conduct a
code search to show that a more finely grained decoding
complexity-error performance trade-off is achieved with
our approach. We tabulate several new encoding matri-
ces with a larger variety of complexities than those in [1],
as well as code rates other than k/(k + 1). The proposed
minimal trellis can be constructed for systematic recursive
convolutional encoders of any rate. Thus, our approach is
more general than that in [1], while allowing that a dis-
tance spectrum (di,Ni) better than that of the punctured
codes in [4] can be achieved.
The rest of this article is organized as follows. In

Section 2, we introduce some basic definitions and nota-
tions. Section 3 introduces the minimal trellis construc-
tion for a systematic recursive convolutional encoding
matrix. In Section 4, we present search code results.
Section 5 concludes the article.

2 Preliminaries
Consider a convolutional code C(n, k, ν), where ν, k and
n are the overall constraint length, the number of binary
inputs and binary outputs, respectively, while the code
rate is R = k/n. Every convolutional code can be repre-
sented by a semi-infinite trellis which (apart from a short
transient in its beginning) is periodic, the shortest period
being a trellis module. The conventional trellis module
�conv consists of a single trellis section with 2ν initial
states and 2ν final states; each initial state is connected
by 2k directed branches to final states, and each branch is
labeled with n bits.
Theminimal trellis module,�min, for nonrecursive con-

volutional codes was developed in [6]. Such a structure
has n sections, 2ν̃t states at depth t, 2̃bt branches ema-
nating from each state at depth t, and one bit labeling
each branch, for 0 ≤ t ≤ n − 1. The trellis complex-
ity of the module �, TC(�), defined in [6] captures the
complexity of trellis-based decoding algorithms [12]. It is
shown in [6] that TC(�conv) = n

k 2
ν+k and TC(�min) =

1
k

∑n−1
t=0 2ν̃t+b̃t symbols per bit. The state and the branch

complexity profiles of the minimal trellis are denoted by
ν̃ = (̃ν0, . . . , ν̃n−1) and ˜b = (̃b0, . . . , b̃n−1), respectively.
It has been shown in [6] that for many nonrecursive con-
volutional codes the trellis complexity TC(�min) of the
minimal trellis module is considerably smaller than the
trellis complexity TC(�conv) of the conventional trellis
module.
A generator matrix G(D) of a convolutional code

C(n, k, ν) is a full-rank k×n polynomial (inD) matrix that

encodes/generates C, i.e., is realizable by a linear sequen-
tial circuit (called an encoder for C) [13]. Let G(0) denote
the binary matrix obtained when substituting D with 0 in
the matrix G(D). If G(0) is full-rank, then G(D) is called
an encoding matrix and is of particular interest. Two gen-
erator (encoding) matrices G(D) and G′(D) are equivalent
if they generate the same code or, equivalently, if and only
if there exists a k×k nonsingular polynomial matrix T(D)

such that G(D) = T(D)G′(D). A generator matrix G(D)

is called basic if it is polynomial and it has a polynomial
right inverse n×kmatrixG−1(D). A basic encodingmatrix
G(D) has a Smith form decomposition ([13], p. 44), ([14],
Theorem 4.6)

G(D) = A(D)�′(D)B(D), (1)

where the non-zero elements of �′(D) are called the
invariant factors of G(D), the k × k matrix A(D) and the
n × n matrix B(D) are both polynomial with unit deter-
minants. Let νi be the constraint length for the ith input
of a polynomial generator matrix G(D), defined as νi =
max1≤j≤n{degGi,j(D)}. Then the overall constraint length
(already mentioned) is given by ν = ν1 + · · · + νk . Define
also thememory m of G(D) asm = max1≤i≤k{νi}. A basic
generator matrix G(D) is calledminimal-basic if the over-
all constraint length ν is minimal over all equivalent basic
encoding matrices.
A generator matrixG(D) can be decomposed asG(D) =

G0+G1D+· · ·+GmDm, whereGi, for i = 0, . . . ,m are the
k×n (scalar) generator submatrices. The scalar generator
matrix Gscalar is given by [6]

Gscalar =

⎡
⎢⎢⎣
G0 G1 · · · Gm

G0 G1 · · · Gm

. . . . . .

⎤
⎥⎥⎦ . (2)

The “matrix module” is the matrix Ĝ defined as [6]

Ĝ =
⎡
⎢⎣
Gm
...
G0

⎤
⎥⎦ . (3)

The generator matrix G(D) is said to be in the left–right
(LR) (or minimal span or trelis oriented) form, if no col-
umn of Gscalar contains more than one underlined entry
(the Leftmost nonzero entry in its row), or more than one
overlined entry (the Rightmost nonzero entry in its row).
If G(D) is in LR form, then it produces the minimal trellis
for the code [6].
Next, we introduce a method to construct the mini-

mal trellis for systematic recursive convolutional encoding
matrices.
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3 Construction of theminimal trellis for
systematic recursive encodingmatrices

The construction of the “minimal” trellis for the sys-
tematic recursive convolutional encoding matrix Gsys(D)

involves two main steps. First, we find the minimal trellis
of an equivalent nonsystematic nonrecursive minimal-
basic generator matrix in LR form. Then, the mapping
between the information bits and coded bits in this trel-
lis is changed in order to construct a systematic minimal
trellis. The complete algorithm is summarized in the end
of this section.

3.1 Minimal trellis for an equivalent encoder
Let Gsys(D) be a systematic recursive encoding matrix for
a rate R = k/n convolutional code and let q(D) be the
least common multiple of all denominators of the entries
in Gsys(D). We construct a nonsystematic nonrecursive
basic encoding matrix, denoted by Gb(D), equivalent to
Gsys(D), as follows ([13], p. 44), ([14], Theorem 4.6):

• Find the Smith form decomposition of the
polynomial matrix q(D)Gsys(D):

q(D)Gsys(D) = A(D)�′(D)B(D), (4)

where the non-zero elements of �′(D) are called the
invariant factors of q(D)Gsys(D), the k × k matrix
A(D) and the n × nmatrix B(D) are both polynomial
with unit determinants. Thus, the invariant factor
decomposition of Gsys(D) is

Gsys(D) = A(D)�(D)B(D), (5)

where �(D) = �′(D)/q(D).
• Form the desired encoding matrix Gb(D) as the k × n

submatrix of B(D) in (5) consisting of the first k rows.

We can then perform a sequence of row operations
on Gb(D) to construct a nonsystematic nonrecursive
minimal-basic encoding matrix G(D) in LR form.

Example 1. Consider the (n, k, ν) = (4, 3, 3) systematic
recursive encoding matrix [1, Table IV]

Gsys(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 + D + D3

1 + D3

0 1 0
1 + D2 + D3

1 + D3

0 0 1
1 + D + D2 + D3

1 + D3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

The invariant factor decomposition of Gsys(D) is given by

Gsys(D) =

⎛
⎜⎜⎝

1 0 0

D2+D4+D5 1 1

D2+D3+D4 + D5 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

1
1 + D3 0 0 0

0 1 0 0
0 0 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 + D3 0 0 1 + D + D3

D2 + D3 + D4 + D5 0 1 1 + D + D4 + D5

D3 1 1 D + D3

D2 0 0 1 + D2

⎞
⎟⎟⎟⎟⎠ .

(7)

The basic encoding matrix Gb(D) equivalent to Gsys(D)

is readily obtained from (7). Using the greedy-algorithm
[15] we turn Gb(D) into the LR form, or equivalently, into
the minimal-span form [15, Theorem 6.11], resulting in the
following generator matrix

G(D) =
⎛
⎜⎝

1 1 1 1
0 1 + D D 1

D + D2 D + D2 1 1 + D

⎞
⎟⎠ (8)

with overall constraint length ν = 3. The trellis complex-
ity of the conventional module for Gsys(D) is TC(�conv) =
85.33 symbols per bit.

The minimal trellis module for the convolutional code
with G(D) given in (8), constructed with the method
presented in [6], is shown in Figure 1. It has state and
branch complexity profiles given by ν̃ = (3, 4, 4, 4) and
b̃ = (1, 1, 1, 0), respectively. Thus, the trellis complexity
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Figure 1Minimal trellis module for the (n, k, ν) = (4, 3, 3)
convolutional code withG(D) given in (8). The solid/blue
branches represent “0” codeword bits and the dashed/red branches
represent “1” codeword bits. In the first three transitions, the upper
(resp. lower) branches correspond to information bit “0” (resp. “1”), i.e.,
the standard convention.
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of the minimal trellis is TC(�min) = 32 symbols per bit.
In the first three trellis sections, the upper (resp. lower)
branches correspond to information bit “0” (resp. “1”), i.e.,
the standard convention [6]. The solid branches repre-
sent “0” codeword bits and the dashed branches represent
“1” codeword bits. Themapping between information bits
and coded bits in Figure 1 is not systematic, so this trel-
lis does not represent the same encoder as Gsys(D). The
construction of a minimal trellis for systematic recursive
encoders is discussed in the next section.

3.2 Minimal trellis for systematic recursive encoders
Originally, minimal trellises have been constructed for
codes, not for matrices (or encoders). However, the con-
vention that the upper branches refer to the information
bit 0 and the lower branches refer to the information bit
1 yields a particular encoding which, in general, is not
systematic. We note that the association of solid/dashed
branches with codeword bits can not be changed, as any
change in this regard would result in a trellis which would
no longer represent the convolutional code. However, by
enforcing a different convention on the association of the
branches to the information bits, only a different encoding
for the same code is obtained.
Since in the systematic part the information bit and the

coded bit must have the same value, all we need to do is to
change, in the information sections of the minimal trellis,
the standard convention to that where solid branches refer
to the information bit 0 and the dashed branches refer to
the information bit 1. Let us refer to this convention as the
systematic convention. Getting back to the minimal trellis
in Figure 1, for the nonsystematic nonrecursive convolu-
tional encoding matrix G(D) given in (8), we only need to
adopt the systematic convention in the first three sections
to turn this minimal trellis into a systematic trellis.

It remains to show that the minimal trellis in Figure 1
with the systematic convention is the minimal trellis for
the systematic recursive convolutional encoding matrix
Gsys(D) in (6). We note that the generator matrices G(D)

given in (8) and Gsys(D) in (6) are equivalent in the sense
that both generate the same code. Therefore, except for
the edge convention, the two trellises are exactly the same.
Assuming that the information bits at the input of the
encoder associated with Gsys(D) and the information bits
associated with the minimal trellis in Figure 1 occupy
the same positions, the systematic convention is unique.
Consequently, the trellis in Figure 1 with the systematic
convention in the first three sections is the minimal trel-
lis for the systematic recursive convolutional encoding
matrix Gsys(D) in (6).
The complete algorithm for the construction of themin-

imal trellis for a systematic recursive encoding matrix is
summarized as:

1. From Gsys(D), use the Smith form decomposition
procedure to obtain the basic nonsystematic
nonrecursive encoding matrix Gb(D);

2. If Gb(D) does not have the LR property, then apply
the greedy algorithm described in [15] to turn it into
a LR form. Denote the new generator matrix by
G(D). Else set G(D) ← Gb(D);

3. Construct the minimal trellis module for G(D) with
the method presented in [6];

4. Adopt the systematic convention on the minimal
trellis module obtained in the previous step. The
resulting trellis is the desired systematic trellis.

Example 2. Consider the following systematic recursive
(n, k, ν) = (5, 4, 3) encoder matrix from [1, Table IV] with
TC(�conv) = 160 symbols per bit
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Figure 2Minimal trellis module for the (n, k, ν) = (5, 4, 3) systematic recursive encoder. Solid/blue branches represent “0” codeword bits
while dashed/red branches represent “1” codeword bits. The same convention (i.e., the systematic convention) applies to the first four trellis sections.
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Gsys(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 + D + D2 + D3

1 + D + D3

0 1 0 0
1 + D + D2

1 + D + D3

0 0 1 0
1 + D2 + D3

1 + D + D3

0 0 0 1
1 + D3

1 + D + D3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the procedure described in Section 3 we con-
struct the “minimal” trellis shown in Figure 2. This module

has state and branch complexity profiles given by ν̃ =
(3, 4, 4, 4, 4) and b̃ = (1, 1, 1, 1, 0), respectively. Thus,
TC(�min) = 32 symbols per bit.

4 New codes
Graell i Amat et al. [1] tabulated good k × (k + 1) encod-
ing matrices Gsys(D) to be used as component encoders
of parallel concatenated turbo codes. We search for good
(with respect to the pair (di,Ni) constituent systematic

R = 2 /4, 3/4, 3/5, 4/
R TC d2, N2 d3, N3 d4, N4 d5, N5 d6, N6 G(D)

2
4 12.00 4,2 4,2 6,3 8,6 10,9 [2 3 0 1; 3 0 1 1]

24.00 6,2 5,4 6,4 7,2 8,3 [2 3 1 1; 5 1 0 3]

28.00 7,2 5,1 6,1 7,2 8,2 [2 3 3 0; 7 1 2 3]

32.00 8,2 6,4 6,3 8,6 8,2 [3 2 2 3; 4 3 1 3]

48.00 10,2 6,1 6,1 6,1 8,2 [7 2 3 3; 4 5 1 3]

56.00 11,2 6,2 7,2 7,1 8,1 [4 3 1 3; 7 4 4 3]

64.00 12,2 7,3 6,1 7,2 10,20 [7 3 1 2; 2 7 7 7]

80.00 14,2 7,3 8,12 9,31 6,1 [7 4 3 3; 4 3 5 5]
3
4 10.67a 3,3 3,3 4,7 5,15 6,36 [1 1 1 1; 2 0 1 1; 2 3 1 0]

18.67 3,2 3,1 4,4 5,14 6,40 [2 0 1 1; 0 1 2 1; 3 3 1 1]

21.33 4,4 4,15 4,10 6,215 6,86 [3 1 0 1; 2 1 3 3; 2 2 1 1]

32.00a 4,1 4,3 4,1 5,5 6,24 [1 1 1 1; 0 3 2 1; 6 6 1 3]

42.67 5,2 4,2 4,1 5,9 6,23 [1 1 1 1; 6 0 1 3; 4 5 2 3]

53.33 6,3 4,3 5,12 5,7 6,23 [2 3 2 1; 2 0 3 3; 7 1 1 1]

64.00a 6,2 4,1 5,8 5,4 6,11 [1 1 1 1; 4 4 3 1; 2 5 4 3]

74.67 7,2 4,3 4,1 5,5 6,17 [2 1 1 1; 5 7 1 0; 6 0 7 0]
3
5 10.67 3,2 3,1 5,2 7,10 8,5 [1 1 1 0 0; 0 3 0 0 1; 2 0 1 1 0]

21.33 4,1 4,3 5,4 5,1 6,1 [0 2 1 1 1; 3 0 1 0 1; 2 1 3 1 0]

29.33 6,3 5,8 4,1 7,33 6,1 [2 2 3 1 1; 2 3 0 3 0; 3 1 1 1 1]

32.00 6,1 5,4 4,1 6,3 6,1 [0 3 2 1 1; 2 2 1 2 3; 3 1 1 0 1]

37.33 7,2 4,1 5,2 6,2 7,3 [0 3 2 1 0; 2 2 1 1 1; 1 3 1 2 2]

48.00 8,3 5,1 5,2 6,2 6,1 [4 0 3 1 3; 3 2 3 2 1; 2 3 1 1 0]

58.66 8,2 5,2 5,1 6,1 7,2 [6 3 2 3 3; 1 3 3 0 1; 2 2 1 3 1]

64.00 10,3 5,2 5,2 6,3 7,2 [6 2 3 3 3; 1 0 3 2 3; 0 3 2 1 1]

74.67 10,2 5,1 5,2 6,2 8,10 [2 2 3 2 3; 7 6 2 3 1; 2 1 2 1 1]
4
5 14.00a 2,1 3,5 4,17 5,65 6,236 [1 1 0 0 1; 2 0 1 1 0; 0 1 0 1 0; 2 0 2 1 1]

18.00 3,4 3,6 4,23 5,80 6,284 [3 1 0 0 1; 0 2 1 1 1; 0 1 1 1 0; 2 0 2 1 1]

20.00 3,2 3,4 4,11 5,45 6,220 [2 0 1 1 0; 2 2 0 1 1; 0 1 1 1 1; 3 1 3 1 1]

32.00a 4,2 3,1 4,8 5,42 6,179 [2 0 3 1 0; 2 2 0 3 1; 1 0 1 1 1; 0 3 0 1 0]

48.00 4,1 3,1 4,4 5,22 6,105 [2 1 1 1 1; 1 1 3 3 0; 2 2 0 1 1; 0 2 1 2 3]

56.00 5,2 3,1 4,3 5,24 6,129 [2 1 1 1 1; 3 2 3 1 1; 0 2 1 3 0; 2 0 0 3 3]

64.00a 5,2 4,4 4,3 5,14 6,86 [1 0 1 1 1; 0 2 0 3 1; 2 1 3 1 1; 6 6 3 3 2]

72.00 6,4 4,10 4,8 6,392 6,227 [2 0 1 1 1; 1 0 3 0 1; 2 3 1 3 0; 0 4 2 3 3]

aCode listed in [1].
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variety of complexities compared to those listed in [1].
The main idea is to propose templates with polynomial
generator matrix G(D) in trellis-oriented form [6,7] with
fixed TC(�min). This can be done by placing the leading
(underlined) and trailing (overlined) 1’s of each row of the
“matrix module” in specific positions, leaving the other
positions free to assume any binary value.

Example 3. The following “matrix module”

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
∗ ∗ ∗ 1
∗ 1 0 0
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is associated with an ensemble of nonsystematic nonrecur-
sive convolutional codes of rate 3/4 and trellis complexity
of the minimal trellis module TC(�min) = 21.33 symbols
per bit.

Remark. In our code search we enforce that the posi-
tions of the underlined 1’s are in the first k columns of
the matrix module in order to assure that the information
bits of the corresponding minimal trellis are in the first k
sections.

By varying the free positions (marked with an “*”) in
this matrix, several polynomial generator matrices G(D)

are produced. For each matrix G(D) in this ensemble, we
apply Steps (3) and (4) of the algorithm, i.e., we construct
the minimal trellis module for G(D) and adopt the sys-
tematic convention to the information sections, and then
calculate the pairs (di,Ni), for i = 2, . . . , 6. The dominant
term, d2, is called the effective free distance of the turbo
code [16].
Codes of rate R = 2/4, 3/4, 3/5, 4/5 are listed in Table 1,

which indicates the relationship between TC(�min) and
the error performance expressed in terms of the pairs
(di,Ni). The matrix G(D) shown in the table together with
the systematic convention is used to construct the min-
imal trellis that attains the corresponding (di,Ni), i =
2, . . . , 6. The existing codes taken from [1] are also indi-
cated in Table 1. Their (minimal) trellis complexity, shown
in the table, was obtained by applying the complete algo-
rithm of Section 3.2 to their respective systematic recur-
sive encoding matrices. For example, the matrices Gsys(D)

listed in [1, Table IV] for R = 3/4 yield TC(�min) = 10.67
(for ν = 2), TC(�min) = 32 (for ν = 3) and TC(�min) =
64 (for ν = 4). New codes with a variety of trellis com-
plexities are found with our code search procedure. The

effective free distance and/or multiplicity of the code are
gradually improved as more complex codes are sought.

5 Conclusions
We present a method to construct the minimal trellis for a
recursive systematic convolutional encoding matrix. Such
a trellis minimizes the trellis complexity measure intro-
duced by McEliece and Lin [6], which applies to trellis-
based decoding algorithms. As a contribution of this
work, several new convolutional encoding matrices hav-
ing an equivalent systematic recursive encoding matrix,
optimized for turbo codes, are tabulated. They provide a
wide range of performance-complexity trade-offs, to serve
several practical applications.

Endnotes
aThis work was presented in part at the IEEE Interna-
tional Symposium on Information Theory (ISIT 2011),
Saint Petersburg, Russia, July 2011.
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