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Abstract

The literature analysis of propagation models has investigated different statistical prediction methods to identify
appropriate techniques for this purpose. This article presents the results of propagation channel modeling, based
on multivariate time series models using data collected in measurement campaigns and the main characteristics of
urbanization in the city of Belém-PA. Transfer function models were used to evaluate the relationship between
received power signal and other variables, such as the height of buildings, the distance between buildings, and the
distance to the radio base station. A multivariate model was designed in which the contributions due to the height
of the buildings and the distance between buildings had a significant effect on the received power signal. The
utilized sample failed to identify the contribution of distance to the source for the received power signal. The result
obtained with the proposed model appeared to be accurate for the samples used in the study.
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Introduction
Currently, there is a wide range of channel models, with
theoretical fundaments and experimental for predictions
for mitigation of path in mobile communication systems,
consisting of one of the most important steps in the
planning of mobile cellular systems. A correct prediction
enables the designer of mobile systems to have the abil-
ity to predict the minimum power that is required to ra-
diate from a transmitter to meet acceptable quality cover
in a predetermined area, which is extremely important
for improving the technique of frequency reuse and im-
plementation of projects with shared bandwidth.
These models differ in their applicability on different

types of terrain and different environmental conditions.
Thus, there is a suitable model for all situations [1]. In
real cases, the land on which the propagation occurs
has varied topography, vegetation, and buildings ran-
domly distributed. Statistical methods [2] consider a
statistical modeling of signal fading and interprets the
mobile radio signal as a random variable whose
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probability distribution is to be determined Although
the propagation loss calculation can be performed, yet
with limited accuracy, using techniques such as ray tra-
cing, since the intrinsic limitation of this approach is
the high processing time required to evaluate all routes
ray [3,4]. There has been proposed a technique to im-
prove performance computing, enabling to optimize
the simulation models based on the propagation of 3D
ray tracing techniques (Ray-tracing 3D) [5].
The most commonly used methods for the calculation

of coverage are empirical or semi-empirical [6,7]. The
empirical models are proposed from extensive collection
of information signal coverage of a given region and the
use of interpolation techniques. Resulting in expressions
that allow to calculate the average attenuation of the
signal path in the area remains question. In [8], analyses
of the information available about various propagation
models for both indoor and outdoor environments
have been performed, where the main characteristics
of the radio channel, such as fading and path loss, are
discussed.
The models of Perez-Vega and Zamanillo [9] and Hata

[10] are the empirical models. On the other hand, the
propagation models are also derived semi-empirical from
collecting information to cover a given area and the
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classical electromagnetic theory, considering phenomena
such as reflection structures, refraction, and diffraction
at the edges of obstacles. Belonging to the class of mod-
els of Ibrahim–Parsons [11], Walfisch–Ikegami [12], and
others.
In order to make the expressions obtained by Oku-

mura et al. [13] suitable for computer implementation,
Hata developed analytical expressions, based on the
technique of Okumura, that allow to calculate the aver-
age attenuation path, for urban areas, suburban, and
open (rural). The equations proposed by Hata are lim-
ited to certain ranges of input parameters (distances up
to 100 Km) and are applicable only to land almost flat
and are valid for the frequencies of 150 to 1500 MHz.
This model has been proven to be accurate and is used
by computer simulation tools.
The propagation model for urban environments

formulated by Ibrahim–Parsons takes urbanization levels
into account, use of the terrain, and the variation in
height between the mobile station (EM) and the radio
base station (RBS). These empirical characteristics were
extracted from measurements taken in the city of
London, on frequencies between 168 and 900 MHz. This
model was studied in urban areas without undulations.
It is used for distances between antennas smaller than
10 km and receiving antenna height of less than 3 m.
The model of Walfisch–Ikegami has its formulation

based on the characteristics of urban regions, such as
density and average height of buildings, and the width of
the streets. This model is effective in cases where the
height of the antennas RBS is smaller than the average
height of buildings, a situation where there is consider-
able guidance signal RF along the routes considered.
This model predicts two different situations for calculat-
ing the average attenuation path between RBS and the
mobile: the line-of-sight.
To determine which model is most appropriate for a

given region, measurements can be performed in the
area of interest and used to evaluate the performance of
each model against the measurements. However, deter-
mination of the best locations for the RBS is very im-
portant for obtaining adequate data rates and for
providing a better estimation of coverage without need-
ing to conduct a series of signal propagation measure-
ments, which are very expensive and time-consuming. It
is therefore important to develop effective propagation
models for mobile communications in order to provide
guidelines for efficient estimations in mobile communi-
cation systems.
This article presents a time series model for charac-

terizing the received power signal (dBm) at the Gentil
Bittencourt Avenue, located in the urban area of the city
of Belem, Pará, Brazil. This study addresses the possible
links between received power signal and the influence of
the height of the buildings, as well as the distance be-
tween buildings, the transmitter and receiver units.
Transfer function models were used to assess the effects
of the received power on the time series and to evaluate
the relationship between the height of buildings and
other variables of interest.

Materials and methods
Measurement environment
With the objective of observing the behavior of the
received power (dBm), measurements were performed in-
volving one street in the urban area of Belém-PA, Brazil.
The acquisition of verticalization and measurements of
the tested buildings and residences, which summed to a
total of approximately 254 points (including residences
and buildings), was performed using AUTOCADMAP
and ORTOFOTO, obtained in cooperation with the
Companhia de Desenvolvimento e Administração da Área
Metropolitana de Belém—PA, CODEM.
The Gentil Bittencourt Avenue, involved in the meas-

urement campaign, is located in the large urban center
of the city of Belém. This pathway predominates a high
level of vertical integration, exceeding 150 buildings;
some even reach 80 m in height. The study of the street
represents a rich area for theoretical analysis of cellular
coverage-based propagation models, empirical and semi-
empirical, given the size of the analyzed area (macrocell).
Figure 1 represents a part of the Gentil Bittencourt Av-
enue, where the data collection took place.

Setup of measurement
The set of equipment used in the setup of measurements
is given by a transmission system and a receiving system.
The transmission system consists of a transmitter an-
tenna used by the local operator of the model 739632
manufactured by KathereinTM with dual polarization
(±45°) and operates on a scale of 880; a 960 MHz with a
gain of 14.5 dBi of vertical polarization, positioned at a
height of 35 m above the ground. The actually radiated
power by the transmitting antenna was 42.29 dBm.
During the measurements, a CW signal on the fre-

quency of 890.4 MHz was transmitted. To eliminate the
interference, all channels using the same frequency or
frequencies adjacent to the one used in the measure-
ments were off the plant operator’s site. The receiving
system is the model E7474A TDMA produced by Agi-
lent. The receiving antenna used in the measurements
was a monopole model TPM 8003A produced by
PlusTM which operate within a range of 825; 896 MHz
with gain of 3 dBi. This was assembled on a car at a
height of 1.5 m above the ground and the incoming sig-
nal was issued for a laptop that had a PCMCIA card in-
stalled, this card was the interface between the
acquisition and storage system. Besides the acquisition



Figure 1 View of a part of the Gentil Bittencourt Avenue, typically urban environment containing buildings up to 80 m height (font
Google earth, September 2012).
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of the received power, the test motion system uses a
GPS to give the position of geographic information of all
measurements. Due to the environment of measure-
ment, it has a high planting density of mango trees, at
many points occurred loss of satellite visibility, causing
GPS not providing an accurate measurement of geo-
graphical position. In order to avoid this loss of position,
a chronometer was used to measure the time that the
vehicle (with constant speed of 20 km/h) used to travel
the entire length of the studied street. A subsequent
treatment, performed in Matlab 7.1, converted the time
of distance.

Time series
A time series is a set of statistics, usually collected at
regular intervals. Time series data occur naturally in
many application areas, such as economics, finance, en-
vironmental, and medicine. The methods of time series
analysis pre-date those for general stochastic processes
and Markov Chains. The aims of time series analysis are
to describe and summarize time series data, fit low-
dimensional models, and make forecasts [14].
We write our real-valued series of observations as

. . .X−2, X−1, X−0, X1, X2, . . ., a doubly infinite sequence
of real-valued random variables indexed by integer
numbers.
One simple method of describing a series is that of

classical decomposition. The notion is that the series
can be decomposed into four elements:

Trend (Tt)—long-term movements in the mean;
Seasonal effects (It)—cyclical fluctuations related to the
calendar;
Cycles (Ct)—other cyclical fluctuations (such as a
business cycles);
Residuals (Et)—other random or systematic
fluctuations.

The idea is to create separate models for these four
elements and then combine them, either additively:

Xt ¼ Tt þ It þ Ct � Et ð1Þ
or multiplicatively:

Xt ¼ Tt :It:Ct :Et ð2Þ

ARIMA models
Box et al. [15] first introduced ARIMA models, the term
deriving from autoregressive integrated and moving
average.
A key concept underlying time series processes is that

of stationarity. A time series is stationarity when it has
the following three characteristics:

� Exhibits mean reversion in that it fluctuates around
a constant long-run mean;

� Has a finite variance that is time-invariant;
� Has a theoretical correlogram that diminishes as the

lag length increases.

The autoregressive process of order p is denoted AR
(p), and defined by

Yt ¼
Xp

i¼1

φiYt�i þ et ð3Þ

where φ1,. . ., φr are fixed constants. Yt is expressed
linearly in terms of current and previous values of a
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white noise series {et}. This noise series is constructed
from the forecasting errors; {et} is a sequence of inde-
pendent (or uncorrelated) random variables with mean 0
and variance σ2.
Using the lag operator L (the lag operator L has the

property: LnYt = Yt−n) we can write the AR(p) model as

Yt 1� φ1L� φ2L
2 � . . .� φpL

p
� �

¼ et; ð4Þ

Φ Lð ÞYt ¼ et : ð5Þ
where Φ(L)Yt is a polynomial function of Yt.
The moving average process of order q is denoted MA

(q) and defined by

Yt ¼ et þ
Xq

i¼1

θjet�j; ð6Þ

where θ1, θq are fixed constants, θ0 = 1, and {et} are the
sequence of independent (or uncorrelated) random vari-
ables with mean 0 and variance σ2.
Or, using the lag operator

Yt ¼ 1� θ1L� θ2L
2 � . . .� θpL

q
� �

ut ; ð7Þ
Yt ¼ Θ Lð Þut ð8Þ

The combination of the two processes to give a new
series of models called ARMA(p, q) models is defined by

Yt ¼
Xp

i¼1

φiYt�iþet þ
Xq

i¼1

θjet�j: ð9Þ

where again {et} is white noise, {φi/i = 1, 2, . . ., p} are the
coefficients of AR model and θi/i = 1, 2,. . .,q} are the
coefficients of MA model.
Using the lag operator

Yt 1–φ1L–φ2L
2– . . .–φpL

p
� �

¼ 1–θ1L–θ2L
2– . . .–θpL

q
� �

; ð10Þ

Φ Lð ÞYt ¼ Θ Lð Þet : ð11Þ

There is an assumption for ARMA process that the
time series for analysis should be stationary, that is, the
mean of the time series and the covariance among its
observations are not time-varied. This process is station-
ary for appropriate φ and θ.
According to the target model, the process is non-

stationary, so the series should be transformed to a sta-
tionary process be the model construction. This can be
often achieved by a differentiation process. The first-
order differencing of the original time series is defined as

ΔYt ¼ Yt � Yt�1 ¼ Yt � BYt :
For the high-order differentiation, we have

ΔdYt ¼ 1� Bð ÞdYt : ð13Þ
If we ever find that the differenced process is a station-

ary process, then we can look for a ARMA model of
that. The process {Yt} is said to be an ARIMA(p,d,q). If
Xt = ΔdYt is an ARIMA (p, q) process.
After the dth-order differentiations of Yt in Equation

(10), the ARIMA (p,d,q) can be constructed as

Φ Lð ÞYd
t ¼ Θ Lð Þet : ð14Þ

A time series (TS) may be defined as a set of observa-
tions Yt as a function of time [16]. The principal tools
utilized for analysis of a time series are the autocorrel-
ation and partial autocorrelation functions (PACFs).
The autocorrelation function (ACF) represents a sim-

ple correlation between Yt and Yt−k as a function of the
lag k. The ACF of TS {Yt} may be defined as [16]

ρ ¼

XN�k�1

t¼0

Yt � �Yð Þ Ytþk � �Yð Þ

XN�1

t¼0

Yt � �Yð Þ2
: ð15Þ

where N represents the length of the TS and �Y is the
expected value from the observations, calculated for the
time variation (delay) k. The autocorrelation coefficient
(ρ) of a TS varies between −1 and 1.
The PACF represents the correlation between Yt and

Yt−k as a function of the lag k, filtering the effect of the
other lags on Yt and Yt−k. The PACF is defined as the
sequence of correlations between (Yt and Yt−1), (Yt and
Yt−2), (Yt and Yt−3), and so on, because the effects of
prior lag on t remain constant. The PACF is calculated
as the coefficient value φkk in the equation

Yt ¼ φk1Yt�1 þ φk2Yt�2 þ φk3Yt�3 þ . . .
þ φkkYt�k þ et : ð16Þ

Transfer function model
Transfer function model is different from the ARIMA
model. The ARIMA model is univariate time series
model, but transfer function is multivariate time series
model. This means that ARIMA model relates the series
only to its past. Besides the past series, transfer function
model also relates the series to other time series. Trans-
fer function models can be used to model single-output
and multiple-output systems [16]. In the case of single-
output model, only one equation is required to describe
the system. It is referred to as a single-equation transfer
function model. A multiple-output transfer function
model is referred to as a multi-equation transfer



Rozal et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:248 Page 5 of 13
http://asp.eurasipjournals.com/content/2012/1/248
function model or a simultaneous transfer function
model (see [17-20]).
The models of transfer functions use predicted values

of explaining variables so as to produce predictions for
the dependent variable. A general model of the transfer
function, with an explaining variable and k lags, is
expressed as

Yt ¼ μþ β0Xt þ β1Xt�1 þ β2Xt�2 þ . . .
þ βkXt�k þ Zt ð17Þ

Where:

Yt is the dependent variable of the temporal series;
μ is the constant term;
β0 is the parameter associated with the present value of
the explaining variable;
Xt is the present value of the explaining variable;
β1,. . ., βk are parameters associated with the discrepant
values of the explaining variable.
Such values are called impulse response weight or
transfer function weight;
Zt is the temporal series of auto-correlated errors.

Transfer function models are used in series related to
one or more entry series. For example, the daily con-
sumption of electricity may be related to certain envir-
onmental variables, such as external temperature and
relative humidity.
Assume that Xt and Yt are properly transformed series

such that both are stationary. In a linear system with
simple input and output, the series of Xt input and Yt

output are related through a linear filter as

Yt ¼ ν Bð ÞXt þ Nt ; ð18Þ

where ν(B) =
P

−∞
∞ νjB

j is referred to as a filter transfer
function by Box et al. and Nt is a noise series of the sys-
tem that is independent of the input series Xt.
The coefficients in the transfer function model (18)

are frequently called impulse response weights. The
transfer function model is considered stable if the se-
quence of those impulse response weights is finite (abso-
lutely addable), i.e.,

P
|νi| < ∞. Therefore, in a stable

system, a limited entry always produces a limited exit. In
a casual model, the system does not respond the entry
series until it has really been applied into the system. In
other words, the exit is affected by the entries in the sys-
tem only in terms of past or present values. A casual
model is also called realizable model, as it seems to be
all those real physical systems. In practice, one considers
frequently only the following casual stable model:

Yt ¼ ν0Xt þ ν1Xt�1 þ ν2Xt�2 þ . . .þ Nt

¼ v Bð ÞXt þ Nt
ð19Þ
where ν(B) =
P

−∞
∞ νjB

j,
P

|νj| < ∞ and Xt and Nt are
independent.
The objective of the modeling of transfer function is

to identify and to estimate the transfer function ν(B) and
the noise model for Nt on the basis of the available in-
formation of the entry series Xt and of the response
series Yt. The greatest difficulty is that the information
about Xt and Yt is finite, and the transfer function in
(19) contains a infinite number of coefficients. So, as to
relieve that difficulty, the transfer function ν(B) is repre-
sented the following rational way

ν Bð Þ ¼ ws Bð ÞBb

δr Bð Þ ; ð20Þ

where ws(B) = w0 – w1B –···–wsBs, δr(B) = 1 – δ1B –
···–δrB r, and b is a discrepancy parameter that repre-
sents the lag of present time which occurs before the
impulse of the entry variable may produce an effect over
the exit variable. For a stable system, one assumes that
the roots of δr(B) = 0 are out of the unitary circle [14].
Once ws(B), δr(B), and b are found out, the νj weights of
the impulse response may be obtained by being equal
the coefficients of B j in both sides of the following

δr Bð Þν Bð Þ ¼ ws Bð ÞBb ð21Þ

In practice, the values of r and s in system (21) rarely
exceed 2. Some transfer function models may be seen in
Wei [16]. Such models may be used in the identification
of the transfer function parameters. The analysis of such
models indicate that the peak occurrences suggest para-
meters in the numbering item of the transfer function,
very similar to models of moving averages, and the oc-
currence with a behavior of exponential decaying may
indicate the existence of parameters in the transfer func-
tion denominator, which is similar to auto-regressive
models.
The cross-correlation function (CCF) is a useful meas-

ure for direction and intensity between two random
variables. For two stochastic processes Xt and Yt for t =
0, ±1, ±2,. . ., one may say that Xt and Yt are stationary
together with each other if both of them are univariate
stationary processes and if the cross correlation between
Xt and Yt, Cov (Xt, Yt) is a function only of time differ-
ence (s – t). In such cases, the cross covariance function
between Xt and Yt is [16]

γxy kð Þ ¼ E Xt � μx
� �

Yt � μy

� �h i
ð22Þ

where E represents the (average) mathematical
expectance.



Rozal et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:248 Page 6 of 13
http://asp.eurasipjournals.com/content/2012/1/248
For k = 0, ±1, ±2,. . ., with standardization, we have got
the following CCF:

ρxy kð Þ ¼ γxy kð Þ
σxσy

ð23Þ

For k = 0, ±1, ±2,. . ., where σx and σy are the devia-
tions standard of Xt and Yt, respectively. It is important
to realize that the cross covariance function γxy(k) and
the CCFs ρxy(k) are the generalizations of the auto-
covariance and of the autocorrelation functions because
γxx(k) = γx(k) and ρxx(k) = ρx(k). However, unlike correl-
ation function, the CCF is not asymmetrical, that is, ρxy
(k) ≠ ρxy(−k). Instead, we have got

γxy kð Þ ¼ E Xt � μx
� �

Ytþk � μy

� �

¼ E Ytþk � μy

� �
Xt � μx
� � ¼ γyx �kð Þ ð24Þ

which drives to

ρxy kð Þ ¼ ρyx �kð Þ ð25Þ

Thus, the CCF measures not only the intensity of an
association, but also its direction. So, the relation be-
tween the Xt and Yt, series is important to examine the
CCF, ρxy(k), for both lags, the negative and the positive
ones, k > 0 and k < 0. The diagram of the CCF is known
as cross correlogram.
The CCF, ρxy(k), is defined only when Xt and Yt are bi-

variate processes and at the same time stationary. Thus,
in the application of transfer functions, one must at first
evaluate if the Xt and Yt processes are stationary at the
same time.
In the general transfer function model

Yt ¼ ν Bð ÞXt þ Nt ð26Þ

One may assume that the Xt entry series follows an
ARIMA process

Φ Lð ÞYd
t ¼ Θ Lð Þet :t

where at is a white noise, given by

αt ¼ φx Bð Þ
θx Bð ÞXt ð27Þ

This series is frequently called prewhitened entry series.
Applying the same prewhitening transfer in the response
series Yt, one may obtain the filtered response series

βt ¼
φx Bð Þ
θx Bð Þ Yt ð28Þ
As et = θx
−1(B)φx(B)Nt the transfer function model—

changing (27) and (28) into (29), we have got

βt ¼ ν Bð Þαt þ et ð29Þ

The impulse response weights υk may, consequently,
be found out as

νk ¼ σβ
σα

ραβ kð Þ ð30Þ

Thus, the transfer function ν(B) is obtained according
to the following steps:
Prewhitening time for entry series

φx Bð ÞXt ¼ θx Bð Þαt ð31Þ

in other words

αt ¼ φx Bð Þ
θx Bð ÞXt ð32Þ

where at is a white noise series, which represents the
random parts of all data, with zero average and variance
σa
2.
Calculating the filtered exit series
In other words, transforming the exit series Yt using a

prewhitened model to generate the series.

βt ¼
φx Bð Þ
θx Bð Þ Yt ð33Þ

Calculating the sampling CCF ρ̂aβ kð Þ between α and β

to estimate υk.
Identifying b, δr(B) = (1 − δ1B − δ2B

2− ··· −δrB
r) and ws

(B) = (w0 − w1B − ··· −wsB
s) by the agreement of the

standard of v̂k . Once b, r, and s are chosen, preliminary

estimates ŵk and δ̂ j may be found out from their rela-
tion to v̂k as it is shown in Equation (21). So, a prelimin-
ary estimate of the transfer function v̂k will be

v̂ Bð Þ ¼ ŵs Bð ÞBb

δ̂ r

Bð Þ ð34Þ

Once the preliminary model of the transfer func-
tion is obtained, one may calculate the series of noise
estimated

N̂ t ¼ Yt � v̂ Bð ÞXt ð35Þ

Yt � ŵs Bð Þ
δr Bð Þ B

bXt ð36Þ



Figure 2 Received power signal (dBm) along The Gentil Bittencourt Avenue.
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The appropriate model for the noise may be identified
by examining its ACF and PACF or by another identifi-
cation tool of time univariate series. So

φ Bð Þnt ¼ θ Bð Þat ð37Þ
Combining (34) and (35) we have got the following

model of transfer function

Yt ¼ w Bð Þ
δ Bð Þ Xt�b þ θ Bð Þ

φ Bð Þ at ð38Þ

After the identification of a model of preliminary
transfer function, as shown in Equation (24), it is neces-
sary to estimate the general parameters δ = (δ1, . . ., δr)',
w = (w0, w1, . . ., wLs)', φ = (φ1, . . ., φp)', θ = (θ1, . . .,
θLq)', and σa

2. In general, such estimates are carried out
interactively with the help of computer programmes.
Before the model may be used for prediction, control,

or other purposes, it is necessary to test the appropriate-
ness of it. In the transfer function model, it is assumed
that at are independent, white noises of the entry series
Figure 3 Distance to the RBS (m).
Xt and, so, they are also independent from the prewhi-
tened entry series ât . Thus, in the diagnosis test of a
transfer function model, one must analyze the residuals
ât of the noise model as well as the residuals at of the
prewhitened entry model so as to verify is the considera-
tions keep the same, that is to say, if the residuals are in-
dependent. In this case, the cross correlation test is
carried out, in which for a proper mode the sampling
CCF ρ̂aâ kð Þ, between ât and at, must not show standards
and must be within its two standard-errors, 2 (n − k)−1/2;
in other words, the noise series at and the Xt entry series
must be independent.

Analysis and discussion of the results
Most time series analyses and forecasting procedures as-
sume that observations of the time series use equally
spaced time or distance intervals and that processes
should be stationary.
Figures 2, 3, 4, and 5 present the series of received

power signal (dBm) (Yt), distance between the transmitter



Figure 4 Distance between buildings (m).
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and receiver, (X1t), distance between buildings (X2t), and
height of buildings (X3t), respectively, collected along the
Gentil Bittencourt Avenue. The variable of received
power signal (dBm) was used as the dependent variable
(Yt). Selection of the received power signal data as the
dependent variable was made in order to provide infor-
mation on the influence of varying distance between the
transmitter and receiver (X1t), distance between build-
ings (X2t) and height of buildings (X3t), considered in
this case as independent variables.
In Figures 2 and 3, a trend was observed. There is an

indication of a negative correlation between the series of
received power signal (dBm) (Yt) and the distance be-
tween the transmitter and receiver (X1t), i.e., a decrease
in received power signal (dBm) (Yt) is accompanied by
an increase in the distance between the transmitter and
receiver (X1t). To make the series stationary, differentia-
tions were performed.
First, in the construction of a transfer function model,

a set of input data must be pre-adjusted. In the pre-
Figure 5 Height of the buildings (m).
adjustment of the data series, the response series and
the cross-correlation analysis, the following procedures
were used: (i) adjustment of an ARIMA model to the in-
put series so that the residual of the model is white
noise, (ii) filtration of the response series with the same
model used in the input series, (iii) realization of a cross
correlation between the filtered response series and the
filtered input series to determine the relationship be-
tween the two; and (iv) interpretation of the cross-
correlation graph. Autoregressive indicators suggest
terms in the denominator, and indicators of moving
averages suggest terms in the numerator.
Overall, several models are adjusted until they find

one that fits more properly to the data series. The mod-
els are to be adjusted based on the analysis of the ACFs
and PACF.
In Figures 2 and 3, one can observe the presence of

tendency. There is an evidence of a negative correlation
between the grades received signal strength (dBm) (Yt)
and distance between the transmitter and receiver, (X1t),



Table 1 ARIMA models adjusted for the input series

Series (variable) Adjusted model Model

Received signal strength (dBm) Yt ¼ Yt�1 � 0:534 p<0:0001ð Þ at�2 þ a3t ARIMA(0,1,1)

Distance to the RBS (m) 1� 0:967 p<0:0001ð Þ B
� �

1� Bð ÞX1t ¼ 1� 0:309 p<0:0001ð Þ B� 0:420 p<0:0001ð Þ B2
� �

a1t ARIMA(1,1,2)

Distance between Buildings (m) 1� 0:478 p<0:0001ð Þ B
� �

1� Bð ÞX2t ¼ 1þ 0:916 p<0:0001ð Þ Bþ ¼ 0:551 p<0:0001ð Þ B2
� �

a2t ARIMA(1,1,2)

Height of the buildings (m) X3t ¼ 5:382 p<0:0001ð Þ þ 0:893 p<0:0001ð Þ a3t�1 þ a3t ARIMA(0,0,1)

where t is the time index, Yt, X1t, X2t, and X3t are the variables, a1, a1t, a2t, and a3t are random errors, P, is p-value.
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or, a decrease in the received signal strength (dBm) (Yt)
is accompanied by an increase in the distance between
transmitter and receiver, (X1t). To make the series sta-
tionary same differentiations were performed. Observe
that the series (X2t) (Figure 4) was also differentiated.
For the analysis and interpretation of data and calcula-

tion of parameters of the model, a computer program
using the SAS software was designed [21], through
which the subroutine of proc ARIMA made the adjust-
ment of ARIMA models. This adjustment, which is
accomplished in an iterative manner, consists of three
steps. The first is the identification of the model, where
the observed series is transformed into a series station-
ary. The second step is to estimate the model, in which
the orders p and q are selected and the corresponding
parameters are estimated. The third step is to forecast,
in which the estimated model is used to predict future
values of the time series considered.
Table 1 presents the models adjusted for the input

series (p indicates the significance of the estimate). The
autocorrelations of the residues until lag 12 are pre-
sented in Table 2. It may be noted that the descriptive
levels indicate no autocorrelation, i.e., a good fit of the
model.
The correlation of influence of the explanatory vari-

ables is verified. X1t, X2t, and X3t the variable response
Yt, were constructed and analyzed the functions of
cross-autocorrelations between these variables. Figures 6,
7, and 8 show the graphs of the cross-correlation be-
tween the response series Yt and the filtered series X1t ,
X2t , and X3t.
The results for the cross correlations between the

received power signal and the distance to the RBS are
obtained. Figure 6 shows that none of the lags presented
significant spikes. Therefore, it was concluded that, for
Table 2 Residual autocorrelations for the entry series

Series χ2 Pr > χ2 Cross correlations

X1t 1.02 0.7972 0.017 0.002 −0.059 0.000 −0.011 0.000

1.91 0.9928 0.016 0.008 −0.020 0.047 −0.015 −0.013

X2t 0.14 0.9865 0.004 −0.002 0.002 0.004 0.010 −0.020

0.53 1.0000 0.020 0.007 0.025 −0.010 −0.011 0.013

X3t 4.65 0.4597 0.033 0.066 0.102 0.018 −0.043 0.002

16.58 0.1208 0.026 0.084 0.000 0.151 0.091 −0.077
the analyzed sample, the correlation between Y and X1t

showed no significant correlation, being characterized as
white noise. Thus, the X1t variable was not included in
the model.
The results coming from the cross correlations be-

tween Yt and X2t (Figure 7) show the following features.

� There is a significant negative lag spike. This is a
case with a model with feedback.

� There is a lag spike in lag 15, which indicates that in
this model there discrepancy.

� After the first spike, there is only another lag spike
at lag 3, indicating a parameter in the numerator of
the transfer function.

� After the first spike, the graph decays exponentially
with apparently sinusoidal pattern to zero, indicating
the possibility of two or more parameters in the
denominator for the model.

The results coming from the cross correlations be-
tween Yt and X3t (Figure 8) show the following features:

� No positive lag has significant spike.
� There are spikes in the negative lags −14, –6 e −5

(model with feedback), which indicates that in this
model there is a lag.

� After the first spike, it indicates the possibility of the
numerator of the model parameters. The cross-
correlations exhibit an exponential decay in a
sinusoidal pattern. This indicates the possibility of
two or more parameters in the denominator transfer
function model.

The transfer function model adjusted for potency (Yt)
has included explanatory variables X2t (distance between
buildings) and X3t (height of buildings) and according to
the analyzes of the cross-correlations the following
model transfer function was specified:

� For the variable X2t, a discrepancy of two lags and a
parameter in the denominator is specified.

� For the variable X3t, a discrepancy of two lags and
two parameters in the denominator is specified.

� After the identification and estimation of transfer
function model an appropriate process modeling



Figure 6 Cross correlation between the received power signal and the distance to the radio base station.
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(waste) to the model was necessary to estimate
appropriate (model) error.

In this method, we found the following model transfer
function:

Yt ¼ w02

1� δ3B3ð ÞX2t�2

þ w03

1� δ1B� δ5B5ð ÞX3t�2

þ et
1� φ2B2ð Þ 1� φ4B4ð Þ ð39Þ

The CCF was used to assess the relationships between
the input and output variables and define the order and
parameters of the transfer function. The estimated para-
meters of the transfer function and noise model are
made iteratively using various language programs SAS
[21] through the procedure of proc ARIMA. Based on
the information about the cross-correlations, the transfer
Figure 7 Cross correlation between the received power signal and th
function model shown in Equation (40) was applied. It
was necessary to make corrections in the model resi-
duals until it was possible to obtain a better adjustment
of the model to the data, with the residuals showing
white noise behavior.
The residual analysis shown in Table 3, represented by

the first 12 autocorrelations of the shown residuals, indi-
cates a good fit to the modeled data. It can be observed
that the residual autocorrelations, especially in the early
delays, are virtually zero, indicating the presence of
white noise, i.e., the model captured the information
contained in the signal, leaving out only the random
part.
Equation (40) shows the model fitted for the

received power signal (dBm) (Yt), which included the
explanatory variables X2t (distance between buildings)
and X3t (height of the buildings). It can be observed
that both input variables showed a displacement of
two lags in relation to the response variable. This may
be due to the nature of the input variables; both were
e distance between buildings.



Figure 8 Cross correlation between the received power signal and the building height.

Table 4 Cross-autocorrelations of the residuals of the
response series and the input series

Series χ2 P > χ2 Cross correlations

Rozal et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:248 Page 11 of 13
http://asp.eurasipjournals.com/content/2012/1/248
related to the environment where the measurements
were taken.

Yt ¼ �0:008
1� 0:766B3ð ÞX2t�2

þ 0:019
1þ 0:558B� 0:586B5ð ÞX3t�2

þ et
1þ 0:512B2ð Þ 1þ 0:290B4ð Þ ð40Þ

The evaluation of the adjustment for the transfer func-
tion may be observed by means of the cross correlations
among the residuals and the entry variables. Table 4
shows the first 11 correlations (including the zero lag)
for the 2 entry variables. One may observe that the cross
correlations are statistically non-significant. Although
for the variable height of the buildings, in the lags 2 and
9, the correlation has been a little bigger than the one
for the other lags, even so, one may observe that the
values have been, in general, low. Thus, it is acceptable
to consider that the cross correlations of the three entry
variables with the residuals from the model have been
non-significant, indicating that the transfer function
model offers a reasonable adjustment to the data col-
lected. Figure 9 shows the response graph for the model
and the observed values for the response variable. The
yellow-shaded area indicates 95% confidence intervals. A
good fit between the observed signal and the fit signal
was obtained; with these data, predictions of the
strength of the received signal can be made.
Figure 10 shows the variation of received signal

strength (measured and simulated) and theoretical
Table 3 Analysis of the residuals for model (40)

Up to delay Pr > χ2 Cross correlations

6 0.5112 −0.034 −0.004 −0.088 −0.025 −0.040 −0.043

12 0.3712 0.073 −0.074 −0.035 −0.100 −0.083 0.010
models of Ibrahim–Parsons [11], Okumura et al. [13]
and Walfisch–Ikegami [12] as a function of distance
from the transmitter antenna along the Gentil Bitten-
court Avenue in the urban area of Belém-PA.
Each propagation model’s approach varies in relation

to the classification of the analyzed environment. In the
case of locality analysis, simulations of all models were
made considering the characteristics of urban environ-
ment involved, whereas this environment predominate
residences and buildings with an average height varying
from 5 to 80 m, respectively.
In order to make a more careful study of performances

of each model, statistical analyses of the measures were
made for each data file, aiming to measure the devia-
tions between simulated and measured values. With this,
information was available to provide subsidy to state
what the best model for characterizing the propagation
environment for cellular mobile communication of the
studied street. Table 5 shows the average and standard
deviation for each model in dB compared to the values
of received signal power obtained in the field.
And by the analysis of graphs of the results shown in

Table 5, one can deduce that the proposed model is
resulting in lower average deviation when compared
with field measurements. For this model, the mean
square error compared to the theoretical power level is
2.5 dB. In which the maximum acceptable deviation in
the signal level that was received by the mobile in
r

Yt, X2t 0.14 0.9865 0.004 −0.002 0.002 0.004 0.010 −0.020

0.53 1.0000 0.020 0.007 0.025 −0.010 −0.011 0.013

Yt, X3t 4.65 0.4597 0.033 0.066 0.102 0.018 −0.043 0.002

16.58 0.1208 0.026 0.084 0.000 0.151 0.091 −0.077



Figure 9 Observed values for the model response and for the received power signal response variable.
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Figure 10 The signal strength estimated by the models and received by the mobile radio station, the Gentil Bittencourt Avenue.
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relation to the prediction is 8 dB [7]. Note that the aver-
age and standard deviation calculated for the proposed
model showed values very close to those obtained for
the data collected in the field (measured values).
However, from the theoretical models, nearest mea-

sured value is Walfisch–Ikegami model, with a mean
square error of 8.34 dB. Note that this model could also
be used in the prediction of the spread in the analyzed
location. Ibrahim–Parsons and Okumura et al.’s models,
which showed the worst results, should undergo their
Table 5 Comparison between the mean square error, the
standard deviation, and the mean for the four models,
the measured value for Avenida Gentil Bittencourt

Mean squared
error (dBm)

Mean
(dBm)

Standard
deviation (dBm)

Measured – −104.2997 7.8006

Proposed model 2.5821 −104.3195 7.6118

Walfisch–Ikegami model 8.3439 −97.3022 5.8662

Ibrahim–Parsons model 28.7999 −75.8739 6.1063

Okumura et al.’s model 34.9879 −69.6186 5.3701
adjustment coefficients. Possibly the analyzed urban en-
vironment for obtaining these models does not present
many similarities with that found in the studied region
in this study.
Conclusions
In this article, it was shown that how the fitting of signal
strength data series used in multivariate time series may
present advantages compared with other signal propaga-
tion models. The mean squared error obtained with this
methodology was on the order of 2.58 dB, much better
than the traditional models used. Moreover, this model
makes it possible to verify the relationship between the
response series and the other series. It thus shows the
need to use samples containing information on more
streets in order to verify whether there are significant
correlations between the received signal and the distance
to the base station.
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