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Abstract

Performance analysis for microphone arrays with irregular geometries typically requires direct computation of
beamforming gains over the spatial and frequency ranges of interest. However, theses computations can be very
consuming and limit synthesis methods for applications that require rapid answers, as in the case of surveillance
and mobile platforms. A better understanding of microphone arrangements and their impact on performance can
result in more efficient objective functions for optimizing array performance. This article, therefore, analyzes the
relationship between irregular microphone geometries and spatial filtering performance with Monte Carlo
simulations. Novel geometry descriptors are developed to capture the properties of irregular microphone
distributions showing their impact on array performance. Performance metrics are computed from
three-dimensional beam patterns through a delay and sum beamformer with a fixed number of microphones for
irregular arrays and comparable regular arrays. Statistical analysis and Multi-way Analysis of Variance establish
relationships between key performance metrics and proposed geometry descriptors. It is demonstrated that in
conjunction with array centroid offset and dispersion, statistics of the microphone differential path distance can
explain variations of performance metrics when steering at targets for immersive or near-field microphone
applications.
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1 Introduction
Microphone arrays use spatial diversity of element posi-
tions to capture acoustic signals and reduce degradation
brought on by reverberation and noise. It is widely applied
in speech enhancement, teleconferencing, talker track-
ing, hands-free human-machine interfaces, and acoustic
surveillance systems [1,2]. Because most of these applica-
tions involve separating desired signals from noise and
estimating acoustic parameters, array performance is
usually assessed by its ability to locate, track, and separ-
ate sound sources in the field of view (FOV) [1]. Critical
factors affecting performance include acoustic environ-
ment, source spectral content, processing algorithm, and
microphone geometry. For a fixed number of micro-
phones it has been demonstrated that the array geometry
is the dominant factor for performance [3-5]. However,
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previous studies have largely focused on regular geom-
etries in far-field. These results are not as useful for im-
mersive geometries that typically occur for surveillance
and smart room applications. This article, therefore, fo-
cuses on the relationship between microphone distribu-
tion properties and spatial filtering performance that is
more suited for cases when the focal point is close to the
arrays and the arrays have irregular placements. Classes
of irregular geometries for immersive environments are
statistically analyzed through Monte Carlo simulations to
identify key geometric characteristics related to array
performance.
Regular arrays (elements arranged under a regular spa-

cing constraint) have been considered in previous re-
search, such as uniformly spaced linear, planar, and
circular arrays [2]. Due to the regularity of element ar-
rangements, their geometries are specified by a small
parameter set, such as aperture and number of elements
or their spacings, which are directly related to aspects of
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performance [2,6]. In general, most of these analyses
have been done for narrow-band far-field cases where
spatial aliasing is directly related to microphone spacing
and resolution to aperture. Irregular arrays, which diver-
sify microphone positions, can potentially achieve better
performance, as demonstrated in [3,4,7]. Instead of lim-
ited optimal range of signal frequency for regular arrays,
irregular arrays can result in a more consistent perform-
ance over a broader range of frequencies, such as those
associated with speech [6].
Although special arrays that deviate from simple

Cartesian arrangements have been studied for better per-
formance, such as spherical arrays to capture and render
sound fields [8,9], and minimum redundancy arrays to
achieve maximum spatial resolution with fixed number
of microphones [10-12], they still retain certain regular-
ity of element placements and restricted by previous
limitations of regular arrays. The study in this article
constrains the microphone geometries to a plane, but
allows for any arrangement of elements and compares
geometries with similar relationships to the focal point.
For example, Figure 1 shows three planar arrays with the
same centroid and dispersion focused on a point 0.2 m
below the array centroid. (Dispersion is analogous to
aperture.) Array gains over the FOV were computed via
simulation by moving a colored noise source of unit
power with speech-like frequency distribution over the
grid points of the FOV and then computing the received
power from the beamformed focal point as described in
[7,13]. The microphone positions are superimposed over
their array gains showing the irregular array in Figure 1(b)
having larger gains at the non-focal points than regular
array in Figure 1(a), while the irregular array in Figure 1(c)
shows lower gains at non-focal points. These perform-
ance differences cannot be explained by previous ana-
lyses of regular geometries. Geometric descriptions for
classes of irregular geometries have not been consid-
ered for arrays lacking a regular structure. The studies
[14,15] introduced optimization approaches for irregular
(a) (b)
Figure 1 Gain patterns of 16 microphone arrays with the same centro
dots represent microphone positions. Array centroid is in the center of
centroid. (a) Regular planar array. (b) Irregular array with inferior performan
geometries by minimizing the residues between desired
gain pattern and actual pattern computed from each
microphone position. However, it is still not clear what
geometric properties are crucial for the superior beam-
forming performance of irregular arrays. Therefore, this
article proposes novel geometry descriptors with a rel-
ationship to performance that are useful for explaining
the performance differences between irregular arrays (as
shown in Figure 1), and provides guidelines and insight
for the irregular microphone cluster design.
To relate the geometric descriptions to performance,

experiments are performed using Monte Carlo simula-
tions to analyze three-dimensional beam patterns by
uniformly distributed microphones over a planar design
space. Since the main applications considered for the ir-
regular arrays involve speech (as in the case of surveil-
lance in a cocktail party environment), the excitation of
the arrays need to compute the performance metrics is
colored noise with the same spectral distribution as the
band importance function used in the speech intelligi-
bility index (SII) [5]. This provides a compact summary
statistic that is relevant for application where speech
intelligibility is important. Results show the primary
geometry factor that explains array performance is the
differential path distance (DPD) distribution between
microphone pairs to the target/noise locations. Statistics
are derived to assess the performance and array geometry
parameters with fixed number of microphones and con-
stant target source location. Delay and sum beamform-
ing (DSB) using an inverse distance weighting is applied
to generate the array gains.
This article is organized as follows: Section 2 pre-

sents the formulations for computing array gains
based on DSB and indicates its relationship with
microphone distribution. Section 3 introduces geometry
descriptors to characterize array geometries and derives
statistics related to the DPD distribution of microphone
array. Section 4 analyzes the relationship between pro-
posed geometry descriptors and key performance metrics
(c)
id and dispersion, focused on the center of FOV where white
microphone plane. Blue circle represents dispersion from array
ce. (c) Irregular array with superior performance.
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based on Monte Carlo experiments, and demonstrates a
strong correlation between these descriptors and array
performance. Finally, “Conclusions” section summarizes
the results and presents conclusions.

2 Problem formulation
In order to reveal the impact of microphone distribu-
tions on beamforming performance, this section presents
the formulations to compute the three-dimensional array
gains for microphone arrays relative to a given focal
point. Parametric performance metrics are directly com-
puted from these gain patterns.
Consider microphones and sound sources distributed

in a three dimensional space. Let u(t;rs) be the sound
source located at position rs, where rs is a vector denot-
ing the x, y, and z coordinates. The waveform received
by the pth microphone can be expressed as:

v t; rs; rp
� �Z

u t; rs; rp
� � ¼

Z 1

�1
u τ; rsð Þ h t � τ; rs; rp

� �
dτ; ð1Þ

where h(.) represents the impulse response of propaga-
tion path from rs to rp. For a reverberant room, the im-
pulse response can be given by:

h t; rs; rp
� � ¼ asp0 t � τsp0

� �þX1
n¼1

aspn t � τspn
� �

; ð2Þ

where aspn(t) is the response related to the nth propa-
gation path, τspn is the corresponding time delay, and
n = 0 represents the direct path from source to
microphone. In frequency domain the received signal of
Equation (1) can now be expressed as:

V̂ ω; rs; rp
� � ¼ Û ω; rsð ÞÂspo ωð Þexp �jωτsp0

� �
þ Û ω; rsð Þ

X1
n¼1

Âspn ωð Þexp �jωτspn
� �

; ð3Þ

where the hat notation expresses the Fourier trans-
form of corresponding time-domain quantity. Denote
the desired focal point as ri and express the DSB
output as:

Ĝ ri; rsð Þ ¼
XP
p¼1

BipV̂ ω; rs; rp
� �

exp jωτip
� �

; ð4Þ

where P is the total number of microphones, Bip is a
scalar representing the filter coefficient related to
focal point ri and microphone position rp, and τip is
the corresponding time delay. For results in this art-
icle the coefficient was set to the inverse distance to
the focal point as Bip = 1/dip, where dip denotes the
distance from ri to rp. The total output power of
this filtered sum is computed by:

S ri; rsð Þ ¼
Z XP

p¼1

XP
q¼1

BipBiqV̂ ω; rs; rp
� �

V̂
�
ω; rs; rq
� �

exp jω τip � τiq
� �� �

dω:

ð5Þ
In order to obtain the simplified formulation that is

useful for analysis and understanding the geometric re-
lationship, consider only the direct paths in Equation
(3). With the assumption that the beamformer coeffi-
cients and propagation attenuation product factors are
uncorrelated with the path differentials, S(ri,rs) can be
rewritten as:

S ri; rsð Þ ¼ P2
Z

jÛ ω; rsð Þj2 E BipBiqÂsp ωð ÞÂsq
�
ωð Þ

h i
E exp jω τsq � τsp

� �þ τip � τiq
� �� �� �� �

dω; ð6Þ
where E[·] denotes the expected value operator over all
microphone pairs generated by the double summation
of Equation (5), and S(ri,rs) is the output power of beam-
former targeting ri with actual sound source at rs. For
multi-source applications, the total output power of
beamformer can be obtained from the superposition of
S(ri,rs) from each source. To investigate the beamform-
ing performance in relation to array geometry, the time
delays are expressed in terms of spatial distances and
signal wavelengths:

S ri; rsð Þ ¼ P2
Z

jÛ ω; rsð Þj2E BipBiqÂsp ωð ÞÂsq
�
ωð Þ

h i

E exp j2π
dsq � dsp

λ
þ dip � diq

λ

� �� �� 	
dω;

ð7Þ
Where dsp denotes the distance from sound source rs
to microphone position rp, and dip denotes the dis-
tance from focal point ri to microphone position rp.
Therefore, the formulation of beamforming power for
sources in FOV is separated into three parts; the source
power, propagation effects and beamforming weights,
and the microphone distribution. For arrays with a fixed
number of microphones and constant beamformer co-
efficients, S(ri,rs) only depends on the exponential terms
averaged over all microphone pairs, which is directly
related to the microphone positions and source signal
frequencies. For the case where a signal source is located
at the beamformer focal point, rs = ri, the arguments of
the exponents are all 0, and the signal is enhanced by
the coherent addition of complex exponential terms.
Sources not located at the focal point, rs ≠ ri, will have
reduced power due to the incoherent phases of
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exponential terms. The objective in selecting a micro-
phone distribution is to minimize the average value of
the exponential terms in Equation (7) when rs ≠ ri while
maximizing the average when rs = ri for all possible tar-
get and noise positions in the FOV. Since summations
will always be maximized when rs = ri (exponential argu-
ments are all zero), the optimization strategy can be
reduced to minimize the maximum value of S(ri,rs)
when rs ≠ ri for all rs and ri in the FOV. A metric based
on this notion is the Mainlobe-to-peak-sidelobe Ratio
(MPSR), which is used in later simulations to assess
performance.
Equation (7) identifies the phase terms responsible for

minimizing the power gain when rs ≠ ri, and is related to
the source wavelength and the DPD distribution over all
(p,q) microphone pairs, given by:

Δpq ri; rsð Þ ¼ dsq � dsp
� �þ dip � diq

� �
; ð8Þ

where ri is the focal point of beamformer (target pos-
ition), and rs is the interfering source position. Note that
Δpq(ri,rs) is the exponential argument in Equation (7)
without the wavelength scaling. Take the Array 1 in
Figure 2 as the example, DPD from the right microphone
pair to the sources is defined as (d1-d2) + (d3-d4).
Ideally, if the DPDs of a given microphone geometry

and wavelength result in the complex exponential argu-
ments distributed uniformly from-π to π over all pair-
wise microphones, the expected power is zero when
targeting ri [16]. That is to say, in order to minimize
gains for the interference/noise sources (rs ≠ ri), the
Figure 2 Linear arrays with the same standard deviations of DPD dist
(a) FOV diagram. (b) Histogram of DPDs for array 1 with lower entropy dist
distribution.
corresponding DPDs should be distributed as widely as
possible relative to the source wavelength (incoherence).
For the case of beamforming at the source, all the phase
terms in Equation (7) will be close to zero (coherent), and
result in a maximum power gain in the target position.
Even if the sound source localization errors result in
small dislocations between the true target source position
and the beamformer focal point, rs ¼ ri þ Δrerror≈ri , as
long as the DPD variance is much smaller than the
wavelengths of significant speech signal frequencies, the
phases of exponential arguments are still limited to a small
range and result in significant coherent sums. Therefore,
Equation (7) demonstrates the impact of the DPD distri-
bution over all microphone pairs on the array's ability to
enhance target and suppress noise signals. The optimal
microphone geometry should provide a widely spread
and even distributed DPDs relative to the source wave-
lengths for the noise source positions to decorrelate the
noise from target signals. Statistics assessing the uni-
formity of DPD distributions are proposed in the next
section as the novel geometry descriptors to explain the
variations of array beamforming performance, especially
for irregular arrays.

3 Proposed geometry descriptors
Analysis in previous section suggests a correlation be-
tween array beamforming gains and DPD distributions.
This section proposes several geometric characteriza-
tions applicable to irregular arrays and related to array
performance. In addition, descriptors for regular arrays,
such as the aperture size and microphone spacings, will
be generalized for irregular array geometries.
ributions. O's represent microphones. X's represent sound sources.
ribution. (c) Histogram of DPDs for array 2 with higher entropy



Yu and Donohue EURASIP Journal on Advances in Signal Processing 2012, 2012:249 Page 5 of 12
http://asp.eurasipjournals.com/content/2012/1/249
The array centroid offset is defined as the distance be-
tween array focal point ri = (xi,yi,zi) and the centroid of
array elements given by:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � xið Þ2 þ y0 � yið Þ2 þ z0 � zið Þ2

q
; ð9Þ

where r0 = (x0,y0,z0) denotes array centroid:

r0 ¼ x0;y0;z0
� � ¼ 1

P

XP
p¼1

xp;
1
P

XP
p¼1

yp;
1
P

XP
p¼1

zp

 !
; ð10Þ

where P is the number of microphones and rp = (xp,yp,
zp) denotes the position of the pth microphone. Array
dispersion, analogous to the aperture size, is a measure
of average microphone spread about the centroid, com-
puted by:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

XP
p¼1

xp � x0
� �2 þ yp � y0

� �2 þ zp � z0
� �2h ivuut

ð11Þ

Note that L and a can be applied to characterize both
regular and irregular geometries, as shown in Figure 1.
For regular arrays a directly impacts resolution (main-
lobe width MLW), and determines the microphone
spacing in conjunction with P, which affects sidelobe
behavior. The distance L indicates whether sound
sources are effectively located in the near-field (small
L for immersive application), or far-field (large L),
where the terms small and large are used relative to
the source wavelengths. However, as illustrated by the
examples in the introduction these descriptors are lim-
ited in their ability to explain the beamforming behav-
ior when additional degrees of freedom are allowed as
in the case of irregular arrays. Therefore, additional
descriptors involving DPD distribution for all micro-
phone pairs to points in the FOV are proposed as
metrics.
From the analysis of Section 2 a limited DPD distri-

bution increases the likelihood of unexpected coher-
ence at non-target locations, especially when DPDs
are less than a quarter wavelengths at significant sig-
nal frequencies. DPD distributions can be examined
via histograms or characterized with various statistics.
One potentially useful statistic is the standard devi-
ation of the DPDs over all microphone pairs. In
[16,17] closed form expressions were presented for
the expected value of the exponential terms in Equa-
tion (7). For a normal DPD distribution over all
microphone pairs, the expected value of the exponen-
tial term is given by:

E exp j2π
Δpq ri; rsð Þ

λ

� �� �� 	

¼ exp �2 π
σΔ ri; rsð Þ

λ

� �2
 !

; ð12Þ

where σΔ represents the DPD standard deviation. If
the DPDs are uniformly distributed, the expected
value becomes

E exp j2π
Δpq ri; rsð Þ

λ

� �� �� 	

¼ sinc π

ffiffiffiffiffi
12

p
σΔ ri;rsð Þ
λ

 !
: ð13Þ

In both cases the expected value of the exponential
terms approaches zero for increasing σΔ. When ri = rs,
the DPDs are zero for all microphone pairs resulting an
a DPD variance of 0. Thus, the scaling provided by the
DPD exponential factor of Equation (7) is at a maximum
of 1, which is desired when the source and focal point
are identical. Consistent with previous conclusion, the
more widely spread of DPDs (largeσΔ), the better ability
of the array to extract target signal at ri and decorrelate
signals from noise source at rs. Therefore, standard devi-
ation is applied as an effective measure that can describe
performance of irregular arrays. For particular focal and
noise source locations, the DPD standard deviation is
computed as:

σΔ ri; rsð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P2

XP
p¼1

XP
q¼1

Δpq ri; rsð Þ� �2vuut ; ð14Þ

In addition, with the same standard deviation, the
expected value of the exponential terms approaches zero
for decreasing λ, representing better noise suppressing
ability for the signals in high-frequency bands. Wider
spread of DPDs is needed to decorrelate the signal
source with low frequencies, such as male voice. In this
article, in order to focus on the impact of DPDs derived
from array geometry, colored noise generated by SII
mode is applied as the excitation of the simulations to
compute performance metrics.
From Equation (12) and (13), different DPD distribu-

tions can also impact the incoherence level of beam-
forming. Figure 2 provides a real case example of linear
arrays. Figure 2(a) shows two linear arrays in a planar
FOV with microphone positions denoted by O markers.
Two sound sources represented by X markers are
located in the FOV, while one source is considered as
the target (focal point of beamformer) and the other is the
noise source. Colored noise from each source is recorded



Table 2 Dependencies of geometry descriptors

Mic coordinates Target space Noise space

L √ √

a √

σ √ √ √

J √ √ √
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separately, and the received signals of microphones are
normalized by the average rms value over all channels
and superimposed. The Signal-to-noise Ratio (SNR) is
computed as the power ratio of beamformed signal from
target source over that from noise source. The DPD his-
tograms of both arrays are shown in Figure 2(b), (c), re-
spectively. The beamforming SNR results are provided in
Table 1. An analogous simulation of the array recording
was also performed and presented in Table 1. For both
the real and simulated recordings it can be seen that al-
though these two arrays have the same σΔ, array 2 shows
a 2 - 3 dB SNR improvement over array 1 for both targets
due to the reason that array 2 provides a more uniform
DPD distribution over the source spectrum, thus demon-
strating a need for another statistic related to DPD diver-
sity. In this article Pielou's evenness index [18], which is
a normalized Shannon entropy, is introduced to numer-
ically assess the diversity of DPD distribution as:

J ri; rsð Þ ¼ H ri; rsð Þ
Hmax ri; rsð Þ ¼

�
XK
k¼1

pk lnpkð Þ

�
XK
k¼1

1
K ln

1
K

� �� �

¼
�
XK
k¼1

pk lnpkð Þ

lnK
; ð15Þ

where K is the total number of DPD bins for the histo-
gram estimate, and pk is the percentage of DPDs within
the kth bin, H(ri,rs) is the Shannon entropy, and Hmax(ri,
rs) is the maximum possible entropy for the given num-
ber of bins, which represents a ideal uniform distribution
of DPDs. This normalization avoids the variations from
different ranges of DPD distributions and different num-
bers of microphones. Note that, the DPD range is binned
by constant intervals whose size should be associated
with the quarter wavelengths of significant signal fre-
quencies to result in reasonably smooth histograms of
DPDs related to the incoherent level of phase terms of
beamforming gain. For the results in this article, bin size
is set to 0.1m , which is less than a quarter wavelength of
the important frequency band around 800 Hz for male
voice intelligibility [19].
Therefore, four geometry descriptors {L, a, σ, J} are

proposed to characterize both regular and irregular
Table 1 SNR results of linear arrays

Target at source1 Target at source 2

Simulations Array 1 7.70 dB 7.28 dB

Array 2 10.20 dB 9.11 dB

Real Recordings Array 1 4.10 dB 3.52 dB

Array 2 6.33 dB 6.48 dB
microphone distributions and study their impact on
array beamforming performance. As summarized in
Table 2, these descriptors depend on various geometric
aspects of the application environment. Descriptors {L,
a} are related to microphone coordinates or beamform-
ing focal point. They are usually applied together as a
basis for comparing similar arrays. The descriptors {σ, J}
can vary with each array geometry instance and also de-
pend on the characteristics of possible target and noise
source distributions. This dependency brings the expect-
ation of stronger correlation with array performance
based on different acoustic scenes. In the next section,
these proposed geometry descriptors are applied
Figure 3 Flow chart of Monte Carlo experiments.
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together to characterize different stochastic array geom-
etries, and their relationships with key performance
metrics of three-dimensional beam pattern are analyzed
with Monte Carlo simulations.

4 Numerical simulations
4.1 Experimental setup
This section applies Monte Carlo experiments to evalu-
ate the performance of irregular arrays based on the pro-
posed geometry descriptors. The simulation flow chart is
shown in Figure 3. The FOV is a 10 × 10 × 2m room and
microphone positions are randomly generated with a
uniformly distribution on the ceiling plane. Then the
microphone coordinates are shifted and scaled to obtain
the desired array centroid and dispersion. Array centroid
values range from the center of ceiling to the edge at 1m
intervals along x-axis, while five levels of dispersion are
applied with each centroid. For each combination of
centroid offset and dispersion level, 300 independent
array distributions are generated by Monte Carlo experi-
ments. The 3D beam pattern of each array is obtained
by moving a sound source with constant power over all
spatial points in FOV, while the focal point is fixed in
the center of room. The DSB output power is computed
for the source at each spatial point to form the 3D beam
pattern.
As shown in Figure 3, two metrics are applied to as-

sess array performance: (MLW) associated with reso-
lution, and (MPSR) associated with noise suppression
ability. In this article, the size of mainlobe is character-
ized by the dimensions of the surface consisting of
spatial points with gains 3 dB below that at the focal
point (maximum gain). Let xδ, yδ, and zδ denote the pro-
jections of the 3dB mainlobe contour onto the x, y, and
z axes, respectively. The MLW can then be expressed as:

B3dB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2δ þ y2δ þ z2δ
� �q

: ð16Þ

Let S(ri,rs) denote the power gain of the beamformer
focused on ri with a unit power source at rs. The MPSR
for a beamformer focused on ri can be expressed as:

Γ i ¼ S ri; rið Þ
maxrs∉ML So ri; rsð Þ½ � ; ð17Þ

where So(ri,rs) denotes the local maxima of S(ri,rs)out-
side the 3dB mainlobe region (ML) in FOV. This metric
represents the worst case leakage. In the Monte Carlo
experiments, the maximum sidelobe level (denominator)
is measured from the maximum local peak of gain pat-
tern outside ML. Because there is normally a tradeoff
between B3dB and Γi, the common criterion to decide
the optimal array beam pattern is to limit the MLW to a
tolerable spatial resolution and maximize the MPSR in
FOV. For given number of microphones, increasing dis-
persion about array centroid tends to result in higher
sidelobe levels while sharpening the mainlobe. However,
for a given class of randomly generated arrays with fixed
centroid and dispersion, the sidelobe levels will also vary
based on the DPD statistics.
In addition to array geometry, the signal frequency

and the number of microphones are critical factors
impacting performance. To make results more reflective
for the performance where the primary sources are
speech, the sound sources consist of colored noise with
a spectrum equivalent to the band importance function
from the SII, which emphasizes the frequency bands
most important to human understanding of speech [5].
Because the impact of each geometry descriptor also
depends on microphone number, irregular arrays with
16, 25, 36, 49 and 64 microphones are examined with
comparable regular arrays and logarithmic arrays. The
logarithmic array consists of three superimposed regular
subarrays used for octaves from 800Hz to 3200Hz to
generate a relative uniform frequency response over the
important frequency bands. Statistical analyses of simu-
lation results are presented in the next section to assess
the impacts of proposed geometry descriptors and dem-
onstrate their relationship with performance metrics in
immersive or near-field applications.

4.2 Results and discussion
Plots from Monte Carlo simulations are presented to re-
veal relationships between each geometry descriptor and
performance metrics. Figures 4, 5, 6 and 7 present the
geometry descriptors versus MLW and MPSR, where
the error bars span ± 1 standard deviation about the
mean. For comparison sake a regular planar array and
logarithmically spaced array with the same geometry
descriptors are also marked in the figures.
Figure 4 indicates the impact of centroid offset on

array performance. From Figures 4(a)(b), it can be seen
that for fixed array dispersion, increasing the centroid
offset increases the MLW and reduces MPSR, represent-
ing degradation of array performance. The standard de-
viation of MLW increases with the growing of centroid
offset, while ±1dB variance of MPSR is observed for each
centroid offset value with fixed dispersion. Logarithmic
arrays show much larger increases in MLW than regular
and irregular arrays because the microphone density is
high near array centroid causing a longer mainlobe in
the direction of the offset. Although better MPSR can be
observed for logarithmic arrays with large centroid off-
set, it does not necessarily represent superior ability to
suppress non-target sources. The lower sidelobe levels
are primarily the result of FOV being included in a huge
mainlobe. Therefore, logarithmic array has a major limi-
tation on target space, and cannot adjust well to focal



Figure 4 Centroid offset (in meters) and performance metrics with fixed dispersions, showing error bars at ±1 standard deviation.
(a) MLW for a dispersion of 3.5 m. (b) MPSR for a dispersion of 3.5 m. (c) MLW for a dispersion of 0.5 m. (d) MPSR for a dispersion of 0.5 m.
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points away from array centroid. Figures 4(c)(d) show
variations of performance metrics along centroid offset
when dispersion is fixed at a small value. For the cen-
troid offset values below 2.5m, the trends of MLW and
MPSR over centroid offset levels are as expected with
more sensitivity for arrays with smaller dispersion (micro-
phones closer together on average) when compared to
Figures 4(a)(b). For the centroid offset values beyond
2.5m (exceeding five times that of the dispersion), the
Figure 5 Array dispersion (in meters) and performance metrics with a
1 m, showing error bars at ±1 standard deviation. (a) Dispersion versus
MLW becomes very large relative to the size of FOV.
The apparent improvement in the MPSR after this is
artifactual because the mainlobe dominates the FOV
pushing the significant sidelobes outside the FOV. The
observed high MPSR values, therefore, cannot be asso-
ciated with superior beamforming performance when the
centroid offset is large relative to the dispersion. In every
case there is a significant portion of randomly generated
arrays that perform better than the logarithmic and
rray centroid at the center of ceiling and centroid offset equal to
MLW. (b) Dispersion versus MPSR.



Figure 6 Differential distances of microphones in vertical
direction of FOV.
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regular arrays as seen by their marker positions relative
to the standard deviation range of the irregular arrays.
Figure 5 presents the impact of array dispersion for a

fixed centroid at the center of ceiling. It can be noted
that small dispersions result in better MPSR for all geom-
etries (closer average spacings between microphones);
however, most of the irregular arrays perform better than
either the regular or logarithmic arrays. With the cen-
troid offset fixed, when array dispersion increases in the
Figure 7 DPD statistics and performance metrics for fixed dispersions
(a) DPD standard deviation versus MPSR for a centroid of 1 m and dispersi
1 m and dispersion of 1 m. (c) DPD standard deviation versus MPSR for a c
versus MPSR for a centroid of 1 m and dispersion of 4 m.
horizontal microphone plane, the MLW decreases along
the horizontal direction; however, the MLW along ver-
tical direction grows. This phenomenon is illustrated in
Figure 6. When moving microphones away from the
array centroid/target, the differential distances from
each microphone to target point and the nearby loca-
tions reduce, resulting in higher coherent power for
these points in Z-direction, thus extending the mainlobe.
The sensitivity of these variations to dispersion is in-
versely related to the centroid offset. As the centroid
offset becomes large relative to the dispersion, beam-
forming on a focal point is not practical (no longer an
immersive environment). The array takes on more
characteristics of a far-field array where the vertical
direction MLW is so large that one only considers the
angle or look direction instead of a focal point. In
summary, for a fixed number of microphones there is
tradeoff between MLW and MPSR that is dependent
on the dispersion, as would be expected given the sim-
ilarities between dispersion and aperture. In addition,
by inspecting the standard deviation of error bars along
each level of dispersion when array centroid is fixed, it
can be seen that the variance of MLW increases with
growing dispersion. A MPSR variance of ±1 ~ 1.5 dB is
and centroids, showing error bars at ±1 standard deviation.
on of 1 m. (b) Pielou's evenness index versus MPSR for a centroid of
entroid of 1 m and dispersion of 4 m. (d) Pielou's evenness index



Table 3 Three-way ANOVA results of MLW

Factors F Value p value (Pr > F)

Main Effects Centroid Offset 1955.98 <0.0001

Dispersion 3327.62 <0.0001

Pielou's Evenness Index 2.20 0.0031

Interactions Centroid*Dispersion 2725.46 <0.0001

Centroid*Pielou 1.63 0.0004

Dispersion*Pielou 2.20 <0.0001

R-Square 0.9967
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observed for each dispersion level with fixed centroid.
Therefore, additional geometry descriptors based on the
DPD distribution are expected to explain part of these
variations of array performance.
Results in Figures 4 and 5 demonstrate the impact of

geometry descriptors related to aperture and array dis-
tance from focal points, which are largely consistent
with the expectations. In all cases a portion of the ran-
domly generated irregular arrays was superior to the
regular arrays. In order to resolve between classes of ir-
regular arrays, the following paragraphs analyze geom-
etry descriptors based on DPD statistics with fixed
centroids and dispersions, and demonstrate their ability
to identify classes of irregular geometries with similar
performance properties.
For a fixed centroid offset and dispersion, Figure 7

shows a relationship between array geometry DPD sta-
tistics and performance. Figure 7(a)(b) presents the
results for the arrays with similar centroid offset and dis-
persion values, while Figure 7(c)(d) presents arrays with
small centroid offset and large dispersion. The results
for the regular and logarithmic arrays are also plotted
for reference. Figures 7(a)(b) demonstrate that larger
DPD standard deviations and Pielou's evenness indices
result in improved MPSR. These results are consistent
with theoretical analysis indicating that wider and more
evenly distributed DPDs create more incoherence in the
phase terms of Equation (7) and suppress noise better.
Pielou's evenness index shows more sensitivity to the
MPSR than the standard deviation, primarily because
with a fixed dispersion, the standard deviation has lim-
ited range. Note that the relative performance of loga-
rithmic array in Figure 7(a) shows it with a very high
standard deviation but not consistent with the trends of
the irregular array, while for Pielou's index the MPSR of
both the regular and logarithmic array are more consist-
ent with irregular array performances.
When the array dispersion becomes much larger than

centroid offset in Figure 7(c)(d), improvements of MPSR
with increasing standard deviation or Pielou's index are
not as dramatic. That is because arrays with large disper-
sion and small centroid offset typically generate a large
DPD distribution spread (demonstrated by the increas-
ing range of DPD standard deviation in Figure 7(c))
extending over many wavelengths in the useful fre-
quency range. In these cases, Pielou's evenness index
does not correlate as well with the beamforming gain as
in Figure 7(b) because the 2π modularity of the expo-
nential argument. For a frequency of interest, the DPDs
scaled by the wavelength are mapped to the [−π, π]
range by the modulo operation. The evenness index can
be computed after this operation for frequency specific
measures related to beamforming gains. In addition,
results of Figure 7(c)(d) show that almost any irregular
distribution will perform better than the regular geom-
etry, and approximately 50% will perform better than
the logarithmic array. Also, the relative performance of
regular and logarithmic arrays is more consistent with
the trends of the irregular array according to Pielou's
evenness index than to standard deviation.
When the centroid offset becomes larger than three

times of dispersion, the array takes on more characteris-
tics of a far-field application. These cases do not fit with
the primary focus of this analysis for immersive environ-
ments. The DPD variations are limited and inappreciable
over the FOV relative to the signal wavelength and large
centroid offset (indicated by the observed dropping
range of Pielou's evenness indices). Variations in the
microphone distributions will have little impact on per-
formance, unlike for near-field applications. Centroid
offset becomes the dominating factor affecting array
beamforming performance, and the behavior of micro-
phone array approaches the behavior of a single element
in these far-field cases.
The results analyzed above demonstrate the impact of

DPD distribution on array beamforming performance.
Geometry descriptors based on the statistics of DPD dis-
tribution show a correlation with array performance
when the focal points and microphone distributions are
typical for immersive or near-field applications. These
DPD statistics explained the variations in performance
when array centroid offset and dispersion were fixed.
For a fixed number of microphones, increases in dis-
persion improved resolution, but degraded noise sup-
pression, while increases in centroid offset degraded both
of these performance metrics. However, as shown in
Figure 7, with fixed centroid and dispersion, ± 0.5 ~ 1dB
variances of performance metrics are observed for each
bin of DPD statistics. Although these variations of per-
formance metrics partly result from the quantization
errors of DPD statistics, other geometry parameters may
exist that can further reduce these variations.
To further investigate the significance of the proposed

geometry descriptors' impact on performance, Analysis
of Variance (ANOVA) is applied, which is useful for in-
vestigating the effect of independent factors on



Table 4 Three-way ANOVA results of MPSR

Factors F Value p value (Pr > F)

Main Effects Centroid Offset 25.60 <0.001

Dispersion 1.99 <0.0366

Pielou's Evenness Index 26.21 <0.0001

Interactions Centroid*Dispersion 52.55 <0.0001

Centroid*Pielou 3.83 <0.0001

Dispersion*Pielou 5.50 <0.0001

R-Square 0.8169
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observations [20]. The performance metric variation is
partitioned into portions attributed to the effect of inde-
pendent factor (between-group variation) and portions
attributed to random error (within-group variation). An
F statistic is computed using the ratio between these var-
iances and tested for significance. Tables 3 and 4 show
the three-way ANOVA results for MLW and MPSR
values, respectively. Centroid offset, dispersion, DPD sta-
tistics, and their interactions are considered as the inde-
pendent factors impacting the performance metrics. By
examining the results, it can be seen that the p values
for these three geometry descriptors and their interac-
tions are all highly significant (all less than 0.01) for their
impact on MLW and MPSR. In addition, high R2 values
indicate that 99.7% of the variation in MLW data can be
accounted for by these independent factors, so does 82%
data of MPSR. Therefore, it is demonstrated that pro-
posed geometry descriptors, including centroid offset,
dispersion and DPD statistics, have strong correlations
with array performance.
Finally, through statistical analysis and ANOVA the

relationships between proposed geometry descriptors
and array performance are established and demon-
strated. However, because the number of microphones
determines the number of DPDs, the impact of each
geometry descriptor varies with the number of micro-
phones. In order to analyze these differences, data col-
lected from Monte Carlo experiments of irregular arrays
with 16, 25, 36, 49 and 64 microphones are compared.
All the experiments were performed in immersive envir-
onments with comparable values of centroid offset and
dispersion. Table 5 provides the R2 results of least
squares method by fitting general linear model (GLM) of
Table 5 R2 results for GLMs of geometry descriptors on MPSR

Number of Microphones Mic Density
(mic/m2)

R-Square of
GLM{a, L}

16 0.16 41.93%

25 0.25 53.84%

36 0.36 60.81%

49 0.49 68.77%

64 0.64 63.61%
selected geometry descriptors on MPSR. It is noted that
even with this simplest regression model, over 50% vari-
ation of MPSR can be accounted for by GLM{a, L, σ, J}.
This percentage increases to 70% ~ 90% when applying
higher-order fitting functions of geometry descriptors
(nonlinear regression models). With increasing micro-
phone number, better R-Square values are obtained.
By comparing the results of GLM{a, L} derived from

array apertures and positions with GLM{a, L, σ, J} taking
account of DPD distributions' impact, at least 10%
improvements of R2 values are observed. Especially for the
arrays with microphone density larger than 0.5 mic/m2,
the impact of {a, L} is greatly reduced due to the increas-
ing possibilities of microphone arrangements with fixed
centroid and dispersion, while the DPD statistics show
stronger correlation with array performance. Furthermore,
by comparing the trends of R2 values of GLM{a, L, σ}
and GLM{a, L, J} with increasing microphone number,
DPD standard deviation assessing the spread of DPD dis-
tribution shows a little stronger correlation with MPSR
for arrays with microphone density less than 0.2 mic/m2,
while Pielou's evenness index assessing the diversity of
DPD distribution has greater impact on MPSR for array
with density larger than 0.2 mic/m2. The reason for this
phenomenon is that low microphone density cannot
provide enough DPD samples to measure the entropy
(Pielou's evenness index), and DPD standard deviation
representing the average spread of DPDs about zero is
more reflective for characteristics of the DPD distribu-
tion related to the beamforming gain.

5 Conclusions
This article analyzes and identifies important character-
istics for irregular microphone arrays that directly related
to beamforming performance. Combined with descrip-
tors analogous to traditional geometry parameters for
regular arrays (i.e. array centroid and dispersion), novel
geometry descriptors involving DPD statistics describe
both regular and irregular arrays. Simulations demon-
strated that irregular microphone geometries typically
exceed the performance of regular geometries, and arrays
with high DPD entropy and wide DPD spread corres-
pond to arrays with better noise suppression ability.
These results are primarily applicable for microphone
R-Square of
GLM{a, L, σ}

R-Square of
GLM{a, L, J}

R-Square of
GLM{a, L, σ, J}

46.72% 46.56% 50.33%

58.25% 58.81% 62.72%

64.80% 66.49% 69.32%

73.20% 74.04% 77.31%

80.09% 81.69% 86.97%
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arrays in near-field applications, such as in immersive
environments.
The relationships between geometry descriptors and

beamforming performance developed in this article can
be applied directly as the objective functions in
optimization procedures to find appropriate microphone
distributions for given acoustic environments [7]. The
results of this article were based on Monte Carlo experi-
ments with planar microphone distributions, which are
more applicable for indoor applications, such as audio
surveillance systems. So far, the DPD statistics do not
have simple geometric interpretations and must be com-
puted based on all the microphone positions and desired
focal points. While these statistics can easily be com-
puted once a geometry is proposed, they cannot directly
be used in closed-form analysis and optimizations. Other
more direct geometric metrics as they relate to good
values of proposed DPD statistics will be needed to guide
ad-hoc microphone placements. Future work involv-
ing related closed-form relationships between geometry
descriptors and key performance metrics could provide
a simple and feasible solution for the optimization pro-
blems of microphone arrays.
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