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Abstract

In this article, doubly selective channel estimation is considered for amplify-and-forward-based relay networks. The
complex exponential basis expansion model is chosen to describe the time-varying channel, from which the infinite
channel parameters are mapped onto finite ones. Since direct estimation of these coefficients encounters high
computational complexity and large spectral cost, we develop an efficient estimator that only targets at useful channel
parameters that could guarantee the later data detection. The training sequence design that canminimize the channel
estimation mean-square error is also proposed. Finally, numerical results are provided to corroborate the study.
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1 Introduction
Wireless relay networks have been a highly active research
field ever since the pioneer work [1-3]. A typical relay
network consists of a source node, one or several relay
nodes, and a destination node. The transmission from
the source node to the destination node involves two
phases. In the first phase, the source node broadcasts sig-
nals to the relay nodes and possibly to the destination
node. In the second phase, the relay nodes re-transmit
its received signals in the first phase to the destination
node under a certain relaying strategy such as amplify-
and-forward (AF) and decode-and-forward (DF) [2]. It has
been shown that such a relay network can enhance the
system throughput [1], improve the transmission cover-
age [2], and increase the multiplexing gain [3]. Several
standards that have been or are being specified for the
next-generation mobile broadband communication sys-
tems [4] already included the relay-aided transmission,
e.g., long-term evolution-advanced (LTE-A), IEEE 802.16j,
and IEEE 802.16m.
Like any other wireless communication system, a relay

network performs better with better channel estimates,
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and the quality of channel acquisition has a significant
effect on the overall system performance. In addition,
knowledge of channel state information is often a prereq-
uisite for some physical layer approaches such as optimal
strategy selection and the precoding design.
Assuming block fading scenarios, several channel esti-

mation schemeswere proposed for relay networkwith one
or multiple-relay nodes. For example, the authors of [5,6]
studied the channel estimation for relay networks and
pointed out that there exist many differences in channel
estimation between the AF-based relay networks and the
traditional point-to-point networks. Shortly later, channel
estimations under frequency-selective environment were
developed in [7,8].
However, in many practical cases the source node, the

relay node, and the destination node can be mobile. The
relative motion between any two nodes will cause Doppler
shift and thus make the channel time-varying [9]. Time-
varying channel estimations for relay networks are studied
in [10,11]. It is shown in [10] that for time-varying chan-
nels in relay networks, transmission of several subblocks
can obtain better estimation performance than that of a
single subblock.
Furthermore, when the transmission data rates are

high and nodes are mobile, the relay network is
expected to operate over doubly selective channels.
Canonne-Velasquez et al. [12] suggest a channel esti-
mation algorithm for orthogonal frequency division
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multiplexing-based AF relay systems over doubly selective
environments. However, the proposed channel estimation
algorithm neglects the interference from the data sym-
bols. Moreover, the optimal training sequence design for
doubly selective AF relay channels remains an open prob-
lem. To the best of the authors’ knowledge, estimation
techniques considering inter symbol interference between
data and training symbols, as well as training sequence
design, have not yet been developed. This motivates our
current work.
The doubly selective channel can typically be repre-

sented in two ways: the autoregressive (AR) process [13]
or the basis expansion model (BEM) [14]. AR models
describe channel variation through a symbol-by-symbol
update manner. Though second- and third-order AR
models can provide excellent fits to the Jake model, the
first-order AR process is usually adopted [15] due to its
tractability. On the other hand, BEM describes the dou-
bly selective channel as the superpositions of time-varying
basis functions weighted by time-invariant coefficients.
The candidate basis functions include complex exponen-
tial (Fourier) functions [14,16], polynomials [17], wavelet
[18], discrete prolate spheroidal sequences [19,20], etc.
BEMs can well describe the time variations of channel,
and thus achieve better approximation performance than
symbol-wise AR models [21].
In this article, we focus on complex exponential BEM

(CE-BEM) [16] due to its popularity and clear physical
meaning. The data frame structure is designed to adapt
to the transmission in doubly selective channels and to
facilitate both channel estimation and data detection. We
first develop an estimator that targets the combined chan-
nel parameters and then propose a detection algorithm.
The training sequence that can minimize the channel
estimation mean-square error (MSE) is also found.
The rest of this article is organized as follows. Section 2

presents the relay system model over doubly selective
channels. Section 3 discusses the channel statistics and
CE-BEM approximation accuracy. Section 4 develops the
channel estimator and data detector, and suggests the
optimal training sequence design. Simulation results are
provided in Section 5. Finally, conclusions are drawn in
Section 6.
Notations: Vectors and matrices are given in boldface

letters; the transpose, Hermitian, and inverse ofA are AT ,
AH , and A−1, respectively; diag{a} is the diagonal matrix
formed by a, tr(A) is the trace of the square matrix A, 0L
is the L × L matrix with all entries 0, and IL is the L × L
identity matrix.

2 Systemmodel
Consider an AF relay network with one source node S,
one relay node R, and one destination node D (Figure 1).
Let h(i; l) denote the doubly selective channel between

Figure 1 Systemmodel for AF relay network over doubly
selective channel.

the source node S and the relay node R, g(i; l) denote the
doubly selective channel between the relay node R and
the destination node D.a Without loss of generality, we
assume that the channel length of both h(i; l) and g(i : l)
as L + 1, and each tap is modeled as a zero mean complex
Gaussian random process with power σ 2

h,l (or σ 2
g,l).

We propose a new transmission scheme as shown in
Figure 2. Each transmission block that contains N sym-
bols is divided into P subblocks. Assume the kth subblock
contains Nk symbols of which Nsk symbols are data and
are represented by sk , while Nbk symbols are pilots and
are represented by bk . The total number of data sym-
bols is Ns = ∑P

k=1 Nsk and the total number of pilots is
Np = ∑P

k=1 Nbk . With such a structure, we can represent
the whole block as a vector

x =[ sT1 , b
T
1 , . . . , s

T
P , b

T
P ]

T . (1)

During the first phase, the relay node R receives

r(i) =
L∑

l=0
h(i; l)x(i − l) + w1(i), (2)

where w1(i) is the additive complex white Gaussian noise
(ACWGN) with mean zero and variance σ 2

w1 , i.e., w1 ∼
CN (0, σ 2

w1). During the second phase, the relay node
R amplifies r(i) with a constant factor α and then re-
transmit it to the destination node D. The signal obtained
by D is

y(i) =
L∑

l=0
g(i; l)αr(i − l) + w2(i)

=α

L∑
l=0

g(i; l)

( L∑
l=0

h(i; l)x(i − l)

)
(3)

+ α

L∑
l=0

g(i; l)w1(i − l) + w2(i)

︸ ︷︷ ︸
w(i)

,

where w1(i) is the ACWGN with mean zero and vari-
ance σ 2

w1 , i.e., w1(i) ∼ C(0, σ 2
w1) and w(i) is defined as the

combined noise.

Remark 1. Suppose the average power of the source node
is P1, i.e., E{|xi(n)|2} = P1 and the average power of the
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Figure 2 Structure of one transmission block.

relay node is Pr . Then the amplifier factor α can be chosen
as

α =
√√√√√ Pr

P1
L∑

l=0
σ 2
h,l + σ 2

w1

. (4)

3 Doubly selective channel in relay networks
3.1 Relay channel statistics and CE-BEM
It was shown in [5,22] that for relay networks, the chan-
nel statistics depend on the mobility of the three nodes.
Denote fds, fdd, and fdr as themaximum Doppler shifts due
to the motion of S, D, and R, respectively. The discrete
autocorrelation functions for the lth tap of h(i; l) can be
represented as [22,23]

Rh,l(m) = σ 2
h,lE(h(n + m; l)h∗(n; l)) (5)

= σ 2
h,lJ0(2π fdsmTs)J0(2π fdrmTs),

Rg,l(m) = σ 2
g,lE(g(n + m; l)g∗(n; l)) (6)

= σ 2
g,lJ0(2π fdrmTs)J0(2π fddmTs),

where J0(·) is the zeroth-order Bessel function of the first
kind, and Ts is the symbol sampling duration. If one node
is fixed, i.e., the corresponding Doppler shift becomes
zero, then (5) and (6) reduce to the well-known Jakes
model [9].
In fact, (5) and (6) reveal that the power spectra of h(i; l)

and g(i; l) span over the bandwidth fd1 = fds + fdr and
fd2 = fdr + fdd, respectively. According to the analysis of
CE-BEM in [14,16], we can express the doubly selective
channel as

h(i; l) =
Q1∑
q=0

hq(l)ej2π(q−Q1/2)i/N , (7)

g(i; l) =
Q2∑
q=0

gq(l)ej2π(q−Q2/2)i/N , (8)

where 0 ≤ i ≤ N − 1, 0 ≤ l ≤ L, Qm(m = 1, 2) �
2�fdmNTs� is the number of basis. The CE-BEM coeffi-
cients hq(l) and gq(l) are assumed as zero-mean, complex

Gaussian random variables with variance σ 2
h,q,l and σ 2

g,q,l,
respectively [14,16,24].
To simplify the notation as well as the following discus-

sion, we assume fd1 = fd2 = fd and Q1 = Q2 = Q. We
further denote wq = 2π(q − Q/2)/N and define

hq =[ hq(0), hq(1), . . . , hq(L)]T , (9)

gq =[ gq(0), gq(1), . . . , gq(L)]T , q ∈[ 0,Q] . (10)

3.2 CE-BEM approximation accuracy
Currently, the approximation accuracy about CE-BEM
to time-varying channel is only shown through simula-
tions with the merit of MSE [16]. Here, we take one step
further by deriving the theoretical MSE of the CE-BEM
approximation.
Without loss of generality, let us consider the 1st tap

of the channel h(i; 1). Define h̀l=1 =[ h(0; 1), . . . , h(N −
1; 1)]T and h̄l =[ h0(l), . . . , hQ(l)]T . From (7) we know that
the approximation error is

e1 = Ah̄l − h̀l=1, (11)

where

A =

⎡
⎢⎢⎢⎣

1 1 · · · 1
ejw0 ejw1 · · · ejwQ

...
...

...
...

ej(N−1)w0 ej(N−1)w1 · · · ej(N−1)wQ

⎤
⎥⎥⎥⎦ . (12)

Assume the singular value decomposition of the matrix
A is A = U0�0VH

0 where U0 is an N × N unitary matrix,
V0 is a (Q + 1) × (Q + 1) unitary matrix, and �0 is an
N × (Q + 1) matrix with the (Q + 1) diagonal entries as a
constant c0 and other entries as zero.b Let uk denotes the
kth column vector of the matrix U0.

Lemma 1. The MSE of the approximation error is

V = 1
N
E(eH1 e1) = N − Q − 1

N

N∑
k=Q+2

uHk Rluk , (13)

where Rl is the correlation function of h̀l=1.
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Proof. See Appendix 1.

Lemma 1 gives the theoretical MSE of CE-BEM approx-
imation to time-varying channels, which enables us to
obtain the approximation accuracy without simulations.
A brief example about theoretical MSE of CE-BEM

approximation to time-varying channels is shown in
Figure 3, where the system parameters are taken as fds =
fdr = 50Hz, fd1 = 100Hz, Ts = 100μs, and N = 200.
For comparison, simulation approximation MSE is also
given by averaging 100 trials. It shows that the theoretical
MSE (13) agrees with the simulation MSE. It also reveals
that the better approximation comes with larger Q, which
indicates that CE-BEM is a good choice for the doubly
selective channel.

3.3 Problem formulation
Next we apply CE-BEM (7) and (8) into (4) for channel
estimation and data detection. Our tasks are (i) estimate
the parameters hq and gq so that the channel h(i; l) and
g(i; l) can be recovered for each time index i ∈[ 0,N − 1],
or estimate the equivalent channel parameters that still
enable the successful data detection as did in [6,25]; (ii)
find the optimal training sequence that can minimize the
channel estimation error; (iii) recover the data sk , k ∈
[ 1, P] from the estimated channel.

4 Channel estimation
Let us construct N × 1 vectors r, y, and construct N × N
matricesH, G from g(i; l) in the following way:

r =[ r(0), r(1), . . . , r(N − 1)]T , (14)

y =[ y(0), y(1), . . . , y(N − 1)]T , (15)
Hi,j = h(i; i − j), Gi,j = g(i; i − j), (16)

for i, j = 1, 2, . . . ,N . We can write (2) and (4) as

r = Hx + w1, (17)

y = αGr + w2 = αGHx + w, (18)
where wi =[wi(0),wi(1), . . . ,wi(N − 1)]T , i = 1, 2 and
w =[w(0),w(1), . . . ,w(N − 1)]T .

4.1 Channel partition
Following the channel partition method in [24], we can
split the channel matrix H into three matrices, namely,
Hs, Hb, and Hb̄, which are shown in Figure 4. Similarly,
the channel Hk , the kth (1 ≤ k ≤ P) part of H corre-
sponding to the kth sub-block input of [ sk , bk], can also be
partitioned into three matricesHs

k ,H
b
k , andHb̄

k (Figure 5).
After the separation of these channels, we derive two
input–output relationships at the relay node

rs = Hss + Hb̄b̄ + ws
1, (19)

rb = Hbb + wb
1, (20)

where rs =[ (rs1)
T , . . . , (rsP)

T ]T , rb =[ (rs1)
T , . . . , (rsP)

T ]T ,
b̄ contains the first L and the last L entries of bk for all
1 ≤ k ≤ P, while ws

1 and wb
1 denote the corresponding

noise vectors.
Repeat the partition process for the channel G and Gk .

That is, split G into Gs, Gb̄, and Gb, while split Gk , the
kth component of G, into Gs

k , G
b̄
k , and Gb

k . We obtain two
input–output relationships at the destination node

ys = αGsrs + αGb̄rb̄ + ws
2, (21)

yb = αGbrb + wb
2, (22)

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

Q

M
S

E

Simulation
Theory

Figure 3 Theoretical and simulation MSE of CE-BEM approximation to the time-varying channel h(i; 1).
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Figure 4 Partition of the matrixH intoHs,Hb, andHb̄ that are shown in dashed line on the right side of the figure.

where ys =[ (ys1)
T , . . . , (ysP)

T ]T , yb =[ (yb1)
T , . . . , (ybP)

T ]T ,
rb̄ contains the first L and the last L entries of rbk for all
1 ≤ K ≤ P, ws

2, and wb
2 denote the corresponding noise

vectors.
Combining (20) and (22) yields

yb =αGbHbb + αGbwb
1 + wb

2︸ ︷︷ ︸
wb

(23)

where wb is defined as the corresponding item.
It can readily be checked that (23) is equivalent to

yb =

⎡
⎢⎢⎢⎣
yb1
...

ybP

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

αGb
1H

b
1b1

...

αGb
PH

b
PbP

⎤
⎥⎥⎥⎦ + wb. (24)

Note that in (24) Hb
k is an (Nbk − L) × Nbk matrix and

Gb
k is an (Nbk − 2L) × (Nbk − L) matrix. To perform chan-

nel estimation, the individual channel matrix Gb
k should

be a valid matrix. Thus, we require Nbk − 2L > 0, i.e.,

the training length for the kth subblock should be Nbk ≥
2L + 1.

4.2 Estimation algorithm

Let us define �
(wq)
M = diag{1, ejwq , . . . , ejwq(M−1)}. For any

(L+1)×1 vector a=[ a0, a1, . . . , aL]T, define anM×(M+L)

Toeplitz matrix as

T(a)
M+L =

⎡
⎢⎣
aL · · · a0 · · · 0
...

. . . . . . . . .
...

0 · · · aL · · · a0

⎤
⎥⎦

︸ ︷︷ ︸
M+Lcolumns

. (25)

We provide the following two lemmas.

Lemma 2.

T(a)
M+L�

(wq)
M+L = �

(wq)
M T(μa)

M+L, (26)

where μa =[ a0ejwqL, a1ejwq(L−1), . . . , aL].

Figure 5 Partition of the matrixHk .
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Proof. Proved from straight calculations due to the spe-
cial structures of �(wq)

M and T(μa)
M+L.

Lemma 3. For two vectors ai =[ ai,0, ai,1, . . . , ai,L]T , i =
1, 2, there is

T(a1)
M+LT

(a2)
M+2L =T(a1∗a2)

M+2L , (27)

where ∗ denotes linear convolution.

Proof. Note that both T(a1)
M+L and T(a2)

M+2L are circulant
matrix. Proved from straight calculations.

According to these definitions and (7), it can readily be
checked that

H =
Q∑

q=0
�

(wq)
N �q, (28)

where �q is a lower triangular Toeplitz matrix with the
first column [ hq(0), . . . , hq(L), 0, . . . , 0]T . Furthermore,
noticing that h(i+n; l) = ∑Q

q=0 hq(l)e
jwqnejwqi, we can find

Hb
k =

Q∑
q=0

e
jwq(Nsk+L+

k−1∑
i=1

Ni)
�

(wq)
Nbk−LT

(hq)
Nbk

, (29)

where T(hq)
Nbk

is (Nbk − L) × Nbk Toeplitz matrix as defined
in (25).
Similarly, based on (8) and g(i + n; l) =∑Q
q=0 gq(l)e

jwqnejwqi we can obtain

G =
Q∑

q=0
�

(wq)
N �q, (30)

Gb
k =

Q∑
q=0

e
jwq(Nsk+2L+

k−1∑
i=1

Ni)
�

(wq)
Nbk−2LT

(gq)
Nbk−L, (31)

where �q is a lower triangular Toeplitz matrix with the
first column [ gq(0), . . . , gq(L), 0, . . . , 0]T , and T(gq)

Nbk−L is an
(Nbk − 2L) × (Nbk − L) Toeplitz matrix as defined in (25).
Combining (29) and (31) gives

Gb
kH

b
k =

Q∑
m=0

e
jwm(Nsk+2L+

k−1∑
i=1

Ni)
�

(wm)
Nbk−2LT

(gm)

Nbk−L (32)

×
Q∑

n=0
e
jwn(Nsk+L+

k−1∑
i=1

Ni)
�

(wn)
Nbk−LT

(hn)
Nbk

=
Q∑

m=0

Q∑
n=0

θm,n,k �
(wm)
Nbk−2LT

(gm)

Nbk−L�
(wn)
Nbk−LT

(hn)
Nbk︸ ︷︷ ︸

�m,n,k

,

where

θm,n,k =e
jwm(Nsk+2L+

k−1∑
i=1

Ni)+jwn(Nsk+L+
k−1∑
i=1

Ni)
, (33)

and �m,n,k is defined as the corresponding item. Using
Lemmas 2 and 3, �m,n,k can be simplified as

�m,n,k =�
(wm)
Nbk−2L�

(wn)
Nbk−2LT

(μgm )

Nbk−LT
(hn)
Nbk

(34)

=�
(wm+wn)
Nbk−2L T(λm,n)

Nbk
,

where

μgm =[ gm(0)ejwnL, gm(1)ejwn(L−1), . . . , gm(L)]T , (35)

λm,n = μgm ∗ hn. (36)

Since T(λm,n)
Nbk

is a Toeplitz matrix, we obtain

Gb
kH

b
kbk =

Q∑
m=0

Q∑
n=0

θm,n,k�
(wm+wn)
Nbk−2L T(λm,n)

Nbk
bk

=
Q∑

m=0

Q∑
n=0

θm,n,k�
(wm+wn)
Nbk−2L B(bk)

Nbk
λm,n, (37)

where B(bk)
Nbk

is defined as

B(bk)
Nbk

=

⎡
⎢⎢⎢⎣

bk(2L), · · · , bk(0)
bk(2L + 1), · · · , bk(1)

...
...

...
bk(Nbk − 1), · · · , bk(Nbk − 2L − 1)

⎤
⎥⎥⎥⎦ .

(38)

Unfortunately, it remains challenging to estimate λm,n
from (37). The number of unknown elements for all λm,n
(m, n ∈[ 0,Q]) is (Q + 1)2(2L + 1). A direct way to esti-
mate all λm,n requiresNb to be no less than 2PL+ (Q+1)2
(2L+1), which is too large and the transmission efficiency
will be reduced. To solve this problem, we choose to
estimate other type of channel information that requires
smaller training length but at the same time guarantees
the data detection.
Let us introduce two variables ζq,k and �q as

�q = wm + wn = 2π(m + n − Q)/N (39)
= 2π(q − Q)/N , m, n ∈[ 0,Q] , q ∈[ 0, 2Q] ,

ζq,k = e
j�q(Nsk+2L+

k−1∑
i=1

Ni)
, k ∈[ 1, P] . (40)

It can readily be checked that θm,n,k = ζm+n,ke−jwnL. Then
we can combine those items that satisfym+ n = q in (37)
and obtain

Gb
kH

b
kbk =

2Q∑
q=0

ζq,k�
(�q)
Nbk−2LB

(bk)
Nbk

ηq, (41)
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where

ηq =
∑

m+n=q
e−jwnLλm,n. (42)

Define

η =[ ηT0 , η
T
1 , · · · , ηT2Q]T , (43)

as the parameters to be estimated. Substituting (41) into
(24) provides a simple model

yb =α�bη + wb, (44)

where �b is defined as

�b =

⎡
⎢⎢⎢⎣

ζ0,1�
(�0)
Nb1−2LB

(b1)
Nb1

, · · · , ζ2Q,1�
(�2Q)

Nb1−2LB
(b1)
Nb1

...
...

...
ζ0,P�

(�0)
NbP−2LB

(bP)
NbP

, · · · , ζ2Q,P�
(�2Q)

NbP−2LB
(bP)
NbP

⎤
⎥⎥⎥⎦ .

(45)

Thus, instead of estimating the coefficients hq and gq,
we could estimate another parameter η from

η̂ = 1
α

(
�H

b �b
)−1

�H
b yb. (46)

Moreover, η̂q can directly be obtained from η̂ for each q ∈
[ 0, 2Q].

Remark 2. Since η is a vector with (2Q + 1)(2L + 1)
entries, Nb should be at least (2Q + 1)(2L + 1) + 2PL.

4.3 Data detection
Substituting (19) into (21) yields

ys =αGsHss + αGsHb̄b̄ + αGsws
1 + αGb̄rb̄ + ws

2.
(47)

Note that rb̄ in (47) can be further decomposed as

rb̄ = Hb̆b̆ + wb̄
1, (48)

where Hb̆ contains the first L and the last L rows of every
Hb

k , b̆ contains the first 2L and the last 2L entries of every
bk , 1 ≤ K ≤ P and wb̄

1 denotes the corresponding noise.
Then (47) can be written as

ys =αGsHss + αGsHb̄b̄ + αGb̄Hb̆b̆ + ws, (49)

where the combined noise vectorws = αGsws
1+αGb̄w

b̄
1+

ws
2.

Lemma 4. Among all training choices that lead to iden-
tical covariance matrix of the channel estimation error,
if the training length Nbk is greater than 4L + 1 and
if the training has the first 2L and the last 2L entries
equal to zero, then the interference to the data detection is
minimized.

Proof. See Appendix 2.

Following Lemma 4, we can simplify (49) as

ys =αGsHss + ws, (50)

which is equivalent to

ys =
⎡
⎢⎣
ys1
...
ysP

⎤
⎥⎦ =

⎡
⎢⎣

αGs
1H

s
1s1

...
αGs

PH
s
1sP

⎤
⎥⎦ + ws. (51)

DefineU(hq)
M as a Toeplitzmatrix generated by the vector

hq in the following way:

U(hq)
M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hq(0), · · · , 0
...

. . .
...

hq(L),
. . . , hq(0)

...
. . .

...
0 · · · hq(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Mcolumns

. (52)

We have the following lemmas.

Lemma 5.

U(hq)
M �

(wq)
M =e−jwqL�

(wq)
M+LU

(μhq )

M , (53)

where μhq =[ hq(0)ejwqL, hq(1)ejwq(L−1), . . . , hq(L)]T .

Proof. Proved from straight calculation.

Lemma 6.

U(gq)
M+LU

(hq)
M = U(gq∗hq)

M (54)

Proof. Proved from straight calculation.

According to (7) and (8), we obtain

Gs
k =

Q∑
q=0

e
jwq

k−1∑
i=1

Ni
�

(wq)
Nsk+2LU

(gq)
Nsk+L, (55)

Hs
k =

Q∑
q=0

e
jwq

k−1∑
i=1

Ni
�

(wq)
Nsk+LU

(hq)
Nsk

. (56)

Next it can be verified that

Gs
kH

s
k =

Q∑
m=0

Q∑
n=0

φm,n,k�
(wm)
Nsk+2LU

(gm)

Nsk+L�
(wn)
Nsk+LU

(hn)
Nsk

(57)

where φm,n,k = e
j(wm+wn)

k−1∑
i=1

Ni
. Using Lemmas 5 and 6, it

can be derived that

U(gm)

Nsk+L�
(wn)
Nsk+LU

(hn)
Nsk

=e−jwnL�(wn)
Nsk+2LU

(μgm )

Nsk+LU
(hn)
Nsk

=e−jwnL�(wn)
Nsk+2LU

(λm,n)
Nsk

, (58)
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where μgm and λm,n are defined in (35) and (36), respec-
tively. Substituting (58) into (57), we can obtain

Gs
kH

s
k =

Q∑
m=0

Q∑
n=0

φm,n,ke−jwnL�(wm+wn)
Nsk+2L U(λm,n)

Nsk

=
2Q∑
q=0

e
j�q

k−1∑
i=1

Ni
�

(�q)
Nsk+2LU

(ηq)

Nsk
. (59)

Clearly, given the estimates of ηq, Gs
kH

s
k can be recon-

structed from (59). Hence, the data sk can be detected
with the reconstructed channel information Gs

kH
s
k .

4.4 Training sequence design
The estimation error of η can be expressed as

e =η̂ − η = (
�H

b �b
)−1

�H
b wb. (60)

The correlationmatrix ofwb is then computed from (31)
as

Rwb = E
(
wbwH

b
) =

⎛
⎝σ 2

w2

Q∑
q=0

L∑
l=0

|gq(l)|2 + σ 2
w1

⎞
⎠ INb−2PL.

(61)

Thus, the MSE of e is

σ 2
e =tr

(
E(eeH )

) = Cetr
(
�H

b �b
)−1 (62)

where Ce =
(

σ 2
w2

Q∑
q=0

L∑
l=0

|gq(l)|2 + σ 2
w1

)
/α2.

According to ([26], Appendix A), we know that σ 2
e in

(62) is lower bounded as follows:

Cetr
(
�H

b �b
)−1 ≥

∑
m

Ce

[�H
b �b]m,m

, (63)

where the equality holds if and only if (�H
b �b) is a diago-

nal matrix. We then need to design the training sequence
that can diagonalize (�H

b �b).
Based on the definition of �b (45), the optimal training

sequence that can minimize the σ 2
e requires the following

conditions to be satisfied:
P∑

k=1

(
B(bk)
Nbk

)H
B(bk)
Nbk

= PbI2L+1, (64)

P∑
k=1

(
B(bk)
Nbk

)H
�

(−�q1 )

Nbk−2Lζ
H
q1,kζq2,k�

(�q2 )

Nbk−2LB
(bk)
Nbk

= 02L+1,

(65)
∀q1 
= q2, q1, q2 ∈[ 0, 2Q]

where Pb is the power allocated to the training sequence.

Let us first focus on (64). Observing the structure of
B(bk)
Nbk

, we know that (64) can be fulfilled if the following
conditions are satisfied:

(C1): Nbk = 4L + 1, ∀k ∈[ 1, P] , (66)

(C2): bk = √
Pb/P[ 0, . . . , 0, 1, 0, . . . , 0]T . (67)

With conditions (C1) and (C2), we can further simplify
(65) as

Pb
P

P∑
k=1

�
(−�q1 )

2L+1 ζH
q1,kζq2,k�

(�q2 )

2L+1 (68)

= Pb
P

P∑
k=1

e
j 2πN (q2−q1)(Nsk+2L+

k−1∑
i=1

Ni)
�

(�q2−�q1 )

2L+1

= 02L+1, ∀q1 
= q2, q1, q2 ∈[ 0, 2Q] .
It can readily be checked that the sufficient conditions

to achieve (68) are

(C3): N = P(Nsk +4L+1), Nsk = Ns/P, ∀k ∈[ 1, P] .
(69)

Conditions (C1), (C2), and (C3) imply that the equal-
spaced and equal-powered training sequence can mini-
mize the estimationMSE. This coincides with the optimal
training sequence design in the traditional point-to-point
channel [24].

Remark 3. Note that Equation (68) cannot hold when
P = 1. It indicates that the traditional transmission
frame [1,2], i.e., sending and receiving the continuous data
sequence only once, is not optimal in minimizing the esti-
mation MSE.

4.5 Block parameters
Remark 2 shows Nb ≥ 2PL + (2Q + 1)(2L + 1) and the
optimal training design requires Nb = P(4L + 1) to mini-
mize the mean-square channel estimation error. Thus, we
know that P ≥ (2Q+ 1) and N ≥ (Nsk + 4L+ 1)(2Q+ 1).
Suppose a 3-tap channel and Nsk = 4L + 1 = 9, we can

obtain

2Q + 1 = 4�fdTsN� + 1 ≤ N/18. (70)

It can be found

fdTs ≤ 1
72

+ 1
4N

≈ 0.0139 + 1
4N

. (71)

This is the maximum normalized Doppler shift that
our estimation scheme can handle. With the following
parameters

• carrier frequency fc = 900MHz and thus the
wavelength λ = 1/3m,
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• data rate 20 Kbps and thus the symbol period
Ts = 50μs,

we can compute from fd = V/λ that the mobile speed V
should not exceed 66m/s, which can be satisfied in most
application.

5 Simulation results
In order to evaluate the inherent performance of our
algorithms, the doubly selective channels are generated
directly from the CE-BEM (7) and (8). The same approach
has been adopted in many other articles when testing the
performance of channel estimation [24,27]. However, the
real channel will be used in date detection.
We assume that carrier frequency fc = 900MHz, one

symbol period Ts = 50μs and the maximum mobility
speed is 90 km/h. Thus, the maximum Doppler shift is
fd = 75Hz and fdTs = 3.75×10−3. Suppose one block con-
tains 360 symbols, i.e.,N = 360. ThenQ = 2�NfdTs� = 4.
We also assume that both doubly selective channels h(i; l)
and g(i; l) has three taps, i.e., L = 2. Thus, we know that
P ≥ (2Q + 1) = 9 and Nb ≥ P(4L+ 1) = 81. The variance of
each tap for channel h(i; l) is σ 2

h,l = ∑Q
q=0 σ 2

h,q,l = e−l/10 and
that for channel g(i; l) is σ 2

g,l = ∑Q
q=0 σ 2

g,q,l = e−l/10. The
variance of the noise is taken as σ 2

w1 = σ 2
w2 = 1. The SNR

is defined as the ratio of symbol power to the noise power,
i.e., Es/N0. BPSK constellation is utilized for both training
and data symbols. One thousand Monte-Carlo trials are
used for the averaging.
First we set the total number of trainings Nb = 120

and adopt three types of training: equi-powered and
equi-spaced (our optimal design); equi-powered but with
random length; equi-spaced but with random power. For

performance comparison, the total power for each types
of trainings is the same. For each type of training, we
find the MSE of our specially defined channel η. The
estimation MSEs versus SNR for each type are plotted
in Figure 6. The lower bound of σ 2

e (63) is also plot-
ted for comparison. It can be seen that the equi-spaced
equi-powered training achieves the minimum estimation
MSE among all the three trainings and its MSE almost
approaches the lower bound in (63).
Next we use the estimated channel η̂ to perform data

detection. Define bit error rate (BER) as the ratio of num-
ber of successfully decoded data symbols over Ns the
number of transmitted data symbols. The BER versus SNR
is plotted in Figure 7. The BER curve in the case of per-
fectly known channel η is also plotted for comparison. It
can be seen that our detection method works well, and at
high SNR our BER curve approaches that of the ideal case
when the channel is perfectly known at the receiver.
We also examine the performance of the suggested

estimation and detection methods under real channel sit-
uations. That is, the channel are generated according to
(5) and (6), and next our suggested estimation and detec-
tionmethods are utilized. Three different number of bases
Q are chosen as 4, 6, and 8, respectively, and hence the
corresponding number of data symbols Ns is 279, 243,
and 207. The BER versus SNR is plotted in Figure 8. For
comparison, the BER curve under perfect channel knowl-
edge at the receiver is also displayed. Clearly, the proposed
methods yield effective data detection. An error floor is
observed in the high SNR region due to the mismatch
between the BEMmodel and the real channels. Obviously,
the place where the floor begins could be improved by
increasing the number Q.
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Figure 6 Channel MSE versus the SNR.
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Figure 7 BER versus the SNR: CE-BEM channel.

In the last example, we choose three different number of
subblocks P as 2Q+1, 2Q+2, and 2Q+4, respectively, and
the space left for data transmission is Nsk = N − P(4L +
1) = 279, 270, and 252, respectively. Define the transmis-
sion efficiency as the ratio of the number of successfully
decoded data symbols over total number of symbols, i.e.,
Ns×BER/N .We run the simulation process as SNR ranges
from −10 to 30 dB. The transmission efficiency at differ-
ent SNR for each P is plotted in Figure 9. It is shown
that when the number of subblocks P equals 2Q + 1, the
best transmission efficiency is achieved at all SNR. It can
be explained that when P increase by one unit, the data

loss will be 4L + 1, which cannot be compensated even
if channel estimation performance can be improved by
larger P.

6 Conclusion
In this article, doubly selective channel estimation was
considered for AF-based relay networks. Based on the CE-
BEM, we designed an efficient method to estimate the
channel coefficients and detect data symbols. The optimal
training sequence that can minimize the estimation MSE
was also derived. Finally, extensive numerical results are
provided to corroborate the proposed studies.
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Appendix 1
Proof of Lemma 1
Assuming that h̀l=1 is perfectly known, the best CE-BEM
coefficients h̄l are obtained from the LS criterion as

h̄l = (AHA)−1AH h̀l=1. (72)

Thus, the approximation error can be simplified as

e1 = (
A(AHA)−1AH − IN

)
h̀l=1 = U0MUH

0 h̀l=1, (73)

whereM is defined as

M =
[
0Q+1 0(Q+1)×(N−Q−1)

0(N−Q−1)×(Q+1) −IN−Q−1

]
. (74)

The MSE of the approximation error e1 is

V = 1
N
E

(
h̀Hl=1U0M2UH

0 h̀l=1

)
(75)

= 1
N

N∑
k=Q+2

E
(
h̀Hl=1uku

H
k h̀l=1

)
.

It can readily be checked that

E
(
h̀Hl=1uku

H
k h̀l=1

)
= E

(
tr(h̀Hl=1uku

H
k h̀l=1)

)
(76)

= E
(
uHk h̀l=1h̀Hl=1uk

)
= uHk Rhuk .

Substituting (76) into (75) yields (13).

Appendix 2
Proof of Lemma 4
The interference during the data detection can be
expressed as

v =α�(GsHs)s + ws + α�(GsHb̄)b̄ + α�(Gb̄Hb̆)b̆,
(77)

where�(·) denotes the estimation error of the inside item.
The correlation function of the interference v is given by

Rv =α2PsE(�(GsHs)�(GsHs)
H) + E(wswH

s ) (78)

+ α2E(�(GsHb̄)b̄b̄
H�(GsHb̄)

H)

+ α2E(�(Gb̄Hb̆)b̆b̆
H�(Gb̄Hb̆)

H),

where Ps is the power allocated to the data sequence. We
need to find the training scheme that can minimize the
trace of Rv.
Suppose there are two training schemes with identical

E((η − η̂)(η − η̂)H). Thus, the first and the second items
in (78) are the same for both training schemes. Clearly,
the trace of the two items for both training schemes is
the same. If the training scheme has the first 2L and the
last 2L entries equal to zero, the third and fourth item in
(78) will become zero; if the training scheme does not has
such condition, then it cannot null these two semi-definite
items.

Endnotes
aThere may exists a switching time at the relay nodeR,
which results in a delay � in the second retransmission
phase. However, our model can be well adapted by setting
g(i + �; l) = g(i0; l) where i0 is the new starting point for
the following CE-BEM approximation.
bIt is because that ej2πQ/(2N)A can be considered as part
of a discrete Fourier transform matrix.
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