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Abstract

In the present study, a novel signal restoration method from noisy data samples is presented and is termed as
“signal split (SSplit)” approach. The new method utilizes Stein unbiased risk estimate estimator to split the signal,
the Lipschitz exponents to identify noise elements and a heuristic approach for the signal reconstruction. However,
unlike many noise removal techniques, the present method works only in the non-orthogonal domain. Signal
restoration was performed on each individual part by finding the best compromise between the data samples and
the smoothing criteria. Statistical results are quite promising and suggest better performance than the
conventional shrinkage. Furthermore, the proposed method preserves the energy of the sharp peaks and edges
which, is not however, the case for classical shrinkage methods.

Keywords: continuous wavelet transform, wavelet transform modulus maxima, split or segmentation, Stein
unbiased risk estimate, thresholding, modulus maxima, Lipschitz exponent

1 Introduction
In the past two decades, wavelet transform has been
used as significant non-parametric estimation tool to
extract noise elements from the signal. Antoniadis et al
provided an extensive review of the vast literature of
wavelet shrinkage and wavelet thresholding estimator
developed to denoise data [1]. Among these denoising
techniques, the modulus maxima approach proposed by
Mallat et al. has received the most attention in continu-
ous and non-orthogonal domains [2,3]. Although many
researchers have proposed different methods to estimate
signals from the evolution of the wavelet transform
modulus maxima (WTMM) across different scales
[4-11], still the proposed reconstruction process are
either complicated or computationally expensive. More
recently, Chen at al. presented a neighboring coefficients
based multi wavelets denoising method [12].
Another domain of denoising techniques studies on

the principle of shrinkage [13]. The shrinkage method
uses nonlinear thresholding approach to shrink the
orthogonal wavelet coefficients as a denoising tool. This
method relies on the idea that the energy of the func-
tion is often concentrated in a few wavelet coefficients
while the energy of the noise is spread over all coeffi-
cients, therefore by selecting a suitable threshold value it

is possible to reduce a significant amount of noise ele-
ments by using nonlinear thresholding in the wavelet
domain [13]. However, the denoised signal in this case
may contain spurious oscillations due to the translation
variant property of the discrete wavelet transform. After-
wards, several approaches were proposed to overcome
these problems of shrinkage but so far none of them
guarantees the preservation of edges or sharp variations
possibly due to their working in an orthogonal basis
[13-17]. Fodor and Kamath presented a brief survey of
some of these approaches [17]. More recently, Blu and
Luisier presented the state of the art SURE-LET method
for image denoising [18]. The performance of the
SURE-LET method is quite outstanding in the presence
of Gaussian noise. In the present study, we are addres-
sing only 1D signal therefore it is not possible to com-
pare with the SURE-LET method. However in the
future study, the extension of the proposed method for
2D cases will give logical comparison of the two
methods.
The main motivation of the current study is to over-

come the existing problems in the previously proposed
methods and to preserve the transitions at a relatively
lower computational cost without introducing any oscil-
lations. The new technique worked on the idea of split-
ting the signal. The method segments the signal based
on the sharpness of its transitions. In this way, the main
transitions presented inside the signal have been pre-
served at the initial stage. This segmentation is
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performed by Stein’s unbiased risk estimate (SURE)
based nonlinear thresholding of WTMM. Once the sig-
nal has been split into different sub signals, Lipschitz
exponents were computed for all the significant transi-
tions present inside each sub signal. These Lipschitz
exponents permit to separate the regular or smooth
points from the noise elements. At the final stage, signal
reconstruction involves in finding the best compromise
between the data points and the smoothness criterion.
At the end, all sub signals were merged together to
reconstruct the fully denoised signal.
The article is organized as follows. The principle of

the method is given in Section 2. Section 3 explains the
proposed splitting approach. The proposed noise
removal technique for the subs signals and the recon-
struction method is given in Section 4. Results and com-
parative analysis of the SSplit method with the SURE
Shrink method [13] is given in Section 5 and finally,
Section 6 concludes the study. The summary of the
method is given in Appendix section.

2 Principle of the method
The proposed method can be divided into two main
stages: signal splitting and restoration. Suppose we have
a noisy function Y such that:

Y = F(ti) + εi, where i = 1, ...,N (1)

F(ti) is the deterministic function with ti = (i-1)/N, N
is the total number of samples and �i is white gaussian
noise N(0, s2). The aim of the current study is to esti-
mate the function F with the minimum mean square
error (MSE). The MSE of an estimator F̂ with respect to
the estimated parameter F. In this study, all MSE were
computed between restored signal and original (noise
free) signal. To estimate the function F, the method pro-
poses to split the function Y into its subsets in spatial
domain based on the sharpness of transitions or edges
such that:

Y ⊇ Yi=1,2,...,J (2)

Y denotes the set of all samples and each subset Yi,
with i = 1, ..., J contains Ki adjacent samples yi,l where l
� 1, ... Ki. J is the total number of subset and Ki is the
length of each respective subset. Piecewise analysis was
performed on each subset of the function Y. The selec-
tion of subsets is defined by SURE based nonlinear
thresholding of WTMM. Once the signal has been split
into subsets, the WTMM approach was applied on each
subset individually to compute the Lipschitz exponents
of the transitions in each subset. These Lipschitz expo-
nents identify the regular or smooth points in the signal.
The nonlinear function is then optimized between all
the regular points using an iterative method to restore

the signal from each subset. Finally, all subsets were
merged together to reconstruct the fully denoised signal.
Four different types of synthetic signals used in this
study are taken from the work by Donoho et al.: blocks,
bumps, heavisine and dopplers as shown in Figure 1.

3 Signal splitting method (SSplit)
In order to split the signal, continuous wavelet trans-
form based multiscale analysis has been applied on sig-
nal y(t) to compute the modulus maxima by using an
integrable function [2,3]:

WT(u, s) =
1√
s

+∞∫
−∞

y(t)�∗
[
(t − u)

s

]
dt (3)

where WT(u, s) is the wavelet coefficient of the func-
tion y(t), Ψ(t) is the analyzing wavelet, s(> 0) is the scale
parameter and u is the position parameter. The Gaus-
sian function (θ(t)) has an important property of contin-
uous differentiability, which makes this function suitable
for the analysis of most types of signals. Therefore, the
derivative of the Gaussian function has been used as a
wavelet analyzing function (Ψ(t)) for the splitting
method. These WTMM computed by using the deriva-
tive of the Gaussian wavelet is defined as any point (u0,
s0) such that ∥Wf(u, s0)∥ has a local maximum at u = u0
[2,3].
In order to select the optimum threshold criterion for

making the subsets, the level-dependent thresholds are
derived from modulus maxima by regarding the differ-
ent scale levels as independent multivariate normal esti-
mation problems. SURE gives an estimate of the risk for
a particular threshold value t; minimizing this in t gives
a selection of the threshold level for that level j (j = 1, 2
..., J) [19]. SURE-based thresholding on modulus max-
ima results in splitting the signal into subsets based on
the sharpness of transitions. Figure 2 shows the thresh-
olding results and respective splitting points on decom-
posed signal. The first derivative of Gaussian function is
used as a mother wavelet function on the block function
with the sample size of 2048. Tracing these modulus
maxima lines from coarser scales to finer scale gives the
split edges at a convergence point on the finest scale. In
short, a nonlinear soft thresholding at the decomposi-
tion level J = 10 with the signal size of 2J results in giv-
ing all the split points in block signal. In the present
study, we termed the signal between two split points as
a “subset”. Figure 3 shows the resulting subsets along
with the split points obtained in the original block signal
by applying SURE based nonlinear soft thresholding. In
this section, we had explained the proposed splitting
process and the coming sections will explain the noise
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extraction method and the proposed reconstruction
technique.

4 Singular points estimation and signal
restoration
The second stage of the denoising algorithm deals with
the extraction of noise elements from each individual
subset. Mallat highlighted that the wavelet transform
has a sequence of local maxima that converges to a
point at a finer scale even though the function is regular
at that point [2,3]. Therefore, in order to detect the

singularities it is not sufficient to follow the wavelet
modulus maxima across scales. The Lipschitz exponents
measure the regularity or singularity from the decay of
these modulus maxima lines. By utilizing this property
of Lipschitz exponents, the proposed method recon-
structs the signal between all regular points using non-
linear functions.

4.1 Modulus maxima lines and Lipschitz exponent
Continuous wavelet transform based multiscale analysis
was applied on each subset Yi(t) individually to compute

Figure 1 Four different synthetic signals used in this study. (a) Blocks, (b) bumps, (c) heavisine, and (d) dopplers.

Figure 2 CWT based decomposition of block function at scale J = 10 (with (Ψ(t)) first derivative of Gaussian function) is shown with
the dotted lines (where total signal size = 2J). The non-zero solid line points shows the proposed splitting points after applying nonlinear
soft thresholding at scale J. It can be noted that the soft thresholding results in reducing the energy of the non-zero coefficients. After applying
threshold, all the coefficients with non-zero energy are considered as a split points.
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the modulus maxima line. The modulus maxima line is
any connected curve S(u) in the scale-space plane (u, s)
along which all points are modulus maxima (Figure 4b).
It has been shown by Mallat that the point wise singula-
rities can be computed by measuring the decay of the
slope of ∥Wf(u, s)∥ as a function of log2(s) and is termed
as the Lipschitz exponent [2,3].
Definition 1 Suppose n is an integer such that, n <a

<n + 1, the signal y(t) has Lipschitz a at t0, if and only
if there exists a constant A and t0 > 0 and a polynomial
Pn(t) of order n, such that for t <t0

y(t) − Pn(t) ≤ A|t − t0|α (4)

where the least upper bound of a at the point of t0 is
defined as the regularity of y(t) at the point of t0.
Lipschitz exponents can be computed from modulus

maxima lines by using Eq. (4). Lipschitz exponents actu-
ally represent the nature of the signal in term of its dif-
ferentiability and can be describe for a point or for
interval as well. The scope of this study is limited to the
study of point wise Lipschitz estimation. Figure 5 sum-
marizes the results of Lipschitz estimation for different
types of edges normally present inside the signal. In the
case of Step function, Lipschitz exponent of 0 corre-
spond to the discontinuity and also the function is non-
differentiable as well. Similarly, impulse function is con-
sidered to be as a singular and have negative Lipschitz
estimation. In many situations, noise is also considered
as an impulse in nature. Therefore, in more generalized
way negative Lipschitz correspond to the noise elements.
The more smoother regions have higher Lipschitz order
and hence are differentiable more than once [2,3].

Figure 3 Signal Splitting. (a) Signal with Gaussian white noise addition, proposed split points shown as arrow marks, (b)-(m) Subsets of noisy
signal obtained with the first derivative of Gaussian function as a wavelet analyzing function.
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4.2 Reconstruction method
The present method proposes restoring each subset
individually by taking into account extracted regular
data samples based on their respective Lipschitz expo-
nents as shown in Figure 6. These regular samples
represent the smoother regions present inside the signal,
therefore the reconstruction method does not change
these data samples. The actual values at these points are
preserved and the restoration is performed between
these regular data samples. The restoration process was
performed between two data samples and hence the
first and last data samples have also been considered as
regular data points.

The restoration method between regular data samples
utilizes all sampled points and the smoothness of each
subset to estimate the best fit. In the final stage, mer-
ging of all reconstructed subsets result in giving fully
denoised signal.
We define

Yk+1
i = Yk

i + λk
i

(
−∂CMSE,k

i

∂Yi

)
+ γ k

i

(
−∂CMSO,k

i

∂Yi

)
(5)

Yi denotes i = 1, ..., J subsets with Ki adjacent samples
(yi,l with l � 1, ... Ni). k define the iteration step. CMSE

i is
the mean square error estimation of the restored subset

Figure 4 Synthetic signal with the corresponding maxima lines. (a) Combination of synthetic signals: heavisine, bumps, blocks, and
dopplers, (b) modulus maxima lines with the first derivative of Gaussian function as a mother wavelet function.

Figure 5 Lipschitz exponents of different types of singularities and smooth regions.
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with the original signal of respective subset (yoi) such
that

CMSE
i =

Ni∑
l=1

(
yki,l − ykoi

)2
(6)

CMSO
i define the smoothness of the reconstructed sub-

set signal.

CMSO
i =

Ni∑
l=1

yk
′′2
i,l (7)

Since, we suppose that there are no more singularities
in the sub signal therefore in order to find the value of
λk
i and γ k

i in Eq. (5), consider the Taylor series expan-
sion, and for the given series, to find the minimum
mean square error we want f’ (x + dx) = 0 therefore by
simplifying Taylor series expansion:

dx = − f ′(x)
d2f
dx2

(8)

and we know that:

xk+1 = xk + λdx (9)

As x → Yk+1
i and f → CMSE,k

i the variables in eq.9. can
be replaced such that

Yk+1
i = Yk

i +
−CMSE,k′

i (y)

d2CMSE,k
i

dYk2
l

(10)

Thus,

λk
i =

d2CMSE,k
i

dYk2
l

(11)

Figure 6 Subset of a bumps signal showing regular points (Lipschitz value a > 1) marked as circle. The reconstruction method was
performed between these regular points. solid line = noisy data samples, dotted lines = reconstructed signal.
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and we can simplify the equation to

Yk+1
i = Yk

i + λk
i

(
−∂CMSE

i

∂Yl

)
(12)

Similarly by using the Taylor series as smoothing cri-
teria, γ k

i is as follows:

γ k
i =

d2CMSO,k
i

dYk2
l

(13)

The algorithm works iteratively to find the minimum
error between the restored signal and the original signal
for each subset yi. It has been assumed for the initializa-
tion that the signal is most like the data points and has
the least smoothness. In order to find the best compro-
mise between the data samples and smoothing criteria,
two optimization factors for data samples and smooth-
ness (wM and wS, respectively) has been introduced such
that Eq. (5) will become:

Yk+1
i = Yk

i + wMλk
i

(
−∂CMSE,k

i

∂Yi

)
+ wSγ k

i

(
−∂CMSO,k

i

∂Yi

)
(14)

In discrete case, by simplifying we can write Eq. (14)
as,

Yk+1
i = Yk

i − 4wM
(
Yk
i − Yk

oi

)
+ 32wS

(
Yk
i,l−1 − 2Yk

i,l + Yk
i,l+1

)
(15)

The parametric value of wM or wS depends on the
type of singularity. We define these two parameters in
such a way that they should satisfy the stability condi-
tions. The term corresponding to the data sample or
mean square error is already stable due to the presence
of the original signal. However, in term of smoothness,
we rewrite Eq. (15) as:

Yk+1
i =

(
1 − 64wS) Yk

i + 32wS
(
Yk
i,l−1 + Yk

i,l+1

)
(16)

From Eq. (16), we find that in order to ensure the sta-
bility of the signal, the term should satisfy the following
conditions:{

0 < 1 − 64wS < 1
0 < 32wS < 1

}

By solving the above conditions, we can write the con-
stant wS term in numerical form between 0 to 1

64 as the
signal will only be stable in this range. Therefore, based
on our above finding we define two constant factor in
term of an equation as:

wS + wM =
1
64

(17)

Figure 7 highlights the importance of the selection of
these parameters (wM or wS) by taking an example of a
peak signal with the addition of white Gaussian noise.
Figure 7b shows the reconstruction result with the max-
imum smoothness (wS = 1/64). The maximum smooth-
ness results in reducing the noise elements but at the
cost of an offset on the slope towards the peak. It can
be notice that, in this case RMSE gives worst response
however visually the results appear to be best in terms
of smoothness. On the other hand, Figure 7c shows the
reconstruction with the minimum smoothness and max-
imum data sample (wS = 0), which result in removing
an offset but at the cost of more noise. The best com-
promise for this type of signal is shown in Figure 7d.
Therefore, the selection of these two parameters
depends on the type of the singularity present in the sig-
nal and selected manually for different types of signal.
After restoring each subset individually by using Eq.
(14), final merging of all reconstructed subsets results in
giving the fully denoised signal.

5 Results
In this section, we will present the analysis of SSplit
method in terms of MSE on four different types of syn-
thetic signals [13]. MSE were computed between
restored signal and original (noise free) signal. Figure 8
shows the restored Blocks signal with the proposed
SSplit method along with the noisy block signal cor-
rupted with white Gaussian noise. It can be seen from
the figure that, the method not only reduced the noise
significantly but also preserved the sharp transitions,
which however is not in the case of mostly denoising
algorithms. In the case of Block signal, the main prop-
erty of such function lies in the discontinuity at the
edges which has been preserved with the splitting.
Figure 9 shows the result on bumps signal corrupted

with white Gaussian noise. In this case as well, the
restored signal preserved the peaks along with the
reduction of noise elements. The marked points in Fig-
ure 9c represents the proposed split points. It can be
seen from the figure that all the split points correspond
to the peaks and once these peaks are identified, the
restoration method result in smoothing rest of the noise
elements. In the case of bumps signal, the selection of
wM or wS is of extreme importance to get the best
results as explained with an example of peak signal in
the previous section.
Figures 10 and 11 show the result of the proposed

method on Doppler and Heavisine signal corrupted with
the white Gaussian noise. The figures show that, in the
case of Dopplers, the proposed method not only reduces
the noise at low frequency elements, but also the high
frequency samples have been restored significantly. In
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Figure 7 Explanation of wS and wM factor. (a) Original and noisy signal: dotted line = original signal, solid line = noisy signal, (b)
reconstruction with wS = 0.01, dotted line = original signal, solid line = reconstructed signal and root mean square error (RMSE) = 1.42, (c)
reconstruction with wS = 0 and RMSE = 0.81, d) Reconstruction with wS = 0.007, dotted line = original signal, solid line = Reconstructed signal
and RMSE = 0.32. RMSE were computed between restored signal and original (noise free) signal.

Figure 8 Obtained results on Block signal. (a) Original block signal, (b) block signal with the addition of white Gaussian noise, sample size is
2048, input SNR (dB) is 9.25 and input MSE = 0.85, (c) reconstructed signal with SSplit (wS = 0.01), MSE = 0.36, (Ψ(t)) is the first derivative of
Gaussian function, the arrow marked shows the split point in the signal.
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Figure 9 Obtained results on Bumps signal. (a) Original bumps signal, (b) bumps signal with the addition of white Gaussian noise, sample
size is 2048, input SNR (dB) is 10.16 and input MSE = 0.42, c) Reconstructed signal with SSplit (wS = 0.007), MSE = 0.23, (Ψ(t)) is the second
derivative of Gaussian function, the arrow marked shows the split point in the signal.

Figure 10 Obtained results on Doppler signal. (a) Original Doppler signal, (b) Doppler signal with the addition of white Gaussian noise,
sample size is 2048, input SNR (dB) is 9.45 and input MSE = 0.18, c) Reconstructed signal with SSplit (wS = 0.01), MSE = 0.04, (Ψ(t)) is the first
derivative of Gaussian function, the arrow marked shows the split point in the signal.
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the case of Dopplers signal, the method split the signal
from the points which correspond to the change in fre-
quency. In many situations it is difficult to denoise low
and high frequency components at the same time. How-
ever, this can be done by splitting the signal. Similar
results can be observed in the case of Heavisine signal
as well. Apart from the smooth area, the proposed
method preserved the sharp edges by splitting the signal
from the discontinuities. In this section, we have pre-
sented the results obtained with the SSplit method on
four different types of signals used in this study. We will
present the comparative analysis of the proposed
method with the SURE shrinkage method in the follow-
ing section.
The result on four different types of signals has been

presented in this section. The main objective of the pre-
sent study is to preserve these edges and then remove
noise elements. Therefore, we first separate the sharp
transition or edges from the signal by splitting and then
performed smoothing operation. It can be seen from the
results of block and heavisine signals that splitting pre-
serve the main edges. After that we are left with the
relatively homogeneous regions and we know that we
need to perform smoothing along the data samples.
However, this is not in the case of bumps signal because
the only smoothing will result in generating an offset as

explained with an example in Section 4.2. Therefore, we
try to find the better compromise between data samples
and smoothness. Apparently, it seems to be a random
selection but in fact, this is not the case. It can be seen
from the results that the selection of the parametric
value (wS) depends on the type of the signal.

5.1 Comparative analysis
Figure 12 shows the restored bumps signal with SURE
shrink and the proposed SSplit method along with the
noisy bumps signal corrupted with the white Gaussian
noise. It can be seen from the figure that the restored
signals from both approaches seem similar with a few
differences in the mean square errors. In this study, all
MSE were computed between reconstructed signal and
original (noise free) signal. In the case of the bumps sig-
nal, the most useful aspect and energy of the signal lies
in the sharp peaks which shows the most significant
transitions in the signal. Although the SURE Shrink
method gives comparable results as compared to the
SSplit method, but the energy of the peaks were
reduced, as highlighted in Figure 12. The SSplit method
preserves the energy of the peaks because the method
split the signal from sharp peaks and restores the signal
between such sharp transitions by considering regular
points as explained in the previous section.

Figure 11 Obtained results on Heavisine signal. (a) Original heavisine signal, (b) Heavisine signal with the addition of white Gaussian noise,
sample size is 2048, input SNR (dB) is 16.85 and input MSE = 0.44, (c) reconstructed signal with SSplit (ws = 0.009), MSE = 0.13, (Ψ(t)) is the first
derivative of Gaussian function, the arrow marked shows the split point in the signal.
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At the second stage, the method was tested with the
addition of different variance of noise. The graphical
results given in Figure 13 illustrate the resulting mean
square error of four different types of signals with differ-
ent variance of noise. It can be seen from the figure that
the proposed method gives comparable results in all the
cases with the classical SURE shrink method. Therefore,
the method is particularly useful in the cases where the
sharpness of the transitions is of extreme importance.
At the last stage, the proposed method has been com-

pared with the SURE shrink approach with different size
of data samples. Figure 14 summarizes the results in
terms of MSE. It can be observed from the graphs that
reduction in the total data samples does not significantly
influence the results. The proposed method preserves
the significant transition first and then performs
smoothing and data sample based restoration. There-
fore, after splitting, the subset or sub signal is left with
the small transitions and relatively smoother regions,
hence in most of the cases the reduction in the data
sample does not significantly effect the denoising results.
5.1.1 Test with the multiplicative noise
The proposed method has been tested with an addition
of multiplicative noise as well. In the case of multiplica-
tive noise, variance of the noise is a function of the sig-
nal and the noise variance is higher when amplitude of

the signal is higher. Figure 15 illustrates the amount of
the multiplicative in the data samples and the effects of
the denoising with the SSplit method. The proposed
method works equally well in the case of multiplicative
noise as well with the resulting root mean square error
of 0.34. However, SURE shrink method needs some
adaptation to perform in the presence of multiplicative
noise.

5.2 Generalization: extraction of small singularities
The initial denoising results are very encouraging to
extend this approach for the identification of small sin-
gularities hidden inside the noisy signals. In contrast to
the several proposed algorithms in the past, the SSplit
method can detect small discontinuities or singularities
hidden inside the signal. In several denoising methods,
such small singularities are either suppressed during the
denoising process or ignored due to their insignificance
in most of the cases. These small but sharp singularities
suffer due to the mutual influence of their adjacent high
energy transitions [20], e.g., Figure 16 explains this phe-
nomenon, where small edges are suppressed due to the
mutual influence of its adjacent sharp transition. In Fig-
ure 16, “A” defines the strength in terms of an ampli-
tude of the strong discontinuity, whose influence does
not allow the detection of adjacent small edge of an

Figure 12 Comparison: bumps signal. (a) Original bumps signal, (b) bumps signal with the addition of white Gaussian, sample size is 2048,
input MSE = 0.3, (c) reconstruction with SURE Shrink method MSE = 0.16, (d) reconstructed signal with SSplit (ws = 0.007), MSE = 0.14, (Ψ(t)) is
the second derivative of Gaussian function.
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amplitude “1-A”. Since, splitting is based on the SURE
based threshold criterion therefore, the selection of the
correct thresholding scale is crucial to the accurate split-
ting. Figure 16 shows the decay probabilistic curve of
the SURE based threshold across successive scales along
with the deterministic curve of small edge at “x” posi-
tion (shown in Figure 16) with different A values. For
each A value, edge at “x” can only be detected at the
scale where the deterministic value is higher than the
probabilistic value as Figure 17 highlights the minimum
scale required to identify the edge at position “x” with a
particular A value.
In order to identify such small edges, the SSplit

method was extended to the multi splitting approach. It
is possible to further split the subset by applying same
splitting technique on subsets. Figure 18 gives the expla-
nation of the multi splitting approach. At the first stage
of splitting, the small discontinuity hidden at the loca-
tion of “x” can not be detected. Therefore, the SSplit
method is again applied on subset “C” to identify the
small edge. Subset “C” is further split into two more
subsets by using the same SSplit approach and finally

the complete denoised signal can be reconstructed by
using total of 4 subsets. Figure 19 presents the results
obtained with the multi SSplit method in the case of a
small discontinuity (A = 0.8). It can be seen from the
figure that the proposed method not only denoised the
signal reasonably well but also preserved the small
edges. On the other hand, SURE shrinkage method
failed to do so.

5.3 Application: electrocardiogram signal
At the second stage, the proposed method has been
applied on real signals. Electrocardiograms signal are
used as test measure for this task. We applied SSplit
method to denoised real Electrocardiogram signal.
The detail theory of the method is already explained
in the previous sections. Therefore very brief explana-
tion of the implementation is given in this section. As
already discussed before, the method is divided into
two steps:

1. Signal Splitting.
2. Reconstruction or Restoration.

Figure 13 Comparison of SURE shrink with SSplit method with different variance of input noise, sample size is 2048 : (a) bumps, (b)
dopplers, (c) heavisine, (d) blocks. Horizontal lines shows the MSE of input signal, solid black lines for SURE shrink and vertical lines for the
resulting MSE with SSplit method. MSE computed between restored signal and original noiseless signals.
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Figure 14 MSE estimation comparison of SURE shrink with SSplit method with different sample size between 1024 and 8192 : (a)
bumps, (b) dopplers, (c) heavisine, (d) blocks. Horizontal lines shows the MSE of input signal, solid black lines for SURE shrink and vertical lines
for the resulting MSE with SSplit method. MSE computed between restored signal and original noiseless signals.

Figure 15 Comparison: blocks signal. (a) Original block signal, (b) block signal with an addition of multiplicative noise speckle noise, sample
size is 2048, input MSE = 0.87, (c) reconstructed signal with SSplit (ws = 0.01), MSE = 0.34, (Ψ(t)) is the first derivative of Gaussian function.
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5.3.1 Electrocardiogram signal splitting
In order to split the signal multiscale analysis has been
applied on ECG signal. 2nd order Gaussian wavelet func-
tion has been used as an analyzing wavelet function for
decomposition into succesive scales. The main reason
for the selection of Gaussian wavelet function is its

close similarity with the ECG signal and to ensure the
evolution of modulus maxima on each scale as
explained already in previous chapter. The CWT and
the CWT based modulus maxima are two good tools
for the analysis of ECG and both exhibit good perfor-
mance even in the presence of noise. The low level of

Figure 16 Multisplitting. (a) Synthetic block function with two discontinuities, “A” represents the strength in terms of an amplitude of the high
step and (b) function with the white Gaussian noise (0,1).

Figure 17 Evolution of maxima at position “x“ by varying A amplitude, along with the probabilistic SURE threshold curve (dashed
line). For each A value, edge at position “x“ can only be detected at the scale where the deterministic value is higher than the probabilistic
value.
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computational complexity of the modulus maxima
makes it easier of the two to employ in practice. How-
ever, for the detection of small waveform features within
the ECG, the CWT contains more detailed information
and therefore has the potential to produce enhanced
results.
In order to illustrate the performance of the SSplit

method on real signal, the real ECG signal taken from
MIT-BIH website [21] has been taken (shown in

Figure 20). The corresponding multiscale analysis is
given in Figure 21. The evolution of modulus maxima
across each scale clearly shows that the noise elements
are gradually disappearing on coarser scale however,
high energy peaks preserve their maxima even on
much coarser scale as well (Figure 22). In this case
well, we selected the splitting scale as J, if the total
number of samples are 2J. SURE-based thresholding
on modulus maxima results in splitting the signal into

Figure 18 Multistage splitting. (a) First stage splitting, (b), (c) second stage splitting of subset with multisplitting approach (A = 0.8).
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subsets. It can be seen from the modulus maxima cor-
respond to the coarsest scale of the multiscale analysis
that the thresholding will result in giving only the R
peaks point as the split points and after the threshold-
ing this assumption was justified. The signal has been
split from the corresponding R peaks and hence the
reconstruction process was applied between these
peaks.
5.3.2 Electrocardiogram signal restoration
Figure 23a shows the marked points as proposed split
points. It can be concluded that all the peaks points are
considered to be as a split points and the reconstruction

was performed between all these peaks. Unlike pre-
viously proposed denoising method, the main signifi-
cance of the present approach is the preservation of
energy in the peaks. Figure 22 presents the modulus
maxima lines of the corresponding ECG signal. It has
been explained before that these lines correspond to all
the modulus maxima on successive scales and the local
regularity can be measured from these line by Lipschitz
exponents. We had identified all the regular points from
this measure and then applied the restoration process as
already explained in detail in previous section. Since, we
already defined in previous chapter that weighing factors

Figure 19 Results with multisplitting. (a) Original signal, (b) noisy signal input RMSE (0.20), (c) SURE shrink results RMSE = 0.092, (d) SSplit
with extended multi splitting approach (A = 0.8), RMSE = 0.032.

Figure 20 Real electrocardiogram signal taken from MIT-BIH website (MIT 100.dat).

Jalil et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:38
http://asp.eurasipjournals.com/content/2012/1/38

Page 16 of 19



wS or wM are manual inputs and depends on the nature
of the signal. But for the given ECG signals, the weigh-
ing factors wS or wM are kept same as in Bumps signals

(wS = 0.007) and the main reason for this selection is
the close approximation of both signals. Figure 23 pre-
sents the denoising results. In order to illustrate the

Figure 21 Multiscale analysis of electrocardiogram signal.

Figure 22 Modulus maxima lines of electrocardiogram signal.
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performance of the method, we have added known
white Gaussian noise (10dB). It can be seen from the
figure that the new method has successfully reduce the
noise elements without introducing any spurious oscilla-
tions with the resulting MSE = 0.21. Not only that, it
can be observed that the energy inside the peaks has
also been preserved. The method has been tested with
different types of signal given in the database and in
term of statistics, the resulting MSE of almost 83% of
the different cases of ECG is less than 0.23.

5.4 Discussions
Although in the present form, the method performed
very well on signals where small information about the
nature of the signals are apriori known, e.g., if it is elec-
trocardiogram (ECG) signal, speech signal or mechanical
vibrations. With this information, it is possible to
roughly estimate the parametric value of wS. This is due
to the fact that if system is design for the denoising of
ECG signal then all the ECG signals have approximately
similar structure, same goes for the other types of the
signals. In this context, we say that the proposed
method is semi automatic in nature. With a very little
information, the method effectively denoise any type of
the signal in the case of either additive or multiplicative
noise elements. In addition to that, If we know that the
smoothness is of high priority then we can assign higher

weighage to wS. It has already been explained in the
Section 4.2, that the maximum smoothness gives visually
best results with the splitting but higher statistical error
in term of MSE.
At the current stage, we are working on the possible

solutions to completely automate the method. One
approach could be to relate the smoothness of the signal
with the type of singularities present inside the signal
(shown in Figure 5). However, further experiments are
needed to relate the type of singularity (Lipschitz value)
with the choice of wS and will be presented in the future
study.

6 Conclusion
In the present study, a novel approach for the restora-
tion of signals from noisy data samples has been pre-
sented. The most useful aspect of the proposed method
is the separation of sharp edges or transitions from the
suspicious noise elements. Based on the SURE estima-
tion, thresholding is performed on modulus maxima
across selected scales to split the signal from the edges.
The wavelet transform has shown to be a useful tool to
extract noise elements by locating modulus maxima.
Lipschitz exponents computed from modulus maxima
lines can be used to identify the noise elements. The
reconstruction process involves in finding the best com-
promise between the data samples in terms of MSE and

Figure 23 Implementation on real signals. (a) Original ECG signal, (b) ECG signal with white Gaussian noise. (c) Denoising with SSplit method
(marked points are proposed split points).
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the smoothing criteria. The trade off between mean
square error and the smoothing criteria can be opti-
mized and it depends on the type of singularity present
inside the signal. It has been shown with an example
(peak signal in Figure 6) that it is possible to have bad
results in terms of MSE even though the results visually
appears to be good in terms of smoothness. Moreover
due to the detection of singularities, an over smoothing
will not really change the shape of the signal and main
information about the shape of the signal has been pre-
served. Graphical results shown in the figures demon-
strate that the proposed method performs equally well
as compared to the conventional shrinkage methods at
different variance of noise and sample sizes. The present
method is particularly useful for the extraction of small
singularities hidden inside the signal. Perspective will be
focus on such small edges which cannot be detected
due to the mutual influence of their adjacent strong
transitions. However, splitting the signal into significant
subsets allows such small hidden singularities to be
identified. Furthermore, the proposed method proved
that the denoising in spatial domain work equally well
as in transform domains. By looking at the statistical
and graphical results, it could be quite logical to extend
the method for 2D cases. We will present the extension
of this method in 2D cases and our findings in future
study.

Appendix
In this section, once again we are summarizing the
method as follows:
1. At the first step, the signal has been divided into

different subsets or sub signal. The selection of these
subsets is defined on the basis of SURE based nonlinear
thresholding of WTMM.
2. The second step is to identify Lipschitz exponents

computed from each subsets individually. These
Lipschitz exponent results in identifying the regular
points present in the subset. In the present study, all the
differentiable points (a ≥ 1) are considered as regular
points.
3. The nonlinear function is then optimized between

all regular points to restore each subset individually by
following reconstruction algorithm as follows:
Step 1 : Initialization k = 1, Y1

i = Y1
oi

Step 2 :

Yk+1
i = Yk

i + wMλk
i

(
−∂CMSE,k

i

∂Yi

)
+ wSγ k

i

(
−∂CMSO,k

i

∂Yi

)

Step 3 : if 1
N

N−1∑
l=0

(
yki,l − yk+1i,l

)2
< ε

Stop
else k = k + 1

ε is the minimum root mean square error and l is the
index of data sample.
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