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Abstract

We consider the joint estimation of the direction-of-arrival (DOA) and parameters of wideband polynomial-phase
signals (PPSs) in sensor array. Unlike concurrent methods that require multidimensional searches, the proposed
method requires 1D searches for all the parameters of interest. In this way, we can efficiently estimate the
considered parameters in applications where large antenna arrays, containing tens or hundreds of sensors, are
used. As special cases, we consider in detail the estimation of the second- and third-order PPSs. The former are
estimated using the high-order ambiguity function (HAF), while the latter are estimated using the cubic phase
function (CPF), known to outperform the HAF in terms of both accuracy and signal-to-noise ratio (SNR) threshold.
In both cases, the estimation of the highest order parameter reaches the Cramér-Rao lower bound (CRLB), while
the DOA estimation is above the CRLB for around 1 dB (second-order PPS) and around 6 dB (third-order PPS).

1 Introduction
An important application of polynomial-phase signal
(PPS) estimation is related to the underwater monitoring
of vessels and marine fauna [1-3], where large hydro-
phone arrays, containing tens or hundreds of sensors,
are a common tool [4-6]. Numerous publications
address the problem of estimating the PPS parameters
along with the direction-of-arrival (DOA) [7-12]. Gersh-
man et al. [9], consider the joint estimation of DOA and
PPS parameters using a technique called the polyno-
mial-phase beamformer. Although this approach is more
efficient than the maximum likelihood (ML) technique,
it still requires a search over a multidimensional para-
meter space. For example, the second-order PPS estima-
tor, also referred to as the chirp beamformer, requires a
search over a 3D parameter space. As a search tool,
genetic algorithms (GAs) are used in [9]. In [10], mono-
component PPSs are considered and the high-order
ambiguity function (HAF) is used to obtain the coarse
estimates, which are in turn refined using the extended
Kalman filter (EKF). The EKF can also be used with
multicomponent PPSs [11]. An important recent

advance has been proposed in [12], where multiple PPSs
impinging on non-calibrated arrays, common for practi-
cal trials, are considered. The effects of non-calibration
are avoided and signal components are separated using
a blind separation technique [7,12,13]. In [12], the pre-
cise estimation is performed by means of the phase
unwrapping for each component separately under the
assumption that the considered signal is narrowband.
The signal estimation in underwater environment

attracts a considerable attention in the recent past. In
[2], a new approach for channel estimation in under-
water acoustic communications, based on the Mellin
transform, is introduced. Time-frequency analysis can
be successfully used for underwater dispersive channel
estimation [3]. An algorithm for azimuth/elevation
direction-finding that enlarges the array aperture with-
out introducing additional sensors and nonuniform
interelement spacing, and that avoids the direction-
cosine ambiguity is proposed in [4].
In this article, we propose a method for the joint PPS

and DOA estimation that efficiently reduces the search
space to 1D. As such, the method is suitable for applica-
tion in underwater acoustics where hydrophone arrays
comprising numerous sensors are found. By calculating
the high-order instantaneous moment (HIM) of the con-
sidered signal, we transform it to a form from which the
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highest PPS parameter and the DOA can be estimated
very accurately and efficiently. The proposed method is
described in detail for the cases of second- and third-
order PPSs. We consider monocomponent PPSs imping-
ing on a uniform linear array (ULA) of omnidirectional
sensors, assuming that advanced techniques can be used
for components separation and array calibration
[7,12,13]. Furthermore, we do not introduce a restriction
that the considered signal is narrowband as in [12] since
such a restriction is hard to be satisfied in underwater
systems [2]. The main tools used in the proposed tech-
nique are the HAF [14] and the cubic phase function
(CPF) [15].
The rest of the article is organized as follows. The

considered signal model, along with the polynomial-
phase beamformer, is described in Section 2. The pro-
posed estimation method is described in Section 3,
where the special cases of the second- and third-order
PPSs are considered in detail. Simulation results and
concluding remarks are given in Sections 4 and 5,
respectively.

2 Array signal model
The model of a PPS impinging on a ULA with M omni-
directional sensors can be described as

y(n) = a(θ ,n)x(n) + v(n), n = −(N − 1)
2

, . . . ,
(N − 1)

2
, (1)

where a(θ, n) is the M × 1 array steering vector, x(n)
the PPS, v(n) the M × 1 vector of complex Gaussian
zero-mean noise, and N the number of samples. With-
out loss of generality, we will assume that N is odd. The
Kth order PPS is defined as

x(n) = A exp
(
j
∑K

k=o
ak(n�)k

)
, (2)

where A is the amplitude, ak is the kth order phase
parameter and Δ is the sampling interval. The array
steering vector can be modeled as [10]

a(θ , n) = [1, exp(jω(n)ψ), . . . , exp(jω(n)(M − 1)ψ)]T , (3)

where the instantaneous frequency (IF) of the signal is
given by

ω(n) =
K−1∑
k=0

(k + 1)ak+1(n�)k, (4)

and ω(n) is assumed to be constant during the time
necessary for the wave to travel across the array aper-
ture. The parameter ψ is related to the signal’s DOA, θ,
as follows:

ψ =
d
c
sin(θ), (5)

where d is the spacing between two adjacent ULA
sensors and c is the propagation speed. Our aim is to
estimate the vector of unknown parameters V = [θ, a1,
..., aK ] from y(n).
Gershman et al. [9], propose an estimator, known as

the polynomial-phase beamformer, where the vector V
is estimated by maximizing the following function:

F(V) =
1

MN

∣∣∣∣∣∣
(N−1)/2∑

n=−(N−1)/2

yH(n) exp

(
j

K∑
k=1

ak(n�)k
)
a(θ , n)

∣∣∣∣∣∣
2

, (6)

where (·)H represents the Hermitian operator. With
(6), the dimensionality of the problem is reduced by one
compared to the ML approach, but it still remains quite
high. The applicability of the polynomial-phase beamfor-
mer is limited to lower PPS orders. To that end, in [9], a
chirp is considered as the transmitted waveform, and
the obtained estimator is referred to as the chirp beam-
former. Such an estimator entails a 3D search and the
GA is applied for the 3D search optimization. However,
a proper GA setup requires a great number of per-
formed tests and selections. Poorly chosen GA setup
could lead to local optima that are far away from the
true parameter values [16]. Furthermore, with the
increase of the PPS order, the number of local optima
in the optimization function increases, which in turn
increases the probability that the GA lands on a local
optimum.

3 DOA and PPS estimation algorithm
The Kth order PPS arriving on the mth ULA sensor can
be rewritten as follows:

xm(n) = A exp

{
j

(
aK(n�)K +

K−1∑
k=0

(ak + (k + 1)ak+1ψm)(n�)k
)}

, m = 0, . . . , M−1. (7)

In order to estimate the DOA and PPS parameters of
xm(n), we propose to calculate the Kth higher-order
instantaneous moment (HIM) of xm(n) as [14]

HIMK [xm(n), τ ] = HIM2[HIMK−1[xm(n), τ ], τ , (8)

with the first two HIM orders given by

HIM1[xm(n), τ ] = xm(n),

HIM2[xm(n), τ ] = xm(n + τ )x∗
m(n − τ ),

(9)

where τ is the time lag parameter. Note that the HIM
is implemented through recursive auto-correlations. The
Kth order HIM of xm(n) equals

HIMK[xm(n), τ ] = A2K−1
exp

{
j(2K−1K!τK−1�KaK(n +mψ/�) + 2K−1(K − 1)!(τ�)K−1aK−1

}
= B exp

{
j2K−1K!τK−1�KaKn

}
exp

{
j2K−1K!τK−1�K−1aKψm

}
,

(10)
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where m = 0, . . . , M − 1, |n| ≤ N−1
2 − (K − 1)τ ,and

B = A2K−1
exp

{
j2K−1(K − 1)!(τ�)K−1aK−1

}
.

HIMK [xm(n), τ] represents the product of two com-
plex sinusoids, one with index n and the other with m.
The frequency of the former is ωn = 2K-1K!τK-1ΔK aK ,
whereas the frequency of the latter is ωm = 2K-1K!τK-
1ΔK-1aK ψ. The estimation of the highest order para-
meter aK and DOA θ therefore boils down to sinusoid
frequency estimation. If we denote the frequency esti-
mations of ωn and ωm as ω̂n and ω̂m, respectively, aK
and θ can be estimated as

âK =
ω̂n

2K−1K!τK−1�K
, (11)

θ̂ = arcsin
( c
d
ψ̂
)
= arcsin

(
c
d

ω̂m

2K−1K!τK−1�K−1âK

)
.(12)

The frequency estimations ω̂n and ω̂m can be obtained
using the periodogram maximization procedure [17].
The discrete Fourier transform (DFT) of the HIM is
referred to as the HAF. The estimation of aK thus
requires the calculation of the DFT of HIMK [xm(n), τ]
with respect to index n and the DFT maximization.
Similarly, the θ estimation requires the calculation of
the DFT of HIMK [xm(n), τ] with respect to index m
and the DFT maximization. The DFT maximization
requires 1D search [17].
The aK and θ estimates can be improved by averaging

results over m and n, respectively. Since for lower sig-
nal-to-noise ratios (SNRs) the estimation can be plagued
by outliers, we propose to perform an a-trimmed aver-
aging instead of standard averaging. The a-trimmed
averaging does not take into consideration a percentage
of extreme estimates, which most probably correspond
to outliers. The a-trimmed average of an N-element
array X is defined as [18]

Trimα[X] =
1

N(1 − 2α)

�(1−α)N�∑
k=�αN�

Xs(n), (13)

where Trima[·] is the a-trimmed average operator, a
the percentage of discarded elements, Xs represents the
array X sorted in ascending/descending order, and ⌊·⌋
and ⌈·⌉ represent the round down and round up opera-
tors, respectively.
Lower order PPS parameters can be obtained from the

dechirped signals

x̂dm(n) = xm(n) exp
{
−j
(
(n�)K + Km(n�)K−1

ψ̂
)
âK
}
, m = 0, . . . , M − 1, (14)

by repeating the procedure defined by (10) and (11).

In the sequel, we will explain in detail the estimation
of DOA and parameters of second- and third-order
PPSs.

3.1. Estimation algorithm for K = 2
Let us consider the second-order PPS, i.e., case K = 2.
Now we have

xm(n) = A exp

{
j

(
a2(n�)2 +

1∑
k=0

(ak + (k + 1)ak+1ψm)(n�)k
)}

= A exp
{
j
(
(a0 + a1ψm) + (a1 + 2a2ψm)n� + a2(n�)2

)}
.

The second-order HIM equals

HIM2[xm(n), τ ] = B exp
{
j4τ�2a2n

}
exp

{
j4τ�a2ψm

}
,

where m = 0, . . . , M - 1, |n| ≤ N−1
2 − τ , and para-

meters a2 and θ can be estimated as

â2 =
argmaxωn

{
DFTn

[
HIM2[xm(n), τ ]

]}
4τ�2

, (15)

θ̂ = arcsin

(
c
d

argmaxωm

{
DFTm

[
HIM2[xm(n), τ ]

]}
4τ�â2

)
.(16)

In (15) and (16), DFTn [·] and DFTm [·] represent the
DFT operators with respect to n and m, respectively.
The parameter a1 can be obtained by maximizing the

DFT of

x̂dm(n) = xm(n) exp
{
−j
(
(n�)2 + 2m(n�)ψ̂

)
â2
}
,

with respect to index n and averaging the estimates
obtained for all sensor indices m = 0,..., M - 1.
In the considered K = 2 case, instead of performing a

3D search as proposed in [9], we are able to estimate all
the parameters by performing three 1D searches per
sensor. The estimates are improved by averaging results
obtained for all sensors, or by using the a-trimmed
average (13).
The estimation algorithm is given below, followed by

the calculation complexity analysis.
for m = 0 to M - 1
Calculate HIM2[xm(n), τ ] = xm(n + τ )x∗

m(n − τ ), where
τ = N/4 [19].
Estimate am2 from the DFT of HIM2 [xm(n), τ] calcu-

lated with respect to n, i.e.,

âm2 =
argmaxωn

{
DFTn

[
HIM2[xm(n), τ ]

]}
4τ�2

end for
Estimate a2 using the a-trimmed average operator as

follows:
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â2 = Trimα[â02, â
1
2, . . . , âM−1

2 ]

for n = - (N - 1)/4 to (N - 1)/4
Estimate θn from the DFT of HIM2 [xm(n), τ] calcu-

lated with respect to m, i.e.,

θ̂n = arcsin

(
c
d

argmaxωm

{
DFTm

[
HIM2[xm(n), τ ]

]}
4τ �â2

)

end for
Estimate θ and ψ as

θ̂ = Trim
α

[
θ̂

−N−1
4 , θ̂−N−1

4 +1, ..., θ̂
N−1
4

]

ψ̂ =
d

c
sin(θ̂)

for m = 0 to M - 1
Dechirp the mth signal

x̂dm(n) = xm(n) exp
{
−j
(
(n�)2 + 2m(n�)ψ̂

)
â2
}

Estimate am1 from the DFT of x̂dm(n) calculated with
respect to n, i.e.,

âm1 = argmax
ω

{
DFTn[x̂dm(n)]

}
end for
Estimate a1 as

â1 = Trimα[â01, â
1
1, . . . , âM−1

1 ]

In the algorithm’s calculation complexity analysis, we
will assume that the N-samples DFT calculation requires
N log2 N complex additions and multiplications, and
that the sorting of an N-samples long real valued
sequence requires N log2 N comparison/exchange
operations [20, Section 5.2.2]. In addition, 1D searches
and scaling operations will not be accounted for in the
analysis due to their low complexity.
For τ = N/4, HIM2 [xm(n), τ] has N/2 samples; there-

fore, the calculation complexity of HIM2 [xm(n), τ] and
âm2 is N/2 complex multiplications and N/2 log2(N/2)
complex additions and multiplications, respectively.
The estimation of â2 hence requires MN/2 log2(N/2)
complex additions, MN/2 log2N complex multiplica-
tions, plus Mlog2M comparison/exchange operations
and M(1 - 2a) real additions required for the trimming
operation. Similarly, the calculation of θ̂ requires MN/
2 log2M complex additions, MN/2 log2M complex
multiplications, N/2 arcsine operations, as well as N/2
log2N comparison/exchange operations and N/2(1 -
2a) real additions required for the trimming operation.
The ψ estimation requires one sine operation. Finally,

in the estimation of a1, the calculation of x̂dm(n)
requires 2N real multiplications, N real additions and
2N sine/cosine operations for exp{·}, plus N complex
multiplications for the product xm(n) exp{·}. Therefore,
the estimation of a1 requires 2MN real multiplications,
MN real additions, 2MN sine/cosine operations, MN
complex multiplications and Mlog2M comparison/
exchange operations and M(1 - 2a) real additions for
the trimming operation.
Taking into consideration that one complex addition

requires two real additions, and one complex multipli-
cation requires four real multiplications and two real
additions, we conclude that the joint estimation of {a2,
a1, θ} requires 2MN log2(2MN) + (1 - 2a)(N/2 + 2M)
real additions, 2MN log2(8MN) real multiplications,
2M log2M + N/2 log2(N/2) comparison/exchange
operations, N/2 arcsine and 2MN + 1 sine/cosine
operations. Alternatively, since trigonometric functions
can be evaluated using the Taylor series expansion, the
complexity of the proposed algorithm is O(MN log2
(MN)) operations (additions and multiplications),
where O represents the big O notation. On the other
side, the chirp beamformer requires the maximization
of a 3D function F(V) (see (6)), and the complexity of
evaluation of one point of F(V) is O(MN) operations.
The overall complexity of the chirp beamformer is O
(M N Nθ Na1Na2) operations, where Nθ, Na1, and Na2
represent the number of points in the θ, a1, and a2
grids, respectively, used in the maximization proce-
dure. Clearly, the proposed approach offers a signifi-
cant computational cost reduction with respect to the
chirp beamformer.

3.2. Estimation algorithm for K = 3
When the PPS order is K = 3, we have

xm(n) = A exp

{
j(a3(n�)3 +

2∑
k=0

(
ak + (k + 1)ak+1ψm)(n�)k

)}

= A exp
{
j
(
A0 + A1n� + A2(n�)2 + A3(n�)3

)}
,

where

A0 = a0 + a1mψ ,

A1 = a1 + 2a2mψ ,

A2 = a2 + 3a3mψ ,

A3 = a3.

(17)

For K = 3, the HAF is not the optimal solution for the
PPS estimation since the A3 estimation requires the cal-
culation of HIM3 [xm(n), τ], which incorporates two
auto-correlations. Each auto-correlation increases the
SNR thresholda by about 6 dB [21]. Therefore, we will
use the CPF which offers lower SNR threshold and
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more precise estimation [15]. The CPF is defined as

CPFm(n,�) =
(N−1)/2∑

l=−(N−1)/2

xm(n + l)xm(n − l)e−j�l2 . (18)

In noise-free case, the CPF is maximized at

� = φm(n) = 2A2 + 6A3(n�) = 2a2 + 6a3(n�) + 6a3ψm,(19)

where φm(n) represents the second-order phase deri-
vative of xm(n). Parameters A2 and A3 are estimated by
locating maxima of the CPF calculated at two time
instants and solving a set of two linear equations [15].
Therefore, in order to estimate A3, we need to perform
one auto-correlation less compared to the HAF. After
estimating A3, the DOA θ is estimated using (12), which
entails the calculation of HIM3 [xm(n), τ] according to
(10). The parameter a2 can then be estimated from A2

(see (17)). The estimates of a3, a2, and θ can be
improved by averaging over all sensors (a3 and a2) and
time instants (θ).
Parameters A0 and A1 are estimated from the

dechirped signals

x̂dm(n) = xm(n) exp
{
−j(Â2(n�)2 + Â3(n�)3)

}
, m = 0, . . . ,M − 1.

The estimates of A0, A1, A2, and A3 can be refined
using the method proposed in [22] and in turn used to
refine a3, θ, a2, a1, and a0, respectively. The refinement
method is outlined in Appendix 1.
Again, all the parameters are estimated via 1D

searches, as opposed to the ML approach and polyno-
mial-phase beamformer that require 5D and 4D
searches, respectively.
The estimation algorithm follows, along with the cal-

culation complexity summary.
for m = 0 to M - 1
Estimate Am

3 and Am
2 from the CPF calculated at two

time instants n = 0 and n = nb1, i.e.,

�0 = argmax
�

|CPFm(0,�)|
�1 = argmax

�

|CPFm(n1,�)|

Âm
2 = �0/2

Âm
3 = (�1 − �0)/(6n1�)

Calculate HIM3 [xm(n), τ], where τ = N/6 [19].
end for
Estimate A3 as

Â3 = â3 = Trimα

[
Â0
3, Â

1
3, . . . , ÂM−1

3

]
(20)

for n = - (N - 1)/6 to (N - 1)/6

Estimate θn as

θ̂n = arcsin

(
c
d

argmaxωm

{
DFTm

[
HIM3[xm(n), τ ]

]}
24τ 2�2â3

)

end for
Estimate θ and ψ as

θ̂ = Trimα

[
θ̂

−N−1
6 , θ̂−N−1

6 +1, . . . , θ̂
N−1
6

]

ψ̂ =
d

c
sin(θ̂)

for m = 0 to M - 1
Estimate am2 from Âm

2 as âm2 = Âm
2 − 3â3mψ̂

end for
Estimate a2 as

â2 = Trimα[â02, â
1
2, . . . , âM−1

2 ]

for m = 0 to M - 1
Dechirp the mth signal as

x̂dm(n) = xm(n) exp
{
−j
(
Âm
2 (n�)2 + Âm

3 (n�)3
)}

Estimate Am
1 from the DFT of x̂dm(n) calculated with

respect to n

Âm
1 = argmax

ω

{
DFTn[x̂dm(n)]

}
Estimate am1 from Âm

1 as âm1 = Âm
1 − 2â2mψ̂

end for
Estimate a1 as

â1 = Trimα[â01, â
1
1, . . . , â

M−1
1 ]

REFINEMENT STAGE
for m = 0 to M - 1
Refine parameters Am

1A
m
2 , and Am

3 using the approach
outlined in Appendix 1.
end for
Repeat the steps starting from (20), now using the

refined estimates of Am
1A

m
2 , and Am

3 .
According to (18), it can be shown that the evaluation

of one CPF sample requires 6N real additions and 8N
real multiplications. The calculation of vector e−j�l2,
where l = −N−1

2 , . . . , N−1
2 , is not included in the com-

plexity analysis since it can be calculated only once and
such used for all values of m. The estimation of A3

therefore requires 12QMN real additions and 16QMN
real multiplications for the calculation of Âm

3 and Âm
2 , m

= 0, 1,..., M - 1, plus MN complex multiplications for
the HIM3 calculation, and M log2M comparison/
exchange operations and M(1 - 2a) real additions for
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the trimming operation. Herein, Q represents the num-
ber of elements in the Ω grid where the CPF is calcu-
lated. The HIM3 calculation complexity is N complex
multiplications (with τ = N/6, HIM3 [xm(n), τ] has N/3
samples). The calculation complexities of θ̂, ψ̂, â2 and â1
are determined analogously to the K = 2 case and we
will give only the final expression for calculation com-
plexity of joint estimation of {a3, a2, a1, θ} which
amounts to 12QMN + (1 - 2a)(3M + N/3) + M(2 + 5N)
+ 4MN/3 log2(MN3) real additions, 16QMN + (10N + 6)
M + 4MN/3 log2(MN3) real multiplications, 3M log2 M
+ N/3 log2(N/3) comparison/exchange operations, N/3
arcsine and 2MN + 1 sine/cosine operations. Alterna-
tively, using the big O notation, the complexity of the
proposed algorithm is O(QMN) operations. The pro-
posed method clearly outperforms the polynomial-phase
beamformer since the beamformer requires O(M N Nθ

Na3Na2Na3) operations, where Nθ , Na1, Na2, and Na3

represent the number of points in the θ, a1, a2, and a3
grids, respectively, used in the maximization procedure.

3.3 Estimation for higher and unknown orders
Underwater acoustic signals can be modeled by PPSs of
order higher than three [23]. The proposed algorithm
for joint estimation of the PPS parameters and DOA,
presented in Section 3, works with an arbitrary PPS
order. The highest order parameter aK and DOA are
estimated using (11) and (12), respectively, while lower
order PPS parameters are estimated from the dechirped
signal (14). Keep in mind, however, that the SNR
threshold in the HAF-based approach increases with the
PPS order [21]. Then, if the underlying application
requires estimation at lower SNR values, we could use
the product HAF (PHAF) [19] or the hybrid CPF-HAF
approach [24], instead of the HAF. These approaches
are characterized by lower SNR threshold for higher
PPS orders.
When the PPS order is unknown, we could use the

strategy of increasing the HIM order until the DC com-
ponent is obtained [19]. When the HIM order and that
of the PPS coincide, a complex sinusoid with frequency
proportional to the highest order parameter is obtained
[14,19]. If, however, the HIM order exceeds the PPS
order, a DC component is obtained. Another approach
for determining unknown PPS order is presented in
[25].

4. Simulation results
In our examples, we evaluate the proposed estimation
method on the Kth order PPS
x (n) = A exp (j(a0 + a1 (n�) + · · · + aK(n�)K)), where
(nΔ) Î [-1, 1], for K = 2 and 3. The signal’s DOA is θ =
π/6, d = 1.5 m and c = 1500 m/s. The method’s

performance is evaluated by means of the root mean-
square error (RMSE),calculated as

RMSE =

√
1

NMC

NMC∑
ι=1

(a − âl)2,

where a is the true parameter’s value, âl is its estimate
in the lth Monte-Carlo simulation, and NMC is the num-
ber of Monte-Carlo simulations. Herein, NMC = 500.
The SNR is defined as SNR = 10log10 (A2/s2). In this
section, in addition to DOA, we will present results only
for the estimation of parameter a2 for K = 2, and para-
meters a3 and a2 for K = 3, since the estimation accu-
racy of a1 is highly influenced by their accuracy. The
results for a1 will be reported briefly.
Example 1. In the first example, we consider the sec-

ond-order PPS x(n) = A exp(j(19π + 5π(nΔ) + 11π(nΔ)
2)) in three different scenarios. In all scenarios, the
RMSE is calculated for a2 and θ. In the first scenario,
we calculate the RMSE versus the SNR that is varied
from -6 to 14 dB in steps of 1 dB. The signal length is
fixed to N = 257, i.e., Δ = 1/128, and the number of
sensors is M = 100. The RMSE curves are depicted in
the left two subplots (top and bottom) in Figure 1.
Along with the RMSE curves, the CLRB curves are
given (for the derivation of the CRLB see Appendix 2).
Above the SNR threshold, which is around 2 dB, the a2
estimation reaches the CRLB, whereas the θ RMSE is
larger than the CRLB by about 1 dB.
In the second scenario, the RMSE is calculated for

fixed N = 257 and SNR = 10 dB, and variable number
of sensors M, that takes values from 10 to 190 in incre-
ments of 10. The RMSE curves are depicted in the mid-
dle two subplots in Figure 1. In the third scenario, for
fixed SNR = 10 dB and M = 100, we varied the number
of samples N from 101 to 1001 with a step of 100. The
RMSE curves are given in the right two subplots in Fig-
ure 1. In both the second and third scenarios, the a2
estimation reaches the CRLB, while the θ RMSEs are
above the corresponding CRLBs by about 1 dB.
As for the estimation accuracy of a1, we obtained the

difference between the a1 RMSE and corresponding
CRLBs of around 1 dB in all the considered scenarios.
The proposed approach is characterized by a very

accurate estimation of parameter a2, while the RMSE of
the DOA estimation is larger than the CRLB for a cou-
ple of dBs in all the considered scenarios. Interestingly,
in the chirp beamformer, the discrepancy between the
RMSEs of the estimated parameters and corresponding
CRLBs increase as the SNR increases [9, Figures 4 and
5]. In addition, in the DOA estimation, the chirp beam-
former’s RMSE is closer to the corresponding CRLB
with smaller number of sensors [9, Figure 7]. In our
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approach, however, the RMSE curves follow the corre-
sponding CRLB curves with the increase of SNR and
the number of sensors.
Example 2. Here, we consider the third-order PPS x

(n) = A exp(j(19π + 5π(nΔ) + 11π(nΔ)2 + 7π(nΔ)3)).
The same scenarios and setups as in the previous exam-
ple are considered and the obtained RMSEs of â2, â3
and θ̂ are shown in Figure 2. The parameters are esti-
mated using the algorithm described in Section 3.2. In
the refinement method, the moving average (MA) filter
length is M = 5, as suggested in [22]. The a-trimmed
averaging is performed with a = 10%.
Again, the left three subplots in Figure 2 depict the

RMSE versus SNR curves. Now, the performance
threshold is around 0 dB. The a3 estimation reaches the
CRLB, whereas the a2 and θ RMSEs are about 3 and 6
dB above the CRLBs, respectively.
In the case of a varying M (middle three subplots in

Figure 2) and a varying N (right three subplots in Figure
2), the RMSEs of â2 and θ̂ are about 3 dB and 6 dB
above the CRLBs, respectively.
The estimation accuracy of a2 is noticeably lower than

that of a3. This is due to the fact that the a2 estimation
is influenced by the estimation accuracy of three para-
meters, namely A2, a3, and θ, whose estimation RMSEs
contribute to the estimation RMSE of a2.
The a1 RMSE is around 2.5 dB above the correspond-

ing CRLBs in all the considered scenarios.

Note also that the DOA estimation is worse than the
PPS parameters estimation, which is also the case in the
previous example. From (12), the DOA estimation accu-
racy is influenced by the estimation accuracy of aK and
ωm, and non-linearity of the arcsine function. This accu-
racy loss is inherent to the proposed method, however it
is justified by significant computational benefits.
In our approach, the DOA and PPS parameters are

estimated from multiple sinusoids with frequencies pro-
portional to the considered parameter. The obtained
estimates are averaged using the a trimmed operator.
Nevertheless, the proposed approach is by no means the
general one. Multiple sinusoids can be combined in sev-
eral ways to obtain an estimation more accurate than
with a single sinusoid. For example, in order to increase
the SNR, we could estimate the frequency from the sum
of the spectra of the considered sinusoids. In order to
improve the estimation accuracy, interpolation in fre-
quency should be used. Another approach would be to
multiply the spectra of considered sinusoids, an
approach similar to the PHAF. Our initial simulations
show that both of these approaches result in a lower
SNR threshold than with the proposed approach, but
with worse accuracy.

5. Conclusion
The calculation complexity reduction is a very impor-
tant goal in applications where large antenna arrays are
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Figure 1 Estimation RMSE for θ and a2 (K = 2). Left column: variable SNR, N = 257, M = 100. Middle column: variable M, N = 257, SNR = 10 dB.
Right column: variable N, SNR = 10 dB, M = 100.
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used. The underwater monitoring of vessels and marine
fauna is one such application. In this article, we pro-
posed an efficient method for the estimation of DOA
and parameters of PPS impinging on a ULA. As
opposed to concurrent methods, it significantly reduces
the computational complexity without a significant loss
in accuracy. All the parameters are estimated through
1D searches. In addition, the proposed method can be
used for parameter estimation of an arbitrary order PPS,
which is very important in underwater environment
where acoustic signals can be modeled by PPSs of order
higher than three. The estimation of the second- and
third-order PPSs are considered in detail. In both cases,
the estimation of the highest order parameter achieves
the CRLB, while the DOA estimation is above the CRLB
for around 1 dB (second-order PPS) and around 6 dB
(third-order PPS).
Future research will consider estimation accuracy

improvements, especially of the DOA, as well as

providing more robust results in terms of the SNR
threshold decreasing.

Appendix 1: PPS estimation refinement
Here, we revisit the PPS estimation refinement method
proposed in [22]. The considered signal is

y (n) = x (n) + v (n) , n = −(N − 1)
2

, . . . ,
(N − 1)

2
,

where x(n) is the Kth order PPS and v(n) is zero-mean
complex Gaussian noise. We will assume that we
already have the coarse estimates of all the PPS para-
meters âk, k = 1, 2, ..., K. The coarse estimate of a0 is
not needed at this point. It will be estimated along with
the refinements of other parameters. The refinement
algorithm is given below.
Step 1. De-chirp y(n) as

z(n) = y(n)e−j�K
k=1 âk(n�)k . (21)
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Step 2. Low-pass filter z(n) with a MA filter and deci-
mate:

z0(m) =
1
M

mM∑
n=(m−1)M+1

z(n), m = 1, . . . , Q, (22)

where M is the MA filter length, Q = ⌊N/M⌋ and ⌊·⌋
is the round down operator.
Step 3. Create a vector V of unwrapped angle of z0, i.

e., V = unwrap(angle(z0)). Vector V is a polynomial in
noise with unknown phase parameters a = [a0, δa1, ...,
δaK ], where δak = ak-âk, k = 1, 2, ..., K. Vector a can be
estimated using

â = [â0, δ̂a1, . . . , δ̂aK] = (GTG)−1GTV (23)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −Q − 1
2

� · · ·
(

−Q − 1
2

�

)K

1 −
(
Q − 1

2
− 1
)

� · · ·
(

−
(
Q − 1

2
− 1
)

�

)K

· · · · · · · · · · · ·
1

Q − 1
2

· · ·
(
Q − 1

2
�

)K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24)

Step 4. Obtain the final estimates âfk as follows:

âfk = âk +
δ̂ak
Mk

, k = 1, 2, . . . ,K, (25)

âf0 = â0. (26)

In Step 2, the signal will be well localized around the
DC component of z(n) assuming that the initial estima-
tion has been performed adequately. The initial para-
meter estimates can be significantly less accurate than
those obtained using Newton algorithms [22]. In Step 3,
the low-pass filtering is used to increase the SNR, thus
enabling the use of phase unwrapping and linear least-
squares estimation techniques. The polynomial curve fit-
ting in (23) and (24) is ill-conditioned if the signal
length is very large [22], i.e., the process is vulnerable to
round-off errors, so the decimation takes place in (22).

Appendix 2: CRLB in DOA and PPS estimation
Using the properties of the additive noise v(n), it can be
shown that the Fisher information matrix, F, of the set of
unknown parameters S = [A, θ, a0, ..., aK ]T is given by [10]

F =

⎡
⎢⎢⎢⎢⎢⎣

2NM
σ 2 0T

0T

⎛
⎜⎜⎜⎝

R S0 · · · SK
S0 T0,0 · · · T0,K
...

...
. . .

...
SK TK,0 · · · TK,K

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

(K+3)×(K+3)

where 0 is the 1 × (K + 2) zero vector, and

R =
(N−1)/2∑

n=−(N−1)/2

G2

{
ω(n)

dψ
dθ

}2
,

Sp =
(N−1)/2∑

n=−(N−1)/2

(n�)p−1 {(n�)G1 + pG2ψ
}
ω(n)

dψ
dθ

,

Tp,q =
(N−1)/2∑

n=−(N−1)/2

(n�)p+q−2{pqG2ψ
2 + (p + q)(n�)G1ψ + L(n�)2},

Gk =
M−1∑
m=0

mk.

The Cramér-Rao lower bounds are given by

CRLB
(
S(k)

)
= (F−1)k,k,

where k = 1, ... , K + 3.

Endnotes
aIn this article, the SNR threshold is defined as an SNR
value below which the estimation error rises rapidly as
the SNR decrease [[26], Section V]. This is a common
performance measure in PPS parameter estimation.

bIn [15], the suggested n1 value is n1 = 0.11N. It gives
minimum asymptotic mean-square error (MSE) for the
estimate at high SNR.
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