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Abstract

This article introduces a novel approach for finding a rigid transformation that coarsely aligns two 3D point clouds.
The algorithm performs an iterative comparison between 2D descriptors by using a purpose-designed similarity
measure in order to find correspondences between two 3D point clouds sensed from different positions of a free-
form object. The descriptors (named with the acronym CIRCON) represent an ordered set of radial contours that
are extracted around an interest-point within the point cloud. The search for correspondences is done iteratively,
following a cell distribution that allows the algorithm to converge toward a candidate point. Using a single
correspondence an initial estimation of the Euclidean transformation is computed and later refined by means of a
multiresolution approach. This coarse alignment algorithm can be used for 3D modeling and object manipulation
tasks such as “Bin Picking” when free-form objects are partially occluded or present symmetries.
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1. Introduction
The alignment of two point clouds is quite a frequent
task, both in 3D modeling and in object recognition.
Similarly, the need for automating certain applications,
such as computer-aided manufacturing or bin-picking,
has necessitated the use of 3D information about the
parts being manipulated. This information can be sensed
by 3D acquisition methods [1], such as laser scanners or
time-of-flight cameras, which provide a range image for
every different pose of the object.
Finding the rigid transformation producing a suitable

alignment of the resulting point clouds, without having
a previous estimate, is a problem that has been
approached using different strategies [2,3]. Although no
solution has prevailed as the most accepted, algorithms
based on intrinsic properties have been more widely
applied due to their generality. These algorithms extract
shape descriptors [4-15], curves [16,17], structures
[18,19], or graphs [20] from both point clouds (some-
times meshes are used instead) in order to compare
them. If several correspondences are found, then a

coarse transformation that aligns them in a suitable way
can be calculated.
On the other hand, the algorithms that use extrinsic

properties will be subject to one important restriction:
as they match properties that are relative to a coordinate
system, the surfaces must be roughly aligned in order to
establish point correspondences. Therefore, these algo-
rithms (such as the ICP algorithm [21,22] and its var-
iants [23]) are used to refine that initial transformation
and obtain a more precise one. Since this refinement
process has been successfully achieved, the most chal-
lenging part of the 3D point cloud alignment problem is
to determine the rough initial transformation.

2. CIRCON descriptor
2.1. Introduction
After reviewing the state-of-the-art, the following pro-
blems were found in the most significant alignment
algorithms [2,3]: lack of generality (they work well with
objects of a given topology), excessive computation
time, problems with symmetries, poor behavior when
point clouds have low density and when they overlap
each other in a small region, need for a method (usually
based on robust statistical techniques) that discards false
correspondences and obtains a valid correspondence
group to obtain the Euclidean transformation. All the
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methods reviewed show, to a greater or lesser extent, at
least two of these drawbacks.
The three characteristics to which we have given most

importance when designing our alignment algorithm are
it must have no restrictions regarding the type of objects
that can be used, a good performance in the presence of
symmetries (which is quite common in industrial com-
ponents) and good behavior when the overlap and the
density of the point clouds are low. However, we have
also taken into account the other problems that may
occur.
One of the main drawbacks observed after analysis of

the commonly used descriptors in the state-of-the-art is
that although many of them are based on geometric
properties of the environment of the point-of-interest,
the evaluation of their similarity does not have a direct
relationship with the distance between the point clouds
[4,8-15]. Moreover, since a good alignment is character-
ized by a small distance between corresponding points,
it would be more convenient to use a descriptor that
represents the geometry of the environment better.
Furthermore, the descriptors analyzed need to find at
least three good correspondences to determine an
approximate Euclidean transformation.
Another drawback associated with some descriptors is

that at the end of the local matching stage, a consider-
able percentage of false matches can be found. This is
usually caused by a descriptor with low discriminating
capacity and a choice of similarity measure that is not
sufficiently appropriate.
In our opinion, for the correspondence search to be

effective, the descriptor used by the coarse alignment
algorithm should:

• Be based on the geometry in the environment of
the points-of-interest.
• Be highly descriptive, so that the correspondences
can be adequately discriminated and no false
matches appear.
• Enable the use of a similarity measure based on
distances between points of the cloud.
• Enable the calculation of a Euclidean transforma-
tion based on a single correspondence.
• Be useful for 3D modeling (alignment of two scans
from two different views of the object) and for 3D
object recognition (alignment of the point clouds in
the scene and the model).

2.2. Descriptor construction
In order to obtain the descriptor associated with a parti-
cular point-of-interest in the cloud (let wpq be this point),
it is necessary to express the cloud points in a local coor-
dinate system centered on wpq and whose Zq-axis is its

normal vector. The Xq-axis is chosen so that it is perpen-
dicular to both the Yw-axis of the reference coordinate
system and the normal vector at the point-of-interest.
Thus the Yq-axis is determined by the cross product of
unit vectors along the Xq and Zq axes. This criterion
establishes a unique reference for the angles of rotation
about the Zq-axis (i.e., above normal n̄q ), which will sub-
sequently facilitate the calculation of the Euclidean trans-
formation associated with that correspondence.
Once the cloud points are transformed to the local

frame, the environment of the point-of-interest is con-
sidered to be divided into ns sectors (whose angle is rθ
radians), which are further divided radially into cells
with length rr mm (excluding the cell closest to the cen-
tre, “cell 0”, which will be a sector with a radius 0.5 rr
mm). The sectors are numbered clockwise starting with
the sector that is centred on the Xq-axis (θ1 = 0). Figure
1 shows, around the Zq-axis, this sense of numbering
and the nature of the cells for the ith sector.
Taking into account this division of the point cloud

into sectors and cells, a transformation based on cylind-
rical coordinates is applied in order to obtain, for any
point pd with coordinates (xd, yd, zd) in the coordinate
system with origin at pq, the i index corresponding to
the number of sector to which it belongs, the j index
indicating the cell within that sector, and the height
value associated with its coordinate zd.

i =

⎛
⎜⎜⎝�ns −

tan−1

(
yd
xd

)

ρθ

�modns

⎞
⎟⎟⎠ + 1 (1)

j = �
√
x2d + y2d
ρr

� (2)

ci,j = � zd
ρz

� (3)

where rθ is the angular resolution, rr the radial reso-
lution, and rz the height resolution. Note also that ⌊x⌉
is the nearest integer to x. Applying these three equa-
tions to all points of the cloud and maintaining the
maximum values ci, j for each cell (which is equivalent
to saying that its z coordinate is maximum), we obtain a
set of triples (i, j, ci, j) that uniquely correspond to each
of the cells into which the environment of the point-of-
interest has been divided. Therefore, the descriptor con-
sists of a set of coded values that represent the contours
described by the points with the maximum z coordinate
of each of the cells into which each sector is divided.
Figure 1 shows, for sector i, the contour described by
points with the largest ‘z’ in the cells. As each pair of
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indexes (i, j) has a single value of ci, j, we can build a
matrix C whose row index is the sector number, i, and
whose column index is the number of cell, j, within that
sector (see Figure 2). Note that the cells closest to the
center (the origin of the local coordinate system) are
not represented in this matrix since their value would
always be close to zero.
Since the sequence should be closed because it

describes the environment of the point-of-interest, the
first and last rows must be considered adjacent, since
their elements with the same column index correspond
to adjacent cells. In other words, this descriptor has the
property of being cyclical.

This matrix can also be viewed as an image (see Fig-
ure 3) whose pixels represent the values ci, j, so that
each of them has an associated colour (or a gray level).
Hence, this descriptor can be considered as a cyclical
image of the environment of a point-of-interest. Since
each row represents a radial encoding of the contour
described by the maximum heights of each of the cells
in a sector, we will call this descriptor “CIRCON”,
which is an acronym of “Cyclical Image of Radial
CONtours”.

3. The proposed similarity measure
3.1. Introduction
Unlike the similarity measures based on correlation
coefficient (CC), mutual information (MI) [24,25], joint
entropy [26,27], or others [28,29] that have been used
by the most popular coarse alignment algorithms, such
as spin images, this similarity measure is based on dis-
tance between pixels and takes into account the pro-
blems of occlusion that can appear in real situations
that need 3D registration or object recognition.
This similarity measure gives weighting to both the

overlap and the proximity of two point clouds. This
enables the simultaneous evaluation of the geometric
consistency of the correspondences. Although computa-
tional cost increases with the number of correspon-
dences evaluated, the Euclidean transformation
associated with this correspondence can be directly cal-
culated, given that the rotation around the normal
necessary to align the two point clouds is determined.
Therefore, it will be possible to determine which corre-
spondences give rise to the Euclidean transformation
which fits best and to base the stopping criterion on
their validation. In this way, the algorithm finalizes
when the coarse transformation satisfies the end condi-
tions imposed (detailed in the algorithm in Section 5.3),
without necessity to evaluate all the points-of-interest
selected in the two point clouds.

3.2. Sets of pixels
Assuming two CIRCON descriptors A and B corre-
sponding to two matched points; if both a pixel from A,
aij, and a pixel from B, bij, represent a part of the point
cloud, it will be considered that this pair of pixels, with
indexes (i, j), are overlapped.
Taking into account that the matrix elements not

belonging to the point cloud will be considered compu-
tationally as ‘not-a-number’ (i.e., NaN), the following
sets of pixels have been defined:
Intersection Set (overlapped pixels):

IAB = {(i, j)|(aij �= NaN)and(bij �= NaN)} (4)

Zq, nq
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Figure 1 Construction of a CIRCON descriptor. Green shows cell
division in sector i and red indicates the contour formed by the
points of the cells with the greatest z coordinate.
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Figure 2 CIRCON matrix. The arrows show the decreasing
direction for angle and the increasing direction for radius.
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Exclusive-OR Set (non-overlapped pixels):

XAB = {(i, j)|(aij �= NaN)xor(bij �= NaN)} (5)

Union Set (overlapped pixels and non-overlapped pix-
els):

UAB = {(i, j)|(aij �= NaN)or(bij �= NaN)} (6)

These sets of pixels will be taken into account in
order to define the similarity measure.

3.3. Area represented by each cell
The top-view area represented by each cell (see Figure
4) increases with the distance from the central point
(the point-of-interest where the descriptor has been gen-
erated). Therefore, the size of this area will determine
which points in the cloud correspond to a cell of the
image matrix.
Accordingly, the pixels corresponding to a specific col-

umn j in the CIRCON image represent the points that
have a radius between rr (j-0.5) and rr (j+0.5). There-
fore, the theoretical area corresponding to each one of
these pixels will be the same, Apj, and it will be given by
the following expression:

Apj =
π

ns
· ((ρr · (j + 0.5))2 − (ρr · (j − 0.5))2) (7)

ns being the number of angular divisions.

Simplifying,

Apj =
2π

ns
· ρ2

r · j (8)

3.4 Weight of the pixels
In the same way, the theoretical area corresponding to a
pixel of the first column (equivalent to a cell of the first
ring of the Figure 4) will be

Ap1 =
2π

ns
· ρ2

r (9)

Therefore, the relationship of areas between a pixel in
the jth column and the one in the first column will be
as follows

Apj

Ap1
= j (10)

Using this expression, the area represented by the pix-
els in different columns will be taken into account to
correctly weight the contribution of each pixel to the
average distance in the overlapped area.

3.5. Similarity measure expression
As was explained previously, the similarity measure
selected will depend on the distance and the overlap
among the CIRCON images.

Figure 3 Example of a CIRCON image. Point cloud with the normal vector of a point in magenta (left). CIRCON image corresponding to that
point (right).
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To calculate the average distance between the pixels
of the two images, those of the overlapped area and
those of the non-overlapped area will be considered
separately.
Therefore, the average distance in the overlapped area

will be defined using the following expression:

Dov =

∑
(i,j)∈IAB

Apj · |aij − bij|
∑

(i,j)∈IAB
Apj

=

∑
(i,j)∈IAB

j · |aij − bij|
∑

(i,j)∈IAB
j

(11)

And the overlap ratio is defined as

σov =

∑
(i,j)∈IAB

j

∑
(i,j)∈UAB

j
(12)

which expresses the relationship between the weighted
number of overlapping pixels and the weighted total
number of pixels pertaining to the object (overlapping
and non-overlapping).
The similarity measure proposed considers both terms

and it provides values between 0 and 1,

MS =
σov

(ρ · Dov + λ′) + σov · (1 − λ′) (13)

where l’ is defined as l’ = r l., l being a parameter
whose value represents the additional distance with
which non-overlapping pixels are penalized. In contrast
the parameter r modifies the relationship between the
expected similarity value and the distance Dov that pro-
duces it, when the overlap is 100%.
The values for these parameters used in our experi-

ments are r = 1 and l = 1, which give a similarity value
of 0.5 both when sov = 0.5 and Dov = 0 and when Dov =
1 and sov = 1.
Since, given a matching pair, the point coordinates

and their corresponding normal vectors are known for
both points, only a free parameter is needed to compute
the rigid transformation: the rotation around the nor-
mal. This can be easily calculated using CIRCON images
since these are cyclical. By shifting the last row to the
top for the first CIRCON image (from point cloud 1)
and leaving the second one fixed (from point cloud 2),
the similarity measure for a rotation rθ can be calcu-
lated. If the last two rows are shifted to the top, the
equivalent rotation will be 2rθ, and so on. This can be
practically implemented by means of matrix blocks so
that the similarity measures for all the shifts can be
computed at the same time. Subsequently, the similarity
value for a matching pair will be the maximum for all
the possible rotations and it will be associated with an

Figure 4 Area of the cells into which the environment of a point-of-interest is divided. These cells are represented by the pixels in the
CIRCON image.
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angle k·rθ (k being the number of row shifts). A preli-
minary analysis of this similarity measure can be found
in [30].

4. Coarse alignment algorithm
4.1. Point-of-interest selection
First, it will be necessary to select a set of points-of-
interest in both clouds, {p1i} and {p2i}. An important
novelty is that the alignment algorithm does not need a
thorough selection of the points-of-interest or a large
number of them to obtain a proper alignment. Instead
we have designed a simple algorithm that selects the
points-of-interest by taking into account the particular
characteristics of the descriptor proposed. First, normal
vectors at each point are calculated by interpolation
using the range image data. Applying basic morphologi-
cal operations on the resulting image and the Laplace
operator on the normal components (see Figure 5),
points are extracted whose normal vectors are stable
and also close to areas where the normal varies abruptly.
This enables points-of-interest with a stable CIRCON
descriptor to be selected that, in addition, represent
close areas with relevant features.
The number of points extracted depends on the topol-

ogy of the object, although a minimum distance between
them is considered so that this number is not very high.

4.2. Correspondence search algorithm
This search algorithm is the core of the coarse align-
ment algorithm. It is based on an iterative search for the
greatest value of similarity measure using the array of
cells, C1, into which the environment of a point-of-
interest in point cloud 1 is divided. The chosen stopping
criterion ensures that this search is convergent, since the

environment where the correspondences are searched
for is progressively reduced.
The algorithm will evaluate correspondences between

different points of cloud 1 and a point-of-interest
selected from cloud 2. The degree of validity of two
matching points is to be determined based on the simi-
larity between their CIRCON images: I1x (image of a
point P1x in cloud 1) and I2 (target image). Since a sin-
gle point, P1x, is extracted from each cell of the array
C1, for each iteration, the algorithm performs as many
similarity measure evaluations as the number of ‘valid’
cells in the distribution C1 around the point of the pre-
vious iteration. Note that the points whose CIRCON
images obtain a low similarity value are stored in a list
of non-valid indexes, indnv. Thus, a cell will be consid-
ered ‘valid’ when its ratio of non-valid points, rnv, is less
than a prefixed threshold τnv. This allows to progres-
sively reduce the number of cells to be checked.
Therefore, the similarity value returned by the algo-

rithm, MSc, is the highest obtained in all the iterations
until the stopping condition is met. The algorithm ends
when an iteration uses a starting point whose distance
to one of the previously used points is less than a preset
δ (in our implementation δ = rr/16).
As will be explained in Section 5.3, the size of the

descriptors used by this search algorithm depends on
the resolution level in the main algorithm. Moreover,
since one of its goals must be to avoid an incorrect
alignment in the presence of occlusions and symmetries
of the objects, the CIRCON images will represent the
entire point clouds in order to increase their descriptive-
ness. However, depending on the application (e.g.,
mixed objects), the environment size of the descriptor
can be varied.

Figure 5 Point-of-interest selection. (a) Range image. (b) Edge detection image. (c) Resulting image after applying the Laplace operator to
the normal vector components. (d) Points-of-interest selected: Non-edge pixels whose value in image (c) is lower than the median value.
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Figure 6 shows the steps that must be followed in order
to perform this iterative search for correspondences.

4.3. Main algorithm: selection of the most suitable
transformation
Figure 7 shows all the steps that must be followed in
order to obtain a coarse alignment between two point
clouds. This algorithm uses the Correspondence Search
Algorithm introduced in Section 5.2 in a multiresolution
approach which refines the Euclidean transformation
matrix.
For each interest-point chosen in cloud 2, P2y, the

search for correspondences by cells is established for nv
levels of resolution. The number of levels and the lowest

resolution must be determined through a compromise
between computation time and accuracy of the point
cloud alignment, which will depend on the application.
The starting points for the first level are the interest-

points chosen in cloud 1, {p1i}. This first level enables
the discarding of those zones (cells) of the surroundings
of the chosen point, P1x, where, due to their low similar-
ity, it is unlikely to find the desired correspondence.
Once the Correspondence Search Algorithm has found
an approximate correspondence, P1c, for the first level,
the resolution is increased and a new search around this
new starting point is performed but with smaller cells.
In this way, the search zone is reduced, which will be
the object of progressive refinement for the next

Figure 6 Correspondence search algorithm.
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resolution levels (since only the first nc columns of the
array of cells C1c are used for the correspondence search
and this number is halved when the resolution is
increased). When the convergence of the search asso-
ciated with the last resolution level is achieved and the
similarity value MSc of the resulting correspondence is
greater than a value τMS(nv) , its corresponding Eucli-
dean transformation, Tc, is calculated using Equation
(22).
We propose a stopping criterion for the alignment

algorithm that also takes into account the characteristics

of the descriptor. It uses the correspondence found and
two additional ones, (P1m, P2n) and (P1r, P2s), to create a
fictitious correspondence (see Figure 8) with which
another transformation matrix, Tf, is computed. Those
additional points are chosen from corresponding cells in
which both point clouds are distributed. The condition
that must be satisfied for each of the two selected points
in point cloud 1 is that the angle formed by their nor-
mal vectors and the normal at the point being evaluated
should be very similar to the angle formed by their cor-
responding normal vectors in point cloud 2.

Figure 7 Coarse alignment algorithm.
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Then the matrix associated with the fictitious corre-
spondence, Tf, is compared with that obtained by the
algorithm, Tc. The execution is stopped if a distance
measure for the rotation, dR, and another for the trans-
lation, dt, do not exceed their respective thresholds τR
and τt.
Thus, the rotation distance dR is obtained through the

following expression:

dR =

√
1
3
(α2

R + β2
R + γ 2

R ) (14)

where (aR, bR, gR) are the ZYX Euler angles from the

rotation matrix RT
f · Rc ; Rc being the rotation matrix

obtained by the algorithm, and Rf the rotation matrix
associated with the fictitious correspondence.
The translation distance dt will be calculated as the

RMS distance between the translation vectors, tc and tf,
associated with both correspondences.
As will be shown in the results, the solution obtained

by the algorithm can be sufficiently accurate for object
manipulation tasks; however, the Euclidean transforma-
tion could be refined using the ICP algorithm by taking
advantage of the data provided by our algorithm about
the correspondences between the points in the two
clouds.

4.4. Calculation of the Euclidean transformation using a
single correspondence
Once the correspondence with the highest similarity
measure within the surroundings of the point-of-interest
chosen for an iteration of the algorithm is found, the
Euclidean transformation that coarsely aligns the point
clouds can be calculated.
In the first place, it is necessary to express both point

clouds within a frame of coordinates whose origin is each
of the two points that have been matched and whose z-
axis is aligned with the normal vectors at these points.

By convention, the x-axis of the new frame is perpen-
dicular to the normal (new z-axis) and to the y-axis of
the original frame W, since the CIRCON images were
generated in this way.
Therefore, given an interest-point WPq with normal

vector n̄q expressed in the frame W, the data will be
rotated by using the following matrix:

q
WR = [ x̄q n̄q × x̄q n̄q ]T (15)

where

x̄q =
ŷW × n̄q

||ŷW × n̄q|| (16)

The translation vector is given by the coordinates of
the point in the original frame. Therefore, the total
Euclidean transformation will be given by the following
expression:

q
WT =

[ q
WR −q

WR · WPq
01×3 1

]−1

(17)

Given that the transformation matrix is 4 × 4, all the
points in the following equations are expressed in
homogeneous coordinates.
Suppose a correspondence between a point W1Pa of

cloud 1 and a point W2Pb of cloud 2. Let α
W1

T be the
transformation matrix that enables the expression within
the interest-point frame of the coordinates of a point in
the cloud 1 expressed in the original frame W1. In the

same way, β

W2
T permits a similar transformation for

point cloud 2.
A point W1Pi is expressed within the frame of point

W1Pa in the following way:

αPi = α
W1

T · W1Pi (18)

Point cloud 1 Point cloud 2

p1a

p1m

p1rnt1

pt1

nt2

pt2 p2s
p2n

p2b

Figure 8 Evaluation of the stopping criterion. The points pt1 and pt2 and their normal vectors are obtained from the correspondence (p1a,
p2b) found by the alignment algorithm and two additional correspondences (p1m, p2n) and (p1r, p2s). pt1 and pt2 are the centroids of the
triangles.
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In the same way, a point W2Pj in the frame centered
on W2Pb will be:

βPj =
β

W2
T · W2Pj (19)

As the points W1Pa and W2Pb form a correspondence,
the origins of coordinates and the z-axes of the new
frames must be coincident. To align a point aPi in point
cloud 1 with its corresponding point bPj in cloud 2 it is
necessary to rotate cloud 1 about the z-axis of the new
frame by an angle of k·rθ radians, where k is the number
of rows the CIRCON image 1 was rotated to achieve the
similarity value associated with this correspondence.
Therefore, to coarsely align the two points, the follow-

ing must be fulfilled:

βPj ≈ Rz(k) · αPi (20)

Substituting (18) and (19) into (20)

β

W2
T · W2Pj ≈ Rz(k) · α

W1
T · W1Pi (21)

Consequently, the final Euclidean transformation Tc

that coarsely aligns the two point clouds has the follow-
ing expression:

Tc =
β

W2
T−1 · Rz(k) · α

W1
T (22)

where

RZ(k) =

⎛
⎜⎜⎝

cos(ρθ · k) sin(ρθ · k) 0 0
− sin(ρθ · k) cos(ρθ · k) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (23)

5. Results
In order to enable the comparison of the proposed
alignment algorithm with some of the existing ones we
use some objects that were employed in different com-
parative studies [2,23,31].
As in the comparative study by Salvi et al. [2], an ana-

lysis of efficiency of the algorithm will not be carried
out since, as discussed here, this is very implementation
dependent (in our case Matlab® was used). For this rea-
son, we assess the performance of the algorithm in
terms of effectiveness by measuring the alignment error
for different free-form objects.
However, as a reference, it can be said that when the

point clouds have an overlap of more than 70%, the
time spent by the alignment algorithm is, in most cases,
less than 5 s, while for very low overlap percentages,
that value can be exceeded. In this case the time incre-
ment is due, first, to the need to use more starting
points for the algorithm in order to avoid false matches

and secondly because the choice of these points is not
sufficiently suitable (given the simplicity of the points-
of-interest selection algorithm), which implies, in both
cases, an additional number of iterations.
Figure 9 shows an example of the results obtained for

the alignment of two range images using the algorithm
presented in the previous sections. To accelerate the

Figure 9 Alignment of two range images for the object ‘hip’
from the Stuttgart University Database. (a) Range images. (b)
Corresponding points (normal vector in magenta) which obtained
the maximum similarity value for the top resolution level. (c)
CIRCON images found for the three resolution levels. (d) Alignment:
reduced cloud (left) and 3D rendering using the original point
clouds (right). Rotation error: 1.1909°. Translation error: 0.7436 mm.
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evaluation of the correspondences, reduced point clouds
have been used (see Figure 9b). To do this, a simple
algorithm has been implemented which creates a grid of
x-y coordinates (with a predetermined spacing) and cal-
culates the z coordinates through interpolation of the
initial values of the surroundings of each new point.
Obviously, this reduces the precision of the original
point clouds; however, the results obtained for different
objects (Figure 10) from the Stuttgart University Data-
base [32] demonstrate the algorithm is robust to these
alterations of the data.
The CIRCON images shown in Figure 9c correspond

to the points in which the greatest similarity measure
was obtained for the three resolution levels. The color
map used to show these images was chosen with the
aim of visualizing the similarity better.
The number of resolution levels used for the experi-

ments was three with 12, 24, and 48 angular divisions.
The number of search columns, nc, was, respectively, 8,
4, and 2 so that the number of search cells was always
96. These values were chosen for the implementation of
our algorithm by testing different combinations to align
synthetic point clouds. It was noted that with less than
ten angular divisions the algorithm was faster at the first
level, but it favored the emergence of false correspon-
dences, which increases the computation time of the
next levels and can lead to incorrect final alignment. On
the other hand, we observed that 48 angular divisions
for the highest resolution level are sufficient to obtain

an acceptable approximate alignment. Although the
maximum error on the rotation around the normal vec-
tor that could be committed is 3.75°, in practice the
algorithm evaluates the similarity of so many correspon-
dences with different orientations of the normal vector
that usually the rotation error is under that value (as
shown in the results).
Figure 9d shows the coarse alignment obtained for the

reduced point cloud and a 3D rendering when the trans-
formation obtained by the algorithm is also applied to
the original data.
The rotation and translation errors were computed

using similar expressions to those introduced in Section
5.3. In this case the transformation matrix chosen for
comparison was obtained by refinement using a variant
of the ICP algorithm [24].
As can be observed in the caption of Figure 9 and in

Table 1, the rotation errors are less than 5° and the
translation errors are, in all cases, less than the resolu-
tion of the two reduced point clouds that are used by
the coarse alignment algorithm.
This demonstrates that the algorithm is able to

achieve a good performance despite using point clouds
with few points (less than 6% of the original quantity)
and different resolutions, which make it suitable for
aligning point clouds with low density acquired by dif-
ferent devices.
The alignment algorithm was also evaluated using

three different similarity measures for comparing the

Figure 10 Ten pairs of range images for different objects from the Stuttgart University database: (a) Ducky, (b) Femur, (c) Igea, (d)
Fighter, (e) Dino, (f) Mole, (g) Isis, (h) Liberty, (i) Pitbull, (j) Female.
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descriptors: CC, MI, and the measure proposed (SM).
This experiment aimed to demonstrate that the combi-
nation of descriptor and similarity measure proposed
has a better performance under conditions of low den-
sity and overlap than the others. Using one single range
image and removing different parts two new range
images were created for different degrees of overlap.
Previously, the resolution of the original range images
was reduced by interpolation. Thus, the algorithm was
evaluated starting from low resolution with the aim of
obtaining an alignment with rotation and translation
errors of less than 5° and 5 mm, respectively. If the algo-
rithm were not capable of finding a good alignment, the
resolution is increased successively having the original
resolution as a limit. The number of points of the
reduced range image (before removing parts) necessary
for a good alignment is shown in Figure 11 for 12 range
images corresponding to four different objects. These
results show that the proposed algorithm and similarity
measure have a good performance when both density
and overlap are low, which is not possible with algo-
rithms that use 2D or 3D descriptors [33], since they
need a sufficient quantity of points in order to construct
the descriptors.
Moreover, as is shown in Figure 12, the alignment

algorithm can also be used to determine the pose of an
object in a cluttered scene (problem that arises in bin-
picking tasks). In this case, point cloud 1 represents the
scene and point cloud 2 represents the object model.
Thus, the radius of the point-of-interest environment
must be limited to the maximum radius that can be
obtained for the object (in Figure 12 this limit was fixed
at 120 mm).

6. Conclusions
We have introduced a novel descriptor (CIRCON)
which represents, through a cyclical image, the geometry

of the environment of a point-of-interest in the cloud.
In order to construct the image matrix we distribute the
points in sectors which, in turn, are subdivided into
cells that have the same radial length. The values of the
matrix elements represent the maximum z coordinate of
the points contained in their corresponding cells. This
represents an important difference with respect to other
methods that use 2D histograms, such as spin images
[8], which make them more vulnerable to the density
changes of the point clouds (especially when their densi-
ties are significantly different).
We have also designed a novel similarity measure that

takes into account both the distances between the pixels
of the descriptors and their degree of overlap, which are
not considered by other methods due to the particular
characteristics of the descriptors. Furthermore, this simi-
larity measure takes advantage of the cyclical nature of the
descriptor to obtain, along with the similarity value, an
index that represents the rotation around the normal at
the point-of-interest. When the similarity of two descrip-
tors is evaluated, this rotation index, the matched points
and their normal vectors can be used to calculate a Eucli-
dean transformation matrix; that is, the two point clouds
can be aligned by determining one single correspondence.
Using this similarity measure, the descriptors can be

compared without having to restrict the neighborhood
of the point-of-interest, so the discriminating power
could be increased in order to avoid problems of misa-
lignment when the objects have symmetries or repeated
regions (problems that are not well solved by other
methods, such as spin images, as is explained in [2]).
Based on this combination of descriptor and similarity

measure we have designed a coarse alignment algorithm
that eliminates the need to find a group of valid corre-
spondences (which is necessary in most algorithms,
including spin images [8]). One of the main advantages
of this algorithm is that the stopping criterion is always

Table 1 Errors obtained by the coarse alignment algorithm for ten different objects

Reduced point cloud 1 Reduced point cloud 2 Rot. error
(degrees)

Translation error
(mm)

Number of points (% of
total)

Resolution
(mm)

Number of point (% of
total)

Resolution
(mm)

Ducky 859 (1.61%) 3.83 1142 (1.90%) 3.41 2.99 1.15

Femur 453 (1.54%) 3.75 497 (1.25%) 4.32 3.77 1.94

Igea 544 (0.93%) 4.67 419 (0.73%) 5.16 2.49 1.89

Fighter 635 (2.13%) 2.37 401 (2.67%) 2.20 1.50 0.47

Dino 528 (4.92%) 2.31 314 (2.45%) 2.87 4.09 1.00

Mole 673 (1.45%) 3.79 652 (1.65%) 3.41 2.34 1.06

Isis 543 (3.50%) 2.21 381 (1.47%) 3.37 3.62 2.06

Liberty 715 (5.27%) 1.93 428 (2.47%) 2.77 4.84 0.66

Pitbull 153 (0.83%) 4.99 108 (0.58%) 5.29 2.31 0.89

Female 549 (5.58%) 1.90 244 (1.67%) 3.38 3.54 0.62
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evaluated when it finds a correspondence that exceeds
the maximum similarity value found until that moment.
Thus, if certain conditions are met, the algorithm ends
without having to find additional correspondences.

The results show that the proposed algorithm is able to
find a proper alignment despite using simple criteria for
selecting the points-of-interest. However, in some cases
these starting points are not the most appropriate and the

Figure 11 Points of the reduced cloud (before removing parts) that are necessary for a correct alignment using three different
similarity measures and under low overlap conditions. CC, correlation coefficient; MI, mutual information; SM, proposed similarity measure.
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algorithm has to perform more iterations than necessary.
As one of the advantages of our proposed algorithm is
that it can end once it finds a correspondence that has
high similarity and that meets the stopping criterion, if the
points-of-interest are appropriately selected, it is very
likely that the algorithm could end after the first iterations
on the majority of occasions. Furthermore, if these key-
points are obtained by new multiscale methods [34], the
support sizes can be calculated for the descriptors in both
point clouds and the alignment could be carried out, as in
[35], using point clouds with different scale.
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