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Abstract

This article presents a novel algorithm based on the cross-Wigner-Ville Distribution (XWVD) for optimum phase
estimation within the class of phase shift keying signals. The proposed method is a special case of the general
class of cross time-frequency distributions, which can represent the phase information for digitally phase
modulated signals, unlike the quadratic time-frequency distributions. An adaptive window kernel is proposed
where the window is adjusted using the localized lag autocorrelation function to remove most of the undesirable
duplicated terms. The method is compared with the S-transform, a hybrid between the short-time Fourier
transform and wavelet transform that has the property of preserving the phase of the signals as well as other key
signal characteristics. The peak of the time-frequency representation is used as an estimator of the instantaneous
information bearing phase. It is shown that the adaptive windowed XWVD (AW-XWVD) is an optimum phase
estimator as it meets the Cramer-Rao Lower Bound (CRLB) at signal-to-noise ratio (SNR) of 5 dB for both binary
phase shift keying and quadrature phase shift keying. The 8 phase shift keying signal requires a higher threshold of
about 7 dB. In contrast, the S-transform never meets the CRLB for all range of SNR and its performance depends
greatly on the signal’s frequency. On the average, the difference in the phase estimate error between the S-
transform estimate and the CRLB is approximately 20 dB. In terms of symbol error rate, the AW-XWVD outperforms
the S-transform and it has a performance comparable to the conventional detector. Thus, the AW-XWVD is the
preferred phase estimator as it clearly outperforms the S-transform.

Keywords: adaptive windowed cross Wigner-Ville distribution, optimum phase estimator, instantaneous informa-
tion bearing phase, Phase Shift Keying; S-transform, Cramer-Rao lower bound, time-frequency analysis

1. Phase shift keying signals and the problem of
phase estimation
Phase shift keying (PSK) is commonly used [1] due to
better noise immunity and bandwidth efficiency com-
pared to amplitude shift keying (ASK) and frequency
shift keying (FSK) modulations [2]. This is reflected in
current wireless communication technologies such as
3G, CDMA, WiMax, WiFi, and the 4G technologies that
employ PSK modulation [3]. In addition, digital phase
modulation is also used in HF data communication such

as in PACTOR II/III, CLOVER 2000, STANAG 4285,
and MIL STD 188-110A/B format [4]. The instanta-
neous information bearing phase (IIB-phase) in the class
of PSK signal represents the transmitted symbol, the sig-
nal symbol duration, and class of PSK modulation
scheme used. This information is useful to classify and
demodulate signals.

1.1. Phase estimation and signal demodulation
Several phase estimation methods are proposed for PSK
signal demodulation, interference cancellation, coherent
communication over time-varying channels, and direc-
tion of arrival estimation [5-12]. Such phase estimation
methods can be classified as coherent and non-coherent
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detections [13]. The coherent detector is often referred
to as a maximum likelihood detector [13]. The term
non-coherent refers to a detection scheme where the
reference signal is not necessary to be in phase with the
received signal. One of the earliest contributions for the
phase estimation of binary phase shift keying (BPSK)
signal is an optimum phase estimator which derives a
reference signal from the received data itself using
Costas loop [5]. In [6], an open loop phase estimation
method for burst transmission is proposed. The phase-
locked loop (PLL) method used in conventional time-
division multiple access system is inefficient due to the
very long acquisition time. This problem is resolved
using the new method proposed in this article which
yields an identical performance with the PLL method.
However, the frequency uncertainty problem degrades
the performance of the estimator. In order to overcome
this degradation, an improved algorithm which includes
the frequency and phase offset is proposed in [7,8]. By
estimating the frequency and phase offset, the perfor-
mance degradation caused by the frequency offset in [6]
is eliminated. The work reported in [9-11] proposed a
carrier phase estimator for orthogonal frequency divi-
sion multiple access systems based on the expectation-
maximization algorithm to overcome the computational
burden of the likelihood function. This method is actu-
ally equivalent to the maximum likelihood phase estima-
tion using an iterative method without any prior
knowledge of the phase. Two practical M-PSK phase
detector structures for carrier synchronization PLLs
were reported in [12]. These two new non-data-aided
phase detector structures are known as the self-normal-
izing modification of the Mth-order nonlinearity detec-
tor and the adaptive gain detector [12]. Both detectors
show improvement in phase error variance due to auto-
matic gain control circuit imperfections.

1.2. Phase estimation and signal classification
All the above-mentioned methods aimed to develop an
optimal phase estimator solely for signal demodulation
without estimation of instantaneous parameters of the
signals. The Costas loop and PLL are crucial for carrier
recovery and synchronization in the demodulation of the
class of PSK signals [5-8]. However, our applications
focused on the analysis and classification of signals for
spectrum monitoring. The main objective of such a sys-
tem [14] is to determine the signal parameters such as
the carrier frequency, signal power, modulation type,
modulation parameters, symbol rate, and data format
which are then used as input to a classifier network. This
system is used by the military for intelligence gathering
[15] and by the regulatory bodies [16] for verifying con-
formance to spectrum allocation. Recently, similar
requirements were identified for spectrum sensing in

cognitive radio [17] to determine channel occupancy and
dynamically allocate channels to the various users. Spec-
trum monitoring systems also use data demodulation
[14], but with modems tailored for the specific modula-
tion type and data format.
Since PSK signals are time-varying in phase, time-

frequency analysis [[1]8, p. 9] can be used to estimate
the signal’s instantaneous parameters. The develop-
ment of signal dependent kernels for time-frequency
distribution (TFD) applicable to the class of ASK and
FSK signal was proposed in [19]. Further enhancement
in [20] improved the time-frequency representation
(TFR) by estimating the kernel parameters using the
localized lag autocorrelation (LLAC) function. Recent
study has proven that the quadratic TFD [21,22] is
capable to analyze and classify the class of ASK and
FSK signals at very low signal-to-noise ratio (SNR)
conditions (-2 dB). However, the loss of the phase
information in the bilinear product computation makes
it impractical to completely represent the PSK class of
signals. Since PSK signals are characterized by the
phase, cross time-frequency distributions (XTFD)
based method is proposed as it is capable of represent-
ing the signal phase information [23]. Just like the
quadratic TFD which suffers from the effect of cross
terms, there are unwanted terms known as “duplicated
terms”a which are present in the XTFD. Preliminary
work on the XTFD shows that a fixed window is insuf-
ficient to generate an accurate IIB-phase estimation
[23], thus justifying the need for an adaptive window.
This article presents a time-frequency analysis solution

to the optimum phase estimation of PSK class of signals
and then evaluates its performance. Signals tested are
BPSK, QPSK, and 8PSK signals. The first method is based
on the localized adaptive windowed cross Wigner-Ville
distribution (AW-XWVD). In this method, the adaptation
of the window width is based on the LLAC function of the
signals of interest. For comparison, a second method is
selected that is based on the S-transform [24]. It is an
invertible time-frequency spectral localization technique
that combines elements of the Wavelet transform (WT)
and the short-time Fourier transform (STFT). This
S-transform is selected for comparison as it has the prop-
erty of preserving the phase of a signal as well as retaining
other key characteristics such as energy localization and
instantaneous frequency [24].
This correspondence is organized as follows. Section 2

first describes the signal models used in this article and
introduces the general representations of the quadratic
TFDs, XTFD, and S-transform. Section 3 presents the gen-
eral equations for cross bilinear product in time-lag
domain for both auto-terms and duplicated terms together
with the LLAC algorithm for estimating the adaptive win-
dow for the PSK class signals. Next, we present the
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method for IIB-phase using the peak of the AW-XWVD
and S-transform. The Cramer-Rao lower bound (CRLB)
which is used for bench marking purposes is discussed in
the following subsection. Section 4 presents the discrete
time implementation of both method and the performance
comparison of the AW-XWVD with the S-transform in
the presence of noise. The criteria of comparison are
based on the TFR, constellation diagram, main-lobe width
(MLW) and the phase estimate variance. Then, a compari-
son in terms of the computational complexity and symbol
error rate is given. Conclusions are given in the following
section. Throughout this article, we use the following ter-
minology: TFDs represent the mathematical formulations
for distributing the signal energy in both time and fre-
quency; the actual representations obtained are called
TFRs.

2. PSK Signals Model and TFRs
This section first introduces the model and the para-
meters for the PSK signals. It then describes the time-
frequency analysis techniques used to represent and
analyze the signals.

2.1. Signal model
Communication signals are time-varying and are mainly
characterized by instantaneous parameters such as the
instantaneous amplitude for ASK signals, instantaneous
frequency (IF) for FSK signals, and the IIB-phase for
PSK signals. This section extends the concepts of IF to
IIB-phase for digitally phase modulated signals and
describes the signal parameters used for analysis. A
comprehensive review of IF estimation from the peak of
the TFD is given in [25,26]. A time-varying signal corre-
sponding instantaneous phase is represented as

φ (t) = 2π ft + θ (1)

where f is the frequency of the signal and θ is the con-
stant initial phase of the signal. The IF is obtained by
taking the first derivative of the instantaneous phase.

fi (t) =
1
2π

(
dφ(t)
dt

)
(2)

The instantaneous phase given in [25] has a time-vary-
ing frequency and the phase is constant for all time. In
contrast, for a digitally phase modulated signal the
phase term is also time-varying. If we extend Equation
(1) to represent a phase modulated signal, the instanta-
neous phase then becomes

φ (t) = 2π ft + ϕ(t) (3)

where �(t) is the IIB-phase which is very crucial in
defining digitally phase modulated signals as it contains

information of the transmitted data. This article evalu-
ates the comparative performance of the AW-XWVD as
an estimator of the IIB-phase for BPSK, QPSK, and
8PSK signals and then compares the results with the S-
transform as both methods claimed to provide accurate
phase representation. Note that this study does not
include the class of quadrature amplitude modulation
signals (QAM). Even though this signal has IIB-phase,
its time-varying amplitude characteristic is not suitable
for the adaptation algorithm described in this article
(see Section 3.1.2). The algorithm is developed based on
the assumption of constant amplitude signal such as the
class of PSK signals.
In this article, the analytical form of the signal is used

to minimize the effect of cross terms in the TFR [27].
Even though signals are real in practice, the analytical
form of the signal can be generated using an FIR Hilbert
filter [28]. Thus, an arbitrary digital phase modulated
signal may be expressed as

z(t) = A
N∑
k=1

(
exp j

(
2π fk (t − (k − 1) Tb) + ϕk

))
�(t − (k − 1) Tb) (4)

where k represents the order of the binary sequence
transmitted, A represents the signal amplitude, fk is the
subcarrier frequency, �k represents the information
bearing phase, and Tb is the symbol duration of the sig-
nals. The variables A and fk are constant as the signals
considered are PSK signals. For simplification of nota-
tion, in this article, the box function ∏(t) is defined as

�(t) =

{
1 for0 ≤ t ≤ Tb

0 elsewhere
(5)

Figure 1 shows the time representations of the BPSK,
QPSK, and 8PSK signals defined in Equation (4). The
signal parameters are given in Table 1 and the sampling
frequency is assumed to be 1 Hz. The analysis methods
proposed in this article is applicable to communication
applications in all frequency bands as long as they meet
the Nyquist sampling theorem. Due to the frequency
dependency of the S-transform, the analysis signals con-
sist of both high- and low-frequency components so as
to compare the performance of the AW-XWVD and S-
transform for phase estimation.
The received noisy signal can be modeled as

y (t) = z(t) + v(t) (6)

where z(t) is the noiseless PSK signal and v(t) is the
complex-valued additive white Gaussian noise. The
noise has independent and identically distributed real

and imaginary parts with total variance σ 2
v and zero

mean [[18], p. 437].
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2.2. TFDs, cross TFDs, and S-transform
The quadratic TFD is a useful technique to analyze
time-varying signals, but the resulting TFR does not
represent phase directly. Due to the need to estimate
IIB-phase in PSK signals, the XTFD and the S-transform

are introduced for this purpose as both can represent
phase in the time-frequency domain.
2.2.1. Quadratic TFDs and cross TFDs
The quadratic TFD [[18], p. 66] uses the bilinear pro-
duct of the signal of interest to generate a TFR. To

Figure 1 Time representation: (a) BPSK (b) QPSK (c) 8PSK test signals.
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represent the phase information in the time-frequency
domain, the cross bilinear product in the XTFD is cal-
culated using TFDs from both signal of interest and
reference signal. The resulting formulation for the
XTFD can be expressed as follows

ρzr(t, f ) =

∞∫
−∞

G(t, τ ) ∗
(t)
Kzr(t, τ ) exp(−j2π f τ )dτ (7)

where G(t, τ) is the time-lag kernel function that can
also be represented in the Doppler-lag domain as
described in [18,29]. The cross bilinear product Kzr (t, τ)
is given as

Kzr (t, τ ) = z
(
t +

τ

2

)
r∗
(
t − τ

2

)
(8)

where z(t) is the analytical signal of interest and r(t) is
the reference signal. The cross bilinear product is the
instantaneous cross correlation function (ICF) between
the signal of interest and the reference signal. Similar to
the signal of interest, the reference signal can be defined
as

r(t) = A
N∑
k=1

(
exp

(
j2π fk (t − (k − 1)Tb)

))
�(t − (k − 1) Tb) (9)

But it does not contain IIB-phase. A box function is
used in the representation of the reference signal to keep
track of the location of interaction between the signals of
interest with the reference signal in the time-lag represen-
tation. Similar study presented in [30,31] on the use of
XWVD for IF estimate of linear FM signals requires a
reference signal identical to the signal of interest. How-
ever, this is not necessary for this application since the
reference signal required is a pure sinusoid with the same
frequency as the signal of interest. Hence, any power

spectrum estimation method [[32], p. 214] can be used to
determine the frequency of the received signal. From
there, a pure sinusoid reference signal of the same fre-
quency is generated. This article assumes that the signal of
interest is in perfect synchronization with the reference
signal. In practical applications, the presence of phase syn-
chronization error introduces an offset in the IIB-phase.
This phase offset could be compensated using a PLL or
Costas loop [33] to generate the reference signal. Further-
more, the computation of the XTFD is done based on a
segment of received signal. Combining the features of the
PLL and Costas loop is only possible if the XTFD is com-
puted iteratively one sample at a time.
In the general formulation of the quadratic TFD [[18],

p. 68], the various TFD such as the Wigner-Ville distribu-
tion (WVD), Choi-Williams distribution, spectrogram, B-
distribution, and other distributions can be defined by
their respective time-lag kernels. The choice of this kernel
function can help minimize cross terms in the TFR. A
separable kernel allows the flexibility to separately control
the smoothing in the time and frequency domain [18, Sec-
tion 5.7]. The kernel function for the windowed WVD
(WWVD) is an example of a separable kernel. It performs
smoothing only in the frequency direction to reduce the
effect of the cross terms. Similar to the WWVD, the kernel
function for the windowed XWVD (WXWVD) is defined
as

G (t, τ ) = δ(t)w(τ ) (10)

Since the time component is a delta function, this ker-
nel is independent of the Doppler variable and only a
function of lag. The kernel is known as Doppler-inde-
pendent kernel [[18], p. 71], a special case of separable
kernel. It is shown that such kernel applies one-dimen-
sional filtering and is adapted to only a particular kind

Table 1 Signal model parameters defined within a symbol duration

Signal Normalized frequency (Hz) Symbol duration (s) Phase mapping

BPSK1 1/16 fs/80 jk(t) = π for s = 1
jk(t) = 0 for s = 0

BPSK2 1/8

QPSK1 1/16 fs/80 jk(t) = π/4 for s = 11
jk(t) = 3π/4 for s = 01
jk(t) = 5π/4 for s = 00
jk(t) = 7π/4 for s = 10

QPSK2 1/8

8PSK1 1/16 fs/80 jk(t) = π/8 for s = 000
jk(t) = 3π/8 for s = 001
jk(t) = 5π/8 for s = 010
jk(t) = 7π/8 for s = 011
jk(t) = 9π/8 for s = 100
jk(t) = 11π/8 for s = 101
jk(t) = 13π/8 for s = 110
jk(t) = 15π/8 for s = 111

8PSK2 1/8

Mei et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:65
http://asp.eurasipjournals.com/content/2012/1/65

Page 5 of 22



of mono-component signals such as nonlinear FM sig-
nals [[18], p. 214].Windowing is performed in the lag
direction before taking the Fourier transform. Thus, the
choice of separable kernel in Equation (10) causes
smoothing only in the frequency direction.
By substituting Equation (10) into Equation (7), the

WXWVD can be represented as

ρzr(t, f ) =

∞∫
−∞

Kzr(t, τ )w(τ ) exp(−j2π f τ )dτ (11)

The lag window function w(τ) can be one of the win-
dow functions typically used in filter design or spectrum
analysis.
2.2.2. The S-transform
The S-transform is a spectral localization technique
which is very much similar to the WT and STFT [24].
It can be considered as a special case of the STFT by
replacing the window function with a frequency-depen-
dent Gaussian window [24]. It is also related to the WT
as it can be derived from the WT with a specific mother
wavelet multiplied by the phase factor. The Gaussian
window of the S-transform is scaled so that the window
width is inversely proportional to the frequency, and its
height is scaled linearly to the frequency. Due to the
behavior of the window scaling, it possesses good time
resolution for high-frequency components and good fre-
quency resolution for low-frequency components. This
transform has successfully been applied for resolving
problems in the field of geophysics [34], power quality
analysis [35], and medicine [36]. The original formula-
tion for the S-transform of a signal, z(t), is given as [24]

S(t, f ) =

∞∫
−∞

z(τ )g(τ − t, f ) exp(−j2π f τ )dτ (12)

The frequency-dependent Gaussian window g(t, f) is
given as [24]

g(t, f ) =

∣∣f ∣∣√
2π

exp
(−t2f 2

2

)
(13)

where f is the signal frequency and τ in Equation (12)
denotes the position of the midpoint of the window.
The window spread or standard deviation depends on f.
Based on the characteristics of the Gaussian distribution,
a window width of 6/f ensures that 99.72% of the signal
values are enclosed within the window function [37].
Therefore, the window width is given as 6/f and height

is given by the term
∣∣f ∣∣ /√2π . The term

∣∣f ∣∣ /√2π is

also a normalizing factor which ensures that S (t, f) con-
verges to Z(f) when averaged over time [36], as shown
below.

∞∫
−∞

S(t, f )dt = Z(f ) (14)

Proof

∞∫
−∞

S(t, f )dt =
∫

�

∫
�
g(t − τ , f )z(τ ) exp

(−j2π f τ
)
dτdt

=
∫

�

∫
�

f√
2π

exp
(−(τ − t)2f 2

2

)
z(τ ) exp

(−j2π f τ
)
dτdt

=
∫

�

∫
�

f√
2π

exp
(−(τ − t)2f 2

2

)
dtz(τ ) exp

(−j2π f τ
)
dτ

=
∫

�

∫
�

1√
2π

exp
(−u2

2

)
du︸ ︷︷ ︸

1

z(τ ) exp
(−j2π f τ

)
dτ change of variable, u = (t − τ )

∣∣f ∣∣ , du = fdt

=
∫

�
z(τ ) exp

(−j2π f τ
)
dτ = Z(f )

Thus, the S-transform is invertible and the original
signal can be recovered by taking the inverse Fourier
transform of the above equation, resulting in the follow-
ing expression of z(t).

∞∫
−∞

∞∫
−∞

(
S(t, f )dt

)
exp

(
j2π ft

)
df =

∞∫
−∞

Z(f ) exp(j2π ft)df = z(t) (15)

3. Phase estimation methodology
This section describes the characteristics of the cross
bilinear product in the time-lag representation and out-
lines the derivation of the AW-XWVD. The adaptation
method used to set up the localized lag adaptive window
is then discussed. Next, the method used for phase esti-
mation from the peak of the TFR is presented.

3.1. AW-XWVD
The S-transform can be applied directly to the class of
PSK signals to obtain the TFR without any modification
in the algorithm. However, this is not the case with the
XTFD where interference due to duplicated terms is
introduced in the TFR [23]. Previous study defined
methods to determine optimum windows for TFDs
[38,39] that can reduce cross terms. A window matching
algorithm [39] is used to determine the optimum win-
dow for a TFD at all time instant. The algorithm itera-
tively evaluates the localized energy distribution to
minimize the error between successive window esti-
mates. The concept of time-frequency coherence is
introduced in [38] where the XWVD and WVD for
each signal components are used in its computation.
The required window function is estimated based on the
autoregressive moving average modeling and Karhunen
Loeve expansion. In this PSK communication applica-
tion, the cross bilinear product has a certain pattern
that can be utilized in computing the optimum window.
Therefore, the adaptive window is designed based on
the characteristics of the cross bilinear product. The
resulting distribution, the AW-XWVD, can generate an
accurate TFR and the subsequent IIB-phase estimate.
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3.1.1. The cross bilinear product
The cross bilinear product consists of auto-terms and
duplicated terms. The duplicated terms carry the same
information as the auto-terms but shifted in time and
lag domain; therefore, it can cause interference to the
auto-terms [23]. In order to obtain an accurate XTFR,
the auto-terms must be preserved and the duplicated
terms must be removed or attenuated. The auto-terms
and duplicated terms for any PSK class signal can be
expressed as

Kzr,auto =
∑
k=1

|A|2 exp(j(2π fk + φk))K�(t − (k − 1)Tb, τ ) (16)

Kzr,duplicated =
N∑

k=1,k �=l

N∑
l=1

|A|2 exp(j(2π fkτ ) + φk)K�

(
t − (k + l − 2) Tb

2
, τ (l − k) Tb

)
(17)

where K∏(t, τ) is the instantaneous autocorrelation
function of the box function given as

K� (t, τ ) = �
(
t +

τ

2

)
�
(
t − τ

2

)
(18)

The proofs for Equations (16) and (17) are given in
Appendix 1.
In practical digital communication applications, the

amplitude of the signal might not be ideally constant
due to channel impairments such as multipath fading,
attenuation by the propagation channel and any kind of
amplification performed by the circuits at both the
transmitter and receiver [13]. Therefore, the variable A
is retained throughout the derivation of the cross
bilinear product. Other than that, signals that combine
amplitude and phase modulations such as QAM can
also be used provided a suitable adaptation algorithm
for the XTFD is designed. The variation in the ampli-
tude, A, caused by the transmitted binary data will cor-
respond to the variation in the energy represented in
the XTFR.
Figure 2 shows the graphical representation of the

above cross bilinear product. All the auto-terms lie along
the τ = 0 axis, whereas the duplicated terms are shifted in
both time and lag. Therefore, the terms labeled as Kzr1,2,
Kzr1,3, and Kzr1,4 are the duplicated terms for the auto-
term, Kzr1,1, which are centered at τ = 0 axis. The same
label applies to the rest of the auto-terms and duplicated
terms. The following examples illustrate the problem
caused by the duplicated terms to the estimation of IIB-
phase. There is no interference observed in the IIB-phase
estimate if there are only auto-terms present. For
instance, at time t = Tb/2 the cross bilinear product eval-
uated is given as

Kzr (t, τ )|t=Tb/2 = A2 exp(j(2π f0τ + φ1))�(τ + Tb) (19)

Only the auto-terms with the IIB-phase of �1 exist.
When both the auto-terms and duplicated terms are
present, there will be more than one phase term. This is
observed at t = 3Tb/2 where the cross bilinear product
is represented as

Kzr(t, τ )
∣∣
t=3Tb/2

=A2[exp(j(2π f0τ + φ3))�(τ + 3Tb) + exp(j(2π f0τ + φ2))�(τ + Tb)

+ exp(j(2π f0τ + φ1))�(τ − Tb)]
(20)

The interaction of the auto-terms and duplicated
terms can be visualized as the addition of multiple vec-
tor components which result in a new vector compo-
nent with different magnitude and phase. Instead of IIB-
phase of �2 which is caused by the auto-terms, the
resulting IIB-phase consists of the interaction between
all the phase terms �1 and �3 caused by the duplicated
terms.
Since all auto-terms lie along the τ = 0 axis, a fixed

width lag window was used in [23] to preserve the auto-
terms and partially remove the duplicated terms that
cause distortion in the IIB-phase represented on the
XTFR. However, success is limited because the dupli-
cated terms are not completely removed resulting in a
distorted IIB-phase estimate. To resolve this problem,
the fixed lag window w (τ) in Equation (11) is replaced
with a time-dependent window function w (t, τ) and the
resulting new TFD, known as the AW-XWVD, is given
as

ρzr,AWXWVD(t, f ) =

∞∫
−∞

Kzr(t, τ )w(t, τ ) exp(−j2π f τ )dτ (21)

The adjustment of this time-dependent window width
is based on the computation of the LLAC function at
every time instant to separate the auto terms and dupli-
cated terms. This is equivalent to use a separable kernel
to reduce all cross terms as shown in [21,22]. An analy-
sis window centered at τ = 0 is used as a reference to
perform the similarity test using the LLAC function.
This similarity test detects the variation of the signal in
the lag direction at every time instant and estimates the
window width. The time-dependent window function
can be implemented using one of the common windows
used in digital filter design and spectrum estimation. In
this application, a rectangular window is used and it can
be defined as

w(t, τ ) =

{
1 − τg (t) ≤ t ≤ τg (t)

0 elsewhere
(22)

where τg (t) is the time-dependent window width
defined within 0 ≤ t ≤ T, and T is the signal duration.
Since the cross bilinear product is asymmetric, the win-
dow width in the positive lag and negative lag must be
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estimated accordingly. The desired τg (t) in the positive
lag (or in the negative lag direction) is selected if

τg (t) = min
ς

(|RKK (t, ς)|) 0 < ς ≤ T,
−T ≥ ς > 0,

(23)

where ς is the time instant in lag and |RKK(t, ς)| is the
amplitude of the LLAC which will be discussed in the
following section. Note that the rectangular window was
used for simplicity as we observed that the proposed
methodology performance is not affected significantly by
the choice of the window shape.
3.1.2. Adaptation algorithm
The LLAC [20] of the kernel, K, is a function of time
and lag and it can be defined as

RKK(t, ς) =

T∫
−T

wa(τ )2Kzr(t, τ )Kzr(t, τ − ς)dτ (24)

where wa (τ) is the analysis window, τ is the lag
instant, and ς is the lag running variable. The possible
range for the normalized LLAC amplitude is

0 ≤ ∣∣RKK(t, ς)
∣∣ ≤ 1 (25)

A higher value of the amplitude of the LLAC function
implies that the similarity is high and vice versa. The

miscorrelation in the signal is indicated by a drastic
drop in the amplitude of the LLAC function. The LLAC
function will give a value approaching unity at lag
instant, ς = 0.
The analysis window is a parameter of the LLAC. Its

selection is important to ensure that the LLAC can detect
the variation along the lag axis based on the condition spe-
cified in Equation (23) as to estimate the time-dependent
window width. The analysis window is defined as

wa (τ ) =
1
τa

0 < τa << T (26)

where τa is the analysis window width. In this article,
the analysis window width is chosen experimentally as
τa = 10 s based on the sampling frequency of 1 Hz. The
LLAC is applied to the signal x(t) and evaluated for the
normalized frequencies of 1/32, 1/16, 1/8, and1/4 Hz. In
this evaluation, the signal is defined as follows (with
similar characteristic to the cross bilinear product in lag)

x(t) = exp(j2π f1t) 0 ≤ t ≤ Tb
= exp(j2π f1(t − Tb)) exp(jπ) Tb ≤ t ≤ 2Tb

(27)

Table 2 shows the minimum values of the LLAC evalu-
ated in time. An analysis window of τa = 10 s is sufficient
to determine the time-dependent window width for

Figure 2 Time-lag representations of a PSK signal with lag-window width. The diagonal terms carries the same phase information. A fixed
lag window, denoted by the shaded region, is insufficient to remove all the undesired duplicated terms.
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frequencies ranged from 1/32 to 1/4 Hz. Thus, the analysis
width is valid for the test signals as specified in Section 2.
In the case of PSK signals, two consecutives symbols may
be different from each other depending on the transmitted
data. By applying the LLAC on the cross bilinear product,
the resulting adaptive window resembles the shape of a
parallelogram as shown in Figure 3.

3.2. IIB-phase estimation from the peak of TFDs
By extending the approach used for IF estimation from
the peak of WVD presented in [26], the IIB-phase is
estimated frrm the peak of the AW-XWVD and S-trans-
form as outlined in the following sections.
3.2.1. IIB-phase estimation using the AW-XWVD
The IF can be estimated from the peak of the TFD for
all time instants as shown below [[18], p. 429]

f̂ (t) = arg
{
max

f

[
ρz(t, f )

]}
, 0 ≤ t ≤ T (28)

where f̂ (t) is the estimated frequency. The peak of the

TFD is detected and the location is used as the

frequency estimate. In this application, the peak of the
XTFD for the AW-XWVD is detected for all time
instants and it is used to estimate the phase. Since the
peak value is complex, the IIB-phase may be expressed
as the inverse tangent of the imaginary and real compo-
nent, that is

φ̂AWXWVD (t) = arctan

⎛
⎜⎜⎝
imag

(
max

f

(
ρzr
(
t, f
)))

real
(
max

f

(
ρzr
(
t, f
)))

⎞
⎟⎟⎠ 0 ≤ t ≤ T (29)

The detailed derivation of the above equation is given
in Appendix 3.
3.2.2. IIB-phase estimation using the S-transform
For the S-transform, the IIB-phase estimation from the
peak of the TFD, however, is not as straightforward as
the AW-XWVD. The phase term in the frequency repre-
sentation introduced by the time shift window has to be
compensated in the actual IIB-phase estimate. The rela-
tionship between the time delay and phase shift is pre-
sented in [40], where the authors utilized this property to
generate the analytical signal as an alternative to the Hil-
bert transform. By applying this concept, the estimated
IIB-phase using S-transform can be represented as

φ̂ST (t) = arctan

⎛
⎜⎜⎝
imag

(
max

f

(
ρz
(
t, f
)))

real
(
max

f

(
ρz
(
t, f
)))

⎞
⎟⎟⎠ +

(
2π ft

)
0 ≤ t ≤ T (30)

Table 2 Minimum Value of LLAC for various frequencies

Number Signal frequency (Hz) Min |RKK(t, ς)|

1 1/32 0.567

2 1/16 0.251

3 1/8 0.121

4 1/4 0.089

Figure 3 Time-lag representations of PSK signal with adaptive lag-window. The adaptive window preserves the auto-terms and part of the
duplicated terms to ensure accurate TFR.
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The detailed derivation for IIB-phase estimation using
S-transform is given in Appendix 4.

3.3. Comparison to CRLB
This section compares the performance of both AW-
XWVD and S-transform as a phase estimator with the
CRLB which is often used as a benchmark [41], as it
gives the theoretical lower limit to the variance of any
unbiased parameter estimator [42]. The CRLB derived
in [43,44] uses a likelihood function on a known signal
in the presence of additive white noise for the digitally
phase modulated signal.
In terms of SNR, the CRLB for BPSK and QPSK sig-

nals can be represented, respectively, as [43]

CRBB (φ) =
1

2Nγ FB

(
1
γ

)
(31)

CRBQ (φ) =
1

2Nγ FQ

(
1
γ

)
(32)

where N is the average window width, g is the SNR, FB
and FQ are, respectively, the ratio of the CRLB for ran-
dom BPSK and QPSK signals to the CRLB for an unmo-
dulated carrier of the same power. At high SNR, the
value of FB and FQ is equivalent to one; so, the same
bound applies for both the BPSK and QPSK signals
[43]. The value of FB and FQ differs at low SNR and is
obtained from the results presented in [43]. In [44], the
authors extended the study presented in [43] and
derived the CRLB for 8PSK signal with random phase. It
is shown that the CRLB for MPSK signal for moderate
to low SNR is given as [44]

CRBMPSK (φ) =
1

2Nγ
(33)

The variance of the actual IIB-phase estimator for
both AW-XWVD and S-transform method can be
represented as

var (φ̂) =
1
N

N−1∑
n=0

(
φ̂n − φ̄

)2
(34)

where N is the total number of samples, φ̂n is the

estimated phase at every time sample n, and φ̄ is the
actual IIB-phase.

3.4. PSK signal detection algorithm
In addition to the estimation of modulation parameters,
the IIB-phase estimate derived from the XTFR can also
be used as a demodulator for the class of PSK signals.

The detection is performed by first estimating the IIB-
phase, �(t) from the peak of the TFD. The average IIB-
phase within a symbol duration can be estimated as fol-
lows

φ̄ =
1
Tb

Tb∫
0

ϕ(t)dt (35)

For a BPSK signal, the symbols are detected based on
a set of decision rule [45] that are defined as

sBPSK =

⎧⎪⎨
⎪⎩
0 − π

2
≤ φ̄ <

π

2

1
π

2
≤ φ̄ < −π

2

(36)

where sBPSK is the estimated binary data. The decision
boundary is defined based on the signal parameters
shown in Table 1. Similarly, the same approach
described for BPSK is extended to QPSK and 8PSK. The
decision rule for QPSK and 8PSK signals are defined,
respectively, as

sQPSK =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

11 0 ≤ φ̄ <
π

2
01

π

2
≤ φ̄ < π

00 π ≤ φ̄ < −π

2
10 − π

2
≤ φ̄ < 0

(37)

s8PSK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

000 0 ≤ φ̄ <
π

4
001

π

4
≤ φ̄ <

π

2
011

π

2
≤ φ̄ <

3π

4
010

3π

4
≤ φ̄ < π

110 π ≤ φ̄ < −3π

4
111 − 3π

4
≤ φ̄ < −π

2
101 − 3π

4
≤ φ̄ < −π

2
100 − π

2
≤ φ̄ < 0

(38)

4. Implementation, results, and discussions
This section discusses the implementation and realiza-
tion of the TFDs as well as the performance comparison
between the AW-XWVD and S-transform from several
measures. First, comparison is made in terms of the
TFR plot, the slice of the TFR, the IIB-phase, the instan-
taneous energy, and the constellation diagram. Then,
comparison in terms of the MLW is discussed. Next,
the performance of the AW-XWVD and S-transform as
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a phase estimator is benchmarked to the CRLB. This is
followed by the evaluation of the symbol error rate per-
formance of the AW-XWVD, S-transform, and conven-
tional detector. Finally, a comparison is made in terms
of the computational complexity between the AW-
XWVD, S-transform, and conventional detector.

4.1. Discrete-time formulation and implementation
The discrete time formulation of the TFDs is needed for
implementation on digital systems; and this applies for
both the discrete forms of the AW-XWVD and S-trans-
form. In [[18], p. 235], the windowed discrete WVD
(DWVD) of a continuous-time signal z(t) is expressed as

Wz
[
n, k
]
= 2

∑
|m|≺M/2

w [m] z [n +m] z∗ [n − m] exp(−2πkm/M) (39)

where M is a positive integers representing the win-
dow length in samples, n is the discrete time samples, m
is the discrete lag samples, and k is the discrete fre-
quency. Thus, by using Equation (21), the discrete AW-
XWVD can be expressed as

ρzr,AWXWVD,
[
n, k
]
= 2

∑
|m|<M/2

w [n,m] z [n +m] r∗ [n − m] exp(−2πkm/M) (40)

Using the same notation as above, the discrete
S-transform [24] can be represented as

S
[
n, k
]
=

M−1∑
m=0

z(m)
|k|√
2π

exp

(
−(m − n)2k2

2

)
exp(−j2πkm/M) (41)

The discrete time representation of the S-transform is
similar to the spectrogram. However, there is a tradeoff
between the time and frequency resolution for the S-
transform as the window width is frequency dependent.

4.2. Results
Figures 4 and 5 show the TFR, TFR slice, IIB-phase,
instantaneous energy, and constellation plots for QPSK2
signals at SNR of 10 dB using the AW-XWVD and S-
transform, respectively. The two TFRs show at which fre-
quency the signal exists, but for the S-transform there
are distortions in the TFR at every symbol transition. The
high contrast region in the TFR of the S-transform indi-
cates that there are low-density components other than
the signal component. However, this is not present in the
TFR of the AW-XWVD. The TFR slice is normalized to
the peak value of the TFR and observed in frequency for
time n = 100 samples. From the TFR slice, it is shown
that the AW-XWVD gives better frequency concentra-
tion compared to the S-Transform. This is because the
MLW of the TFR slice for the S-transform appears to be
much wider than AW-XWVD. As shown in Equation
(12), the S-transform’s window width is frequency

dependent where the window is wider for low-frequency
signal and narrower for high-frequency signal. This
implies that the S-transform at higher frequency gives
worse frequency resolution and wider MLW. Results
confirming this statement are presented in Table 3.
Besides the MLW of the TFR slice, there is also a differ-
ence in the average side lobe level. The side lobe level is
higher for the S-transform at about 0.18, while this level
is lower at 0.05 for the AW-XWVD. This explains the
appearance of the high contrast region on the TFR of the
S-transform.
The IIB-phase plot shows that the AW-XWVD gives

better accuracy for the IIB-phase estimate. For the
S-transform, distortion is observed in the IIB-phase esti-
mate at the phase transition regions which is absent in
the AW-XWVD. The sliding window in the S-transform
causes distortion in the IIB-phase at the symbol transi-
tion region due to the interaction between adjacent
symbols. Since digitally phase modulated signals have
constant amplitude, their instantaneous energy should
also be constant at all times. However, due to noise, the
amplitude of the signal appears to vary. This is reflected
as variation in the magnitude of the instantaneous
energy for AW-XWVD and S-transform. A significant
drop is observed in the instantaneous energy for the S-
transform at every symbol transition. Similar to the
phase, this drop is caused by the interactions between
the adjacent symbols within the sliding window. Since
the AW-XWVD produces accurate instantaneous energy
and IIB-phase estimates, the constellation diagram gen-
erated shows almost no variation from the original
points and is better compared to the S-transform. Table
3 shows the MLW estimated at SNR of 6and 10 dB
using both methods. In general, the SNR has no signifi-
cant effect in the MLW obtained for both methods.
However, the effect of signal frequency is more signifi-
cant for the S-transform compared to the AW-XWVD.
For instance, the MLW for both BPSK1 and BPSK2
with the AW-XWVD based estimate is the same at
0.012 Hz. However, for the S-transform the MLW is lar-
ger for BPSK2 than BPSK1 with a difference of 0.028
Hz. The scaling of the Gaussian window results in a
broader MLW for higher-frequency signal. The signal
modulation level has no significant effect on the MLW.
This is shown by the MLW measured for BPSK, QPSK,
and 8PSK signals where there are only minor differ-
ences. These results imply that the AW-XWVD gives
better IIB-phase estimation results compared to the
S-transform as the performance of an estimator is asso-
ciated with the MLW [[46], p. 50].

4.3. Variance comparison with the CRLB
In order to evaluate the performance of the AW-XWVD
method, we compare it with the S-transform. Both
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methods are benchmarked with the CRLB for phase esti-
mate. It is assumed that there is perfect synchronization
between the received and reference signals. We consider
the signal is corrupted by a zero mean additive white
Gaussian noise channel with variance s2. In simulations,
the received signal is generated by adding the noiseless
signal, z(t), and the additive white Gaussian noise, v(t), as
given in Equation (6) where the SNR is varied at 1 dB
step from 0 to 10 dB. Monte Carlo simulations based on
1,000 realizations of the predefined signals are conducted
for each value of SNR. The estimated IIB-phase is
obtained from the peak of the XTFD as described in Sec-
tion 3.2. Assuming the actual IIB-phase of the signal is
known, the MSE is computed using Equation (34). Fig-
ures 6, 7, and 8 show the results of the estimated IIB-
phase variance for BPSK, QPSK, and 8PSK signals,
respectively. In general, for both BPSK and QPSK signals,

the variance of IIB-phase estimate using the AW-XWVD
lies close to the CRLB. The AW-XWVD estimate meets
the CRLB at SNR ≥ 5 dB for both BPSK1 and BPSK2 sig-
nals. Figure 7 shows that the cutoff point for both
QPSK1 and QPSK2 signals are the same as the BPSK sig-
nals, at SNR of 5 dB. However, the variances in the IIB-
phase estimate for QPSK signals are higher compared to
the BPSK signals at the same SNR. A higher cutoff point
is recorded for the 8PSK estimates where both 8PSK1
and 8PSK2 signals meet the CRLB at SNR ≥ 7 dB. In gen-
eral, the AW-XWVD outperformed the S-transform as a
phase estimator and the S-transform estimates never
meet the CRLB for all signals even at SNR of 10 dB. As
expected, the performance of the S-transform deterio-
rates greatly for higher frequency signals due to broader
MLW. This is in contrast with the AW-XWVD where it
maintains reasonably insignificant changes in the

Figure 4 QPSK2 signal evaluated using AW-XWVD at SNR = 10 dB: (a) TFR (b) TFR slice (c) IIB-phase, (d) Instantaneous energy (e)
Constellation diagram.
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variance of IIB-phase estimates for all range of frequency.
Thus, the AW-XWVD is more robust to noise for phase
estimation compared to the S-transform. The result
obtained in this article is in line with [30] where the
XWVD is shown to be more robust to noise compared to
the WVD.

4.4. Symbol error rate performance
In this section, the symbol error rate performance of the
AW-XWVD and S-transform is compared with the con-
ventional detector defined in [[13], p. 188] for the class
of PSK signals. It is based on the matched filter struc-
ture, where the reference signal must have the same
parameters as and be in phase with the signal of inter-
est. In general, an increment in the number of bits per
symbol will increase the throughput at the expense of
downgrading the symbol error rate. The formulation for

Figure 5 QPSK2 signal evaluated using S-transform at SNR = 10 dB: (a) TFR (b) TFR slice (c) IIB-phase (d) Instantaneous energy (e)
Constellation diagram.

Table 3 Performance comparison between AW-XWVD and
S-transform

SNR Signals MLW (Hz)

AW-XWVD S-Transform

6 dB BPSK1 0.012 0.025

BPSK2 0.012 0.053

QPSK1 0.016 0.025

QPSK2 0.015 0.046

8PSK1 0.017 0.031

8PSK2 0.017 0.052

10 dB BPSK1 0.010 0.023

BPSK2 0.010 0.049

QPSK1 0.014 0.024

QPSK2 0.014 0.0486

8PSK1 0.015 0.029

8PSK2 0.014 0.050
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the symbol error rate for coherently detected multiple
phase modulation signals is given as [[13], p. 229]

PE(M) ≈ 2Q

(√
2Es
N0

sin
π

M

)
(42)

where PE(M) is the symbol error rate, the function Q(x)
is the complementary error function, Es is the energy per
symbol, N0 is the noise power, and M is the size of sym-
bol set. Detection of the PSK signals is done based on the
IIB-phase estimate and the sets of rules defined in Sec-
tion 3.4. All the defined test signals of 10,000 symbols are
evaluated under AWGN channel. The results presented
in Figures 9, 10, and 11 show the symbol error rate per-
formance as a function of SNR for BPSK, QPSK, and
8PSK signals. BPSK signal required a SNR of about 5 dB
to achieve a symbol error rate of 10-3 for the AW-
XWVD method. Using the same method, a higher SNR is
observed for QPSK signal, approximately 8 dB. To
achieve the same performance, the conventional detector
needs an SNR of 7 and 8 dB for BPSK and QPSK signals,
respectively. For 8PSK signal, it is shown that to achieve
a symbol error rate of 10-3, SNR of 10 dB is required for
AW-XWVD. As for the conventional detector, it gives
the same performance at SNR of 11 dB. From the symbol

error rate plot, for all the test signals, it is observed that
the advantage of the AW-XWVD over the conventional
detector is at the low SNR range where it gives lower
error rate. In general, the symbol error rate for the AW-
XWVD is much lower compared to the S-transform. The
S-transform could not provide symbol error rate ≤ 10-3

even at SNR of 12 dB for all signals. Thus, it is impracti-
cal to use it as a detector for the class of PSK signals.

4.5. Computation complexity
The number of computations for implementing the AW-
XWVD, the S-transform, and conventional detectors is
discussed in this section to compare the practicality of
the proposed method for signal analysis and classification
applications as used in spectrum monitoring and cogni-
tive radio [14-17]. The computation complexity of the
AW-XWVD is similar to the smooth WWVD due to the
similarity in the computation of the bilinear product. To
implement the AW-XWVD, the number of computation
required in terms of the number of multiplication is
given below [22]. For the sake of clarity in terminology,
in the paragraph below, N is the signal length, Nτ is the
lag window length, NA is the length of the analysis
window, and Nw is the average length of adaptive lag
window.

Figure 6 BPSK IIB-phase estimate variance.
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Figure 7 QPSK IIB-phase estimate variance.

Figure 8 8PSK IIB-phase estimate variance.
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1. Computation of the cross bilinear product to
obtain its time-lag representation requires NτN mul-
tiplications. Ideally, the number of computation for
the cross bilinear product is N2 where the lag and
time durations are equal to N samples. To maintain
equal frequency resolution for N > 512 samples, the
duration in lag is maintained at Nτ = 512 samples.
By limiting the duration in lag, excessive computa-
tion of the cross bilinear product is avoided.
2. The LLAC uses an analysis window of NA which
slides along the lag axis at every lag sample for a
total of Nτ samples. Since there are N time instances,
the total number of multiplications for the computa-
tion of localized lag autocorrelation function is
NANτN.
3. The LLAC will determine the separation interval
between the auto-terms and duplicated terms based
on the average lag window width Nw. For N time
samples, the total number of multiplications to setup
the adaptive lag window based on the average lag
window width Nw is NwN.
4. To get the XTFR, the Fourier transform of the
windowed cross bilinear product is calculated in the
lag direction with (Nτ log2 Nτ) multiplications. For
signal length N, the total number of multiplications
0.5N(Nτ log2 Nτ).

Therefore, the total of multiplication required to com-
pute the AW-XWVD is N(Nτ + NANτ + Nw + 0.5Nτ log2
Nτ).
The S-transform is very much similar to the spectro-

gram, except that the window for the S-transform is fre-
quency dependent. Hence, the number of computation
required in terms of number of multiplication results
from [47]:

1. The product of the frequency-dependent Gaussian
window function and the signal of interest to obtain
its localized spectrum which requires N
multiplications.
2. The Fourier transform of the time-lag representa-
tion to obtain the TFR requires 0.5N (Nτ log2 Nτ)
multiplications.

Thus, the total number of multiplication required to
implement the S-transform is N(1 + 0.5Nτ log2 Nτ).
The number of computation in terms of the number

of multiplication required to implement the conven-
tional detector is [13]:

1. Mixing of the incoming signal with two sinusoid
signals with 90° phase difference requires 2N
multiplications.

Figure 9 BER performance for BPSK signal in AWGN channel.
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Figure 10 BER performance for QPSK signal in AWGN channel.

Figure 11 BER performance for 8PSK signal in AWGN channel.
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2. Low pass filtering of the signal to obtain the
inphase and quadrature phase component of the sig-
nal require 2N multiplications.

Therefore, the total number of multiplications
required to implement the conventional detector is 4N.
In this application, the length of the signal evaluated is

640 samples points and the lag window length Nτ is set
to 512 sample points. The analysis window length NA

used in the AW-XWVD is 10 samples points and the
average length of adaptive lag window Nw is 80 samples
points. The number of multiplications required for the
AW-XWVD, S-transform, and conventional detector per
symbol is summarized in Table 4.
In terms of the number of multiplications, the AW-

XWVD requires approximately 4 times more computa-
tions compared to the S-transform and 2,000 times
more for the conventional detector. Although there is a
significant additional number of a computation for the
AW-XWVD, recent advances in digital electronics as
well as decimation procedures can take care of them; in
addition, the performance in terms of the IIB-phase esti-
mates enables more efficient signal parameters estima-
tion in the proposed area of applications. These
parameters can be used to classify a signal from a set of
reference parameters. If necessary, we can use the IIB-
phase estimate to detect PSK signals at low SNR condi-
tions where the conventional detector failed. For higher
SNR conditions, it is not necessary to use a technique
which is computationally intensive when the symbol
error rate is low. Thus, we can setup the conventional
detector using the parameters estimated from the IIB-
phase to detect PSK signal. So, we conclude that, with
the enhancement of current computer processing com-
bined with appropriate decimation procedures, the real-
time implementation of AW-XWVD is feasible with the
use of multiple processors or parallel processing [48]
and the design proposed in [49].

5. Conclusions
A performance comparison between the AW-XWVD
and S-transform estimators of IIB-phase shows that the
AW-XWVD is superior to the S-transform for classify-
ing PSK signals. Results show that the mean square

error of the phase estimate using AW-XWVD is on the
average lower by 20 dB. The S-transform has a fre-
quency-dependent window width which performs poorly
as a phase estimator for high-frequency signal compo-
nents. Since peak detection is used for the estimation of
the IIB-phase for both methods, the frequency resolu-
tion and MLW contribute to the estimation accuracy.
The AW-XWVD maintains the frequency resolution
through the window adaptation and yields better accu-
racy for the IIB-phase estimate. It also meets the CRLB
at moderate SNR for all the defined signals unlike the
S-transform that never meets the bound even at high
SNR. For symbol error rate performance, the AW-
XWVD is also better compared to the S-transform and
it is comparable to the conventional detector at the cost
of higher number of computations. Thus, this article has
proven that the AW-XWVD is an effective phase esti-
mator for digitally phase modulated signals and can be
used for similar applications involving time-varying sig-
nals. This study suggests new research directions to pur-
sue in the future, such as replacing the S-transform by a
modified S-transform that incorporates an adaptive
mechanism; replacing the S-transform by the cross S-
transform; using separable kernels in defining a XTFD;
and investigate the effect of window shape in Equation
(40) on the performance of the phase estimator. These
advances can be used in a wide range of signal proces-
sing applications from Telecommunications to Biomedi-
cine including EEG and Fetal Movement signals analysis
and processing, where time-frequency peak detectors
can provide additional features for classification
improvement.

Endnote
aThe terminology “duplicated terms” is used in this arti-
cle instead of the cross terms which is typically used in
TFA. This is because, in the proposed method, these
terms carry the same information as the auto-terms but
are shifted in both time and lag. The duplicated terms
are caused by the cross bilinear product between the kth
and lth symbol of the signal of interest and the refer-
ence signal, where k ≠ l.

Appendix 1. Derivation of the auto-terms
Derivation of the auto-terms will be discussed in this
section. Cross bilinear product can be seen as the results
of the cross correlation function between the signal of
interest and a reference signal. For discussion purposes,
a PSK signal of N symbols length with normalized
amplitude is evaluated. The signal has the same fre-
quency and the difference between each symbol is the
phase that is determined by the binary information pre-
sent. The N symbol length PSK signal can be repre-
sented as

Table 4 Comparison of computational complexity
between AW-XWVD, S-transform and the conventional
detector

Methods of IIB-phase
estimation

Number of multiplication per
symbol

AW-XWVD 6.41 × 105

S-transform 1.84 × 105

Conventional detector 3.20 × 102
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z(t) =
N∑
k=1

exp
(
j2π f0

(
t − (k − 1)Tb

)
+ φk

)
�(t − (k − 1)Tb)

= exp
(
j
(
2π f0t + φ1 (t)

))
�(t) + exp

(
j
(
2π f0 (t − Tb) + φ2 (t − Tb)

))
�(t − Tb)

+ exp
(
j
(
2π f0 (t − 2Tb) + φ3 (t − 2Tb)

))
�(t − 2Tb)

+ exp
(
j
(
2π f0 (t − 3Tb) + φ4 (t − 3Tb)

))
�(t − 3Tb) + · · ·

+ exp
(
j
(
2π f0

(
t − (N − 1)Tb

)
+ φN

(
t − (NTb

)))
�
(
t − (N − 1)Tb

)
(A:1)

The reference signal with respect to the signal of
interest is given as

r(t) =
N∑
k=1

exp
(
j
(
2π f0(t − (k − 1)Tb)

))
�(t − (k − 1)Tb)

= exp
(
j2π fot

)
�(t) + exp

(
j2π fo (t − Tb)

)
�(t − Tb)

+ exp
(
j2π fo (t − 2Tb)

)
�(t − 2Tb) + exp

(
j2π fo (t − 3Tb)

)
�(t − 3Tb) + · · ·

+ exp
(
j2π fo

(
t − (N − 1)Tb

))
�
(
t − (N − 1)Tb

)
(A:2)

Substituting Equations (A.1) and (A.2) into Equation
(8) then the cross bilinear product is given as

Kzr(t, τ ) =
N∑
k=1

exp
(
j2π f0

(
t +

τ

2
− (k − 1)Tb

)
+ φk

)
�
(
t +

τ

2
− (k − 1)Tb

)

×
N∑
l=1

exp
(
−j
(
2π f0(t − τ

2
− (l − 1)Tb)

))
�
(
t − τ

2
− (l − 1)Tb

) (A:3)

Here, the auto-terms are defined as the cross bilinear
product between the signal of interest and the reference
signal at the same time instant the box function over-
laps a copy of itself. For instance, the ICF of the first
symbol with the reference signal at the same time
instant, where k = l = = 1, can be represented as

Kzr,1,1(t, τ ) = exp
(
j
(
2π f0τ + ϕ1

))
�
(
t +

τ

2

)
�
(
t − τ

2

)
(A:4)

For the second symbol, the ICF of the signal and
reference signal occurring at the same time, where k = l
= 2, is given as

Kzr,2,2(t, τ ) = exp
(
j
(
2π f0τ + ϕ1

))
�
(
t − Tb +

τ

2

)
�
(
t − Tb − τ

2

)
(A:5)

The cross bilinear product assembled a rhombic shape
and the IAF of the box function given in Equation (18)
has a maximum value when they overlap by a copy of
itself. This condition applies when the shift in lag is
zero. To simplify the notation of the IAF of the box
function, the beginning point of each IAF of the box
function is determined. For example,

(a) K�,1,1(t, τ ) = �
(
t +

τ

2

)
�
(
t − τ

2

)

t +
τ

2
= t − τ

2
τ = 0

(A:6)

Then substituting τ = 0 into the box function,

�

(
t +

0
2

)
�

(
t − 0

2

)
= �(t) � (t) (A:7)

From Equations (A.6) and (A.7), the IAF of the box
function can be represented as K∏ (t, τ) where this
bilinear product begin at t = 0 and τ = 0.

(b) K�,2,2(t, τ ) = �
(
t − Tb +

τ

2

)
�
(
t − Tb − τ

2

)

t − Tb +
τ

2
= t − Tb − τ

2
τ = 0

(A:8)

Substitute τ= 0 into the box function,

�

(
t − Tb +

0
2

)
�

(
t − Tb − 0

2

)
= �(t − Tb) � (t − Tb) (A.9)

Then, the IAF for box function for the second auto-
term can be represented as K∏ (t-Tb, τ) where it is
shifted by t = Tb in the time domain and shifted by τ =
0 in lag domain.
From Equations (A.6) to (A.9), a general representa-

tion for the auto-terms is given as

Kzr,auto (t, τ ) =
N∑
k=1

|A|2 exp j
(
2π fk + φk

)
K� (t − (k − 1) Tb, τ )(A:10)

The above equation shows that all the auto-terms are
located along the time axis at τ = 0 and carry the IIB-
phase for each symbol. Each individual auto-term has a
rhombic shape and begins at t = kTb.

Appendix 2. Derivation of the duplicated terms
In this section, the derivation of the duplicated terms is
discussed using the same test signal defined in Appendix
1. The duplicated terms are the cross bilinear product
between the kth and lth symbol of the signal of interest
and the reference signal, where k ≠ l. The cross bilinear
product between the first and second symbols are given
as

Kzr,1,2 (t, τ ) = exp
(
j
(
2π f0

(
t +

τ

2

)
+ φ1

))
�
(
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2
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· exp
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2
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�
(
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2

)
= exp

(
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K�

(
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2
, τ − Tb

) (B:1)

It is observed that this term has the same frequency
and IIB-phase content as the Kzr,1,1 (t, τ) auto-term but
is shifted in both time and lag.

Kzr,2,1 (t, τ ) = exp
(
j
(
2π f0

(
t +

τ

2

)
+ φ2

))
�
(
t − τ

2

)
· exp

(
−j2π fo

(
t − τ

2

))
�
(
t − τ

2
− Tb

)
= exp

(
j2π f0τ + φ2

)
K�

(
t − Tb

2
, τ + Tb

) (B:2)

This term is the duplicated term of the second auto-
term which resulted from the cross correlation function
of the second symbol of the received signal and the first
symbol of the reference signal. From Equations (B.1)
and (B.2), the general formulation if the duplicated
terms can be represented as
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Kzr,duplicated (t, τ ) =
N∑
k=1
k �=l

N∑
l=1

|A|2 exp (j (2π fkτ + φk
))
K�

(
t − (k + l − 2) Tb

2
, τ − (l − k)Tb

)
(B:3)

The above indicates that the signal power, frequencies,
and IIB-phase for the duplicated terms are the same as
the auto-terms except that they are shifted in both time
and lag. It has a rhombic shape and it begins at

t =
(k + l − 2) Tb

2
and τ = (l - k) Tb

Appendix 3. Phase estimation from the peak of
XWVD
This section represents the derivations for phase estima-
tion from the TFR generated by the XWVD. Similar to
Appendix 1, the derivations consider a 4-symbol digital
phase modulation signal that is defined in Equation
(A.1). The derivation is first presented for the AW-
XWVD followed by the S-transform. With reference to
Appendix 1 and Section 3, it is assumed that the adapta-
tion algorithm has completely preserved the auto-terms
and part of the duplicated terms that do not cause dis-
tortion in the IIB-phase estimate. The explanation is
simplified by considering the cross bilinear product for
at t = 3/2Tb and t = 5/2Tb and the cross bilinear pro-
duct evaluated over lag over these time instants are

Kzr(3/2Tb, τ ) = exp(jϕ2) exp(j2π f1τ )�(τ ) (C:1)

Kzr(5/2Tb, τ ) = exp(jϕ3) exp(j2π f1τ )�(τ ) (C:2)

where the box function is defined as

�(τ ) = 1, 0 ≤ τ ≤ Tb
= 0 elsewhere

(C:3)

To obtain the XTFR, the Fourier transform is evalu-
ated in lag according to Equation (21) and the resulting
XTFR at these time instants are

ρzr(3/2Tb, f ) = FT
τ→f

[
Kzr(3/2Tb, τ )

]
= exp(jϕ2) sin c(f1 − f ) (C:4)

ρzr(5/2Tb, f ) = FT
τ→f

[
Kzr(5/2Tb, τ )

]
= exp(jϕ3) sin c(f1 − f ) (C:5)

The results show that cross TFR at both time instants
is maximum at the frequency of f1 but the peak values
are determine by the IIB-phase of �2 and �3. Instead of
using the peak of TFR to determine the IF as described
in [22,25,28], the peak value is used to estimate the IIB-
phase. Since the peak value is complex, the IIB-phase
for both time instances can be estimated as follows
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)
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(C:6)
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(
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(
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By extending this formulation to all time instants, the
IIB-phase estimate is

φ̂AWXWVD (t) = arctan

⎛
⎜⎜⎝
imag

(
max

f

(
ρzr
(
t, f
)))

real
(
max

f

(
ρzr
(
t, f
)))

⎞
⎟⎟⎠(C:8)

The above indicates that the accuracy of the IIB-phase
estimate depends greatly on the XTFR. Therefore, the
duplicated terms must be removed to produce an opti-
mal XTFR, in which we employ an adaptive window as
a kernel function to preserve the auto-terms and attenu-
ate the duplicated terms.

Appendix 4. Phase estimation from the peak of
S-transform
For the S-transform, the similar signal model described
in Equation (A.1) is used and the TFR is calculated
using Equation (12). Similar to the XTFD, the TFR for
the signal using the S-transform is first calculated at
time instants of t = 3/2Tb and t = 5/2Tb before the IIB-
phase estimate formulation is derived. At t = 3/2Tb, the
window function g(t) covers within the second symbol
of the digital phase modulation signal and the substitu-
tion of Equation (4) into Equation (12) results in

S(3/2Tb, f ) =

∞∫
−∞

exp(jφ2) exp(j2π f1(τ − Tb))�(τ − Tb)g(τ − 3/2Tb) exp(−j2π f τ )dτ (D:1)

The time shift window in the S-transform introduces a
phase term in the frequency representation which is
described as follows by the time shift properties of the
Fourier transform

FT
τ→f

[
g(τ − t)

]⇒ exp
(−j2π ft

)
G(f ) = exp

(−jφ
)
G(f ) (D:2)

By including this effect, the TFR for the signal is
obtained by evaluating Equation (D.1) is given as

S(3/2Tb, f ) = exp(jϕ2) exp
(

−j2π f1
3
2
Tb

)
G(f − f1) (D:3)

where G(f - f1) is the frequency representation of the
window evaluated at the frequency of f1. Due to the
property of the S-transform, the bandwidth of the win-
dow in frequency representation will depend on fre-
quency of the signal. Extending this for the third symbol
at t = 5/2Tb results in the following TFR
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S(5/2Tb, f ) = exp(jϕ2) exp
(

−j2π f1
5
2
Tb

)
G(f − f1) (D:4)

Similar to the XTFR, the IIB-phase can be estimated
from the peak of the TFR. By applying Equation (C.8),
IIB-phase estimates for t = 3/2Tb and t = 5/2Tb are

φ̂ST

(
3
2
Tb

)
= φ2 − 2π f1

3
2
Tb (D:5)

φ̂ST

(
5
2
Tb

)
= φ2 − 2π f1

5
2
Tb (D:6)

From Equations (D.5) and (D.6), it is observed that the
time delay in the window function introduces phase
shift in the IIB-phase estimate. To overcome this pro-
blem, the phase shift effect must be compensated and
the IIB-phase estimate for all time is

φ̂ST (t) = arctan

⎛
⎜⎜⎝
imag

(
max

f

(
S
(
t, f
)))

real
(
max

f

(
S
(
t, f
)))

⎞
⎟⎟⎠ +

(
2π ft

)
(D:7)

The above equation has an additional term, 2πft which
is not present in the IIB-phase estimate for AW-XWVD.
This term removes the phase shift caused by the win-
dow function in the S-transform.
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