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Abstract

This paper presents new closed-form expressions for the symbol error probability (SEP) of θ -QAMmodulation with
maximum ratio combining (MRC) receiver under η − μ and κ − μ fading. The SEP formulae, obtained from the
definite integrals of the moment generating function (MGF) of the signal-to-noise ratio (SNR) at the input of the MRC
receiver, are written in terms of Lauricella functions. The numerical evaluation of the expressions is carried out for the
η − μ distribution, which includes important distributions as special cases, such as Hoyt, Nakagami-m, Rayleigh, and
one-sided Gaussian, as well as for the κ − μ distribution, which includes Rice, Nakagami-m, Rayleigh, and one-sided
Gaussian as special cases.

1 Introduction
Two-dimensional signal constellations with suppressed
carrier, such as quadrature amplitude modulation (QAM)
schemes, are widely used in communication systems in
a variety of applications, such as modems with asyn-
chronous transmission, digital television, and cooperative
systems [1,2].
In [3], the rectangular QAM modulation schemes

are evaluated with maximum ratio combining (MRC)
receivers and η − μ correlated fading, while in [4], these
schemes are employed to evaluate the performance of
the MRC receiver considering imprecise knowledge of
the state of the Rician fading channel. In applications
involving asymmetric digital subscriber lines and digi-
tal video broadcasting-cable, cross QAM schemes have
been adopted. The error probability of cross QAM with
MRC reception over generalized η−μ fading channel was
presented in [5].
Before 2002, the evaluation of the fading effects in

the reception of the M-QAM schemes was performed
by means of approximate mathematical expressions. In
2002, Cho and Yoon [6] found exact expressions for the
bit error probability (BEP) of QAM schemes under addi-
tive white noise. An extension of that work for Nakagami
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fading was presented in [7]. Then, the evaluation of struc-
tures such as the MRC receiver with M-QAM was per-
formed by means of exact expressions. The MRC receiver
has been proposed in coherent demodulation schemes
for environments with Rayleigh and Nakagami fading
[8-10].
Since 1962, when the square QAM (SQAM) modu-

lation was introduced [11], different geometries for the
QAM constellation have been proposed. Motivated by
aspects such as minimization of the symbol error prob-
ability (SEP) and implementation complexity, a new con-
stellation geometry was proposed in [12], the so-called
triangular quadrature amplitudemodulation (TQAM), for
which the symbols associated with the transmitted sig-
nals are located in the vertices of contiguous triangles
[13].
As an attempt to improve the power gain, Park

and Byeon presented in [14] an alternative configura-
tion for the triangular constellation and proposed con-
stellations with irregularly distributed symbols while
preserving the triangular structure. By means of the-
oretical analysis and simulations, they showed how
to obtain a 0.62-dB power gain with respect to the
SQAM constellation and a 0.20-dB power gain with
respect to the TQAM regular constellation for a 10−6

symbol error rate with 64-symbol constellations. The
mathematical analysis of the effects of changing the
QAM constellation angle θ gave rise to a modula-
tion scheme referred to as parametric θ-QAM, which
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includes the SQAM and TQAM schemes as special cases
[15,16].
The calculation of exact expressions for the SEP or BEP

of a modulation scheme under fading means, in many
cases,that the expressions for additive white Gaussian
noise are weighted by the probability density function
of the signal-to-noise ratio for a given fading. One of
the most used structures to improve the BEP and SEP
of QAM schemes under different types of fading is the
MRC receiver [17]. In [18], the effect of the diversity
provided by that structure was evaluated, through the
BEP parameter, for square M-QAM and rectangular R-
QAM and different types of fading, modeled by distinct
distributions.
The analysis of BEP and bit error (BER) in optical

wireless links, also known as free-space optics (FSO),
has received much attention in recent years. In [19], the
authors show that the turbulence-induced fading caused
by atmospheric conditions can be modeled as multiplica-
tive random process which follows theK distribution. The
authors also present approximated closed-form expres-
sions for the average BER of single-input multiple-output
(SIMO) FSO systems. Alternatively, for FSO channels, the
fading can be modeled by log-normal or gamma-gamma
distributions [20,21].
This paper proposes the use of the MRC receiver jointly

with θ-QAM modulation and gives new mathematical
expressions for the SEP under η − μ and κ − μ fad-
ing, modeled by κ − μ and η − μ distributions. The
MRC receiver provides an additional degree of freedom
for the performance control of the systems, and the prob-
ability distributions used to model the fading provide a
unification of the mathematical analysis since they char-
acterize different types of fading. One of the contributions
of this paper is the derivation of exact expressions for
the SEP, written in terms of hypergeometric Lauricella
functions.
The paper is organized as follows: In Section 2, the

average SEP for an MRC receiver with N branches is pre-
sented in terms of themoment generating function (MGF)
for η − μ and κ − μ fading. In Section 3, the MGF of
the signal-to-noise ratio (SNR) per branch of the MRC
receiver is adjusted to the problem under consideration.
In Sections 4 and 5, new SEP expressions are provided in
terms of Lauricella functions. In Section 6, curves of SEP
are presented for different sets of parameters. Section 7
presents the conclusions of the paper.

2 Symbol error probability under generalized
fading

This section presents the calculation of the average SEP
of a θ-QAM scheme under η − μ and κ − μ fading and
MRC diversity. The main objective is to show that this

probability can be written in terms of definite integrals
of the MGF of SNR per branch of the MRC receiver.
In the family of θ-QAM schemes, presented in [15],
the authors obtained the expression given in Equation 1
to evaluate the SEP under additive white Gaussian
noise:

Ps(γ , θ ,M) = c1c2
∫ π+θ

2

π−θ
2

exp(−γ δ2csc2(φ))dφ

+ c1c23
∫ π−θ

θ

exp(−γ δ2csc2(φ)sec2
(

θ

2

)
sin2(θ))dφ

+ c1c4
∫ π

π−θ
2

exp(−γ δ2csc2(φ))dφ

+ c1c5
∫ π+2θ

2

π−θ
2

exp(−γ δ2csc2(φ))dφ

+ c1c6
∫ π

2θ
exp(−4γ δ2csc2(φ)sin2(θ))dφ.

(1)

In Equation 1, the parameters c1, c2, c3, c4, c5, and c6 are
related to the geometry of the constellation θ-QAM and
are given by the following [16]:

c1 = 1
2πM c2 = 4(

√
M − 2)(

√
M − 1)

c3 = √
2(

√
M − 1) c4 = 4

√
M

c5 = 4(
√
M − 2) c6 = 2(

√
M − 2),

(2)

in which M represents the number of constellation sym-
bols sm,n, whose coordinates (xm, yn) are

xm =
[
2(n − 1) + 1 − √

M
]
d + [2mod(m, 2) − 1]

a
2

yn = −
[
2(m − 1) + 1 − √

M
] b
2
,

(3)

with m = 1, · · · ,√M, n = 1, · · · ,√M, a = 2d cos θ , and
b = 2dsinθ , and mod(x, y) denotes the modulus opera-
tion after division of x by y. Half of the Euclidean distance
between adjacent symbols of the constellation is given
by

d =
√
6Eav√

3M + (4 − M) cos(2θ)
(4)
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and is related to the parameter δ and to the average energy
per symbol, Eav, through the expression

δ = d√
Eav

=
√
6√

3M + (4 − M) cos(2θ)
. (5)

In order to determine the SEP of the θ-QAM modula-
tion scheme under η − μ and κ − μ fading, for an MRC
receiver, it is necessary to average the symbol error prob-
ability under additive white Gaussian noise conditioned
to the instantaneous SNR γ at the MRC input. This con-
ditional probability, denoted by P(E|γ ), corresponds to
Ps(γ , θ ,M) for γ = ∑N

k=1 γk at the MRC output, in which
the random variables γk represent the instantaneous SNR
in each of the N branches of the MRC receiver. The
MRC structure with N branches makes decisions based
on the signals αie−jθi s(t) + ni(t), for i = 1, 2, · · · ,N , in
which αi and θi represent, respectively, the fading atten-
uations and phase variations in the ith receiver branch,
s(t) represents the transmitted signal modulated with θ-
QAM, and ni(t) represents the complex AWGNwith zero
mean and varianceN0/2. The fading attenuation αi can be
modeled as η − μ distribution as well as κ − μ distribu-
tion. The phase shifts θi are uniformly distributed in the
interval (0, 2π ].
Therefore, the SEP, represented by Pas, can be

calculated averaging Ps(γ , θ ,M) by the joint prob-
ability density function pγ1,γ2,··· ,γN (γ1, γ2, · · · , γN ) of
the variables γ1, γ2, · · · , γN , using the multiple
integral

Pas =
∫ ∞

0

∫ ∞

0
· · ·

∫ ∞

0
Ps(γ , θ ,M) · pγ1,γ2,··· ,γN

× (γ1, γ2, · · · , γN )dγ1dγ2 · · · dγN .
(6)

The probability Ps (γ , θ ,M) can be rewritten as follows:

Ps(γ , θ ,M)

= c1c2
∫ π+θ

2

π−θ
2

N∏
k=1

exp
(−δ2csc2(φ)γk

)
dφ

+c1c23
∫ π−θ

θ

N∏
k=1

exp
(

−δ2sec2
(

θ

2

)
sin2(θ)csc2(φ)γk

)
dφ

+ c1c4
∫ π

π−θ
2

N∏
k=1

exp
(−δ2csc2(φ)γk

)
dφ

+ c1c5
∫ π+2θ

2

π−θ
2

N∏
k=1

exp
(−δ2csc2(φ)γk

)
dφ

+ c1c6
∫ π

2θ

N∏
k=1

exp
(−4δ2sinθcsc2(φ)γk

)
dφ.

(7)

Substituting Equation 7 into Equation 6, the SEP Pas can
be written as follows:

Pas = c1c2
∫ π+θ

2

π−θ
2

N∏
k=1

Mγk

(
δ2csc2(φ)

)
dφ

+ c1c23
∫ π−θ

θ

N∏
k=1

Mγk

(
δ2sec2

(
θ

2

)
sin2(θ)csc2(φ)

)
dφ

+ c1c4
∫ π

π−θ
2

N∏
k=1

Mγk

(
δ2csc2(φ)

)
dφ

+ c1c5
∫ π+2θ

2

π−θ
2

N∏
k=1

Mγk

(
δ2csc2(φ)

)
dφ

+ c1c6
∫ π

2θ
Mγk

(
4δ2sin2(θ)csc2(φ)

)
dφ,

(8)

in which Mγk (s) � E
[
e−sγk

]
denotes the MGF of the kth

random variable γk .
From Equation 8, one can notice that if the variables

γk are independent and identically distributed with corre-
sponding MGF Mγ (s), then the SEP Pas can be written as
follows:

Pas = c1c2
∫ π+θ

2

π−θ
2

[
Mγ

(
δ2csc2(φ)

)]N dφ + c1c23
∫ π−θ

θ

×
[
Mγ

(
δ2sec2

(
θ

2

)
sin2(θ)csc2(φ)

)]N
dφ

+ c1c4
∫ π

π−θ
2

[
Mγ

(
δ2csc2(φ)

)]N dφ + c1c5
∫ π+2θ

2

π−θ
2

× [
Mγ

(
δ2csc2(φ)

)]N dφ

+ c1c6
∫ π

2θ

[
Mγ

(
4δ2sin2(θ)csc2(φ)

)]N dφ.

(9)

Under η − μ fading, an exact expression for Pas can be
obtained by adjusting the integration intervals to the inter-
val [ 0, 1] in Equation 9. This is equivalent to modify the
integrands of the integral representation of the Lauricella
hypergeometric function as follows:

F(n)
D (a, b1, · · · , bn, c; x1, · · · , xn)

= 1
B(c − a, a)

∫ 1

0
ta−1(1−t)c−a−1(1−x1t)−b1· · ·(1−xnt)−bndt,

(10)

in which �{c} > �{a} and �{x} denote the real part of x.
On the other hand, for κ − μ fading, the calculation of

Pas can be obtained using a series representation of the
paremeter s. This representation is taken into account in
Mγκ ,μ(s), as shown in the next section.
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In [15], the BEPwas computed using the product of con-
stants and integral expressions. The integrals are related
to the SEP of each decision region of the θ-QAM con-
stellation, and the constants are concerned with the num-
ber of different bits between decision regions. It was
assumed that the decision errors occur very close to the
borders of these regions. In [15], these constants were
presented as follows:

c1 = 1
2πMlog2M

c2 = 4(
√
M − 2)(

√
M − 1)

c3 = 2(
√
M − 1) c4 = 5(

√
M − 2) + 6

c5 = 3(
√
M − 2) + 2 c6 = 2

√
M

.

(11)

The BEP approximation obtained so far is highly accurate
for medium and high values of SNR. In [16], corrected
constants for the BEP were presented

c4 = 4
√
M, c5 = 4(

√
M − 2), c6 = 4(

√
M − 2). (12)

Using these new constants in Equation 9, one can obtain
the BEP with MRC diversity effect.

3 MGF for η − μ and κ − μ fading
The expression presented in Equation 9 is evaluated in this
article for the fadingmodels characterized by η−μ and κ−
μ distributions. Both these fading models are extensively
treated in [22].
The MGFs of these distributions were presented in [23]

in a more compact form than their expressions presented
in [24],

Mγη−μ(s) =
(

4μ2h
(2(h − H)μ + sγ )(2(h + H)μ + sγ )

)μ

,

(13)

Mγκ−μ(s) =
(

μ(1 + κ)

μ(1 + κ) + sγ

)μ

exp
(

μ2κ(1 + κ)

μ(1 + κ) + sγ
− μκ

)
.

(14)

To evaluate the SEP in Equation 9, one needs to cal-
culate Mγ (s) for s = δ2csc2(φ), 4δ2sin2(θ)csc2(φ) and
δ2sec2

(
θ
2
)
sin2(θ)csc2(φ) and perform the integrations in

Equation 9.
The parameters h and H of Equation 13 can be writ-

ten in terms of the parameter η, respectively, as h =
(2 + η−1 + η)/4 and H = (η−1 − η)/4 for format 1 and
h = 1/(1 − η2) and H = η/(1 − η2) for format 2. In
format 1, the parameter η, 0 < η < ∞, represents the
scattered wave power ratio between in-phase and quadra-
ture components of clusters of multipath. In format 2, the
parameter η, −1 < η < 1, represents the correlation
coefficient between scattered wave in-phase and quadra-
ture components of clusters of multipath. The parameter

μ can be written as μ = 1
2V (α2)

[
1 + (H

h
)2] for η − μ

distribution and μ = 1
V (α2)

1+2κ
(1+κ)2

for κ − μ distribution.
The parameter κ represents the ratio between the total
power of the dominant components and the total power
of the scattered waves.
Since the Nakagami-m distribution can be obtained

from the distribution κ − μ for κ → 0 and μ = m, it
is observed that the MGF Mκ−μ(s) coincides exactly with
the MGF expression for the Nakagami-m fading implicit
in [15]. For this case, in which κ → 0 and μ = m, the
expression of the SEP coincides exactly with expression
13 of [15]. The κ − μ distribution also includes the Rice
distribution for μ = 1 and κ = k. Hence, the Rayleigh dis-
tribution can be obtained from the κ − μ distribution for
κ = 0 and μ = 1.
TheNakagami-m distribution can also be obtained from

η − μ distribution for μ = m and η → 0 in format 1
or η → ±1 in format 2 [22]. It can also be obtained for
μ = m/2 and η → 1 in format 1 or η → 0 in format
2. Given that the Nakagami-m is obtained, the Rayleigh
distribution can be obtained form = 1.
Using a similar procedure, the Hoyt distribution can be

obtained from the η − μ distribution for μ = 0.5. In this
case, the parameter q of Hoyt is related to η by q2 = η

in format 1 or by q2 = (1 − η)/(1 + η) in format 2. The
Rayleigh distribution can be obtained from that result for
μ = 0.5 and η = 1 in format 1 or η = 0 in format 2.

4 Symbol error probability under η − μ fading
Applying the expression of the MGF of Equation 13 in
Equation 9 and adjusting the ranges of the integrals to
Lauricella’s function integrals, it is possible to write the
SEP expression as follows:

Pas = A1F(2)
D

(
β ,Nμ,Nμ,β + 1

2
;−γ11,−γ12

)

+ A2F(3)
D

(
β ,Nμ,Nμ,

1
2
,β + 1;−γ21,−γ22, cos2

(
θ

2

))

+ A3F(2)
D

(
β ,Nμ,Nμ,β + 1

2
;−γ31,−γ32

)

+ A4F(3)
D

(
β ,Nμ,Nμ,

1
2
,β + 1;−γ41,−γ42, sin2(θ)

)

+ A5F(3)
D

(
β ,Nμ,Nμ,

1
2
,β + 1;−γ51,−γ52, cos2(θ)

)

+ A6F(2)
D

(
β ,Nμ,Nμ,β + 1

2
;−γ61,−γ62

)

+ A7F(3)
D

(
β ,Nμ,Nμ,

1
2
,β + 1;−γ71,−γ72, sin2(2θ)

)
,

(15)
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where γ1 = 2(h−H)μ

γ δ2
, γ2 = 2(h+H)μ

γ δ2
, β = 2μN + 1

2 , ξ =
(4μ2h)μN
(δ2γ )2μN

,

A1 = ξB
(

β ,
1
2

)
(c2 + c4 + c5)c1,

A2 = −ξB (β , 1)
(
c2 + c4

2
+ c5

2

)
c1 cos

(
θ

2

)4μN+1
,

A3 = ξB
(

β ,
1
2

)
c1c23csc

(
θ

2

)4μN
,

A4 = −ξB (β , 1)c1c23sin(θ) cos
(

θ

2

)4μN
,

A5 = −ξB (β , 1)
c1c5
2

cos(θ)4μN+1,

A6 = ξB
(

β ,
1
2

)
c1c6

(
csc(θ)

2

)4μN
,

A7 = ξB (β , 1)
c1c6
2

(
cos(θ)

2

)4μN
sin(2θ),

(16)

and

γ11 = γ1, γ12 = γ2,

γ21 = γ1 cos
(

θ

2

)2
, γ22 = γ2 cos

(
θ

2

)2
,

γ31 = γ1
4
csc2

(
θ

2

)
, γ32 = γ2

4
csc2

(
θ

2

)
,

γ41 = γ1 cos2
(

θ

2

)
, γ42 = γ2 cos2

(
θ

2

)
,

γ51 = γ1 cos2(θ), γ52 = γ2 cos2(θ),

γ61 = γ1
4
csc2(θ), γ62 = γ

4
csc2(θ),

γ71 = γ1 cos2(θ), γ72 = γ2 cos2(θ).

(17)

5 Symbol error probability under κ − μ fading
The expression of the SEP for κ−μ fading can be obtained
by writing the exponential function of Equation 14 in
terms of its series representation and following the same
procedure applied for η − μ fading. In this case, after
adjusting the interval of integration to [ 0, 1], it is possible
to represent each of the integrals of Pas by means of sums
of Lauricella functions:

Pas =
∞∑
n=0

Pas(n), (18)

Pas(n) = A1(n)F(1)
D (β + n,μN + n,β + 1

2
+ n;−γ11)

+ A2(n)F(2)
D (β+n,μN+n,

1
2
,β + 1 + n;−γ21,−γ22)

+ A3(n)F(1)
D (β+n,μN+n,β + 1

2
+ n;−γ31)

+ A4(n)F(2)
D (β+n,μN+n,

1
2
,β + 1 + n;−γ41,−γ42)

+ A5(n)F(2)
D (β+n,μN+n,

1
2
,β + 1 + n;−γ51,−γ52)

+ A6(n)F(1)
D (β+n,μN+n,β + 1

2
+ n;−γ61)

+ A7(n)F(2)
D (β+n,μN+n,

1
2
,β + 1 + n;−γ71,−γ72),

(19)

where β = μN + 1
2 , γ1 = μ(1+κ)

γ δ2
, γ2 = μ(1+κ)

4γ δ2
, ξ1 =

e−κμNγ
μN
1 , ξ2 = e−κμNγ

μN
2 ,

A1(n) = ξ1(κμNγ1)n

B
(
β + n, 12

)
n!

(c2 + c4 + c5)c1,

A2(n) = −ξ1(κμNγ1)n

B (β + n, 1) n!
(c2 + c4

2
+ c5

2
)c1 cos

(
θ

2

)2(β+n)

,

A3(n) = ξ2(κμNγ2)n

B
(
β + n, 12

)
n!
c1c23csc

(
θ

2

)2(κμ+n)

,

A4(n) = − ξ1(κμNγ1)n

B (β + n, 1) n!
c1c23sin(θ) cos(θ)2n,

A5(n) = − ξ1(κμNγ1)n

B (β + n, 1) n!
c1c5
2

cos(θ)2(β+ 1
2+n),

A6(n) = ξ2(κμNγ2)n

B
(
β + n, 12

)
n!
c1c6csc(θ)2(μN+n),

A7(n) = − ξ1(κμNγ1)n

B (β + n, 1) n!
c1c6
2

sin(2θ) cos(θ)4μN ,

(20)

and

γ11 = γ1, γ21 = γ1 cos2
(

θ

2

)
, γ22 = − cos2

(
θ

2

)
,

γ31 = γ2csc2
(

θ

2

)
, γ41 = γ1 cos2(θ), γ42 = −sin2(θ),

γ51 = γ1 cos2(θ), γ52 = − cos2(θ), γ61 = γ2csc2(θ),

γ71 = γ1 cos2(θ), γ72 = −sin2(2θ).
(21)

6 Results
Firstly, two important aspects of Equations 15 and 19
are highlighted. Despite the expression of SEP in terms
of Equations 15 and 19 seems at a first glance more
complex than Expression 9, it is not true since the Lau-
ricella functions can be easily calculated by the inte-
gral representation in the interval [ 0, 1]. For real num-
bers, Lauricella functions, Fr

D(a, b1, · · · , br , c, x1, · · · , xr),
can be written in terms of a sum of a finite number
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of terms using the quadrature Gauss-Legendre, for
instance. In this case,

FD(a, b1, · · · , br ; c; x1, · · · , xr) = �(c)
2�(c − a)�(a)

×
Nt∑
l=1

wlf (0.5ξl + 0.5),
(22)

in which

wl = 2

(1 − ξ2l )
[
P′
Nt

(ξl)
]2 , (23)

ξl, for l = 1, 2, · · · ,Nt , are the roots of the Legendre
polynomials PNt of order Nt , and

f (x) = xa−1(1 − x)c−a−1

(1 − xx1)b1(1 − xx2)b2 · · · (1 − xxr)br
. (24)

The second aspect regards Equation 19. Although it is
written in terms of an infinite series, its convergence is
fast. In the present work, it was observed that n ranging
from 0 to 10 suffices. Indeed, for the first term, one has

A1(n)

∫ 1

0
tβ−1(1 − t)−

1
2 (1 + tγ11)−μN

(
t

1 + tγ11

)n
dt → 0

(25)

since(
t

1 + tγ11

)
< 1 (26)

and A1(n) is directly proportional to �(2(β+n))

22nB(β+n,1)n!�2(β+n)
.

6.1 SEP as a function of θ
Figure 1 presents SEP curves as a function of the angle
θ for the η − μ model. Due to the symmetry of the geo-
metric regions of the θ-QAM constellation, it suffices to
take the angle θ between 45◦ and 90◦. The red curves
were obtained considering the diversity order of the MRC
receiver equal to 2, while the blue curves were obtained
for diversity order equal to 3. In both cases the SNR was
maintained equal to 10 dB. The assignment of parameter
values η and μ in Figure 1 provided the following types of
fading: Nakagami-m for η = 0 and μ = 1.5, Rayleigh for
η = 0 and μ = 0.5, one-sided Gaussian for η = 0 and
μ = 0.25, and Hoyt for η = 0.65 and μ = 0.5.
It is observed in Figure 1 that the spatial diversity of the

MRC has a stronger influence in the SEP when compared
to that of the optimum angle θ , for which the curves attain
a minimum. This is an important aspect since it is not
possible to perform an optimum Gray mapping for every
value of θ . All curves attain their minimum value for θ

close to 60◦, and as one can see, there is a small difference
in the SEP values when θ ranges from 45◦ to 60◦ compared
to the difference obtained increasing the diversity order by
one.
In Figure 2, the curves were obtained from the model

κ − μ. Similarly to Figure 1, red curves were plotted for
N = 2 and blue curves for N = 3. The SNR was set at 10
dB, and the choice of the parameters κ and μ provided the
following types of fading: Nakagami-m for κ = 0 and μ =
3.0, Rayleigh for κ = 0 and μ = 1.0, one-sided Gaussian
for κ = 0 and μ = 0.5, and Rice for κ = 0.8 and μ = 1.0.
The parameters used in the curves of Figure 2, except

for Rice fading, provide the same curves presented in
Figure 1. These parameters were properly chosen to show
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Figure 1 SEP curves for θ -QAMwithM = 16 under η − μ fading.



Queiroz et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:104 Page 7 of 10
http://asp.eurasipjournals.com/content/2013/1/104

0

 0.05

 0.1

 0.15

 0.2

 0.25

 45  50  55  60  65  70  75  80  85  90

S
ym

bo
l e

rr
or

 p
ro

ba
bi

lit
y

Angle θ

κ=0.00, μ=3.00, N=2
κ=0.00, μ=1.00, N=2
κ=0.00, μ=0.50, N=2
κ=0.80, μ=1.00, N=2
κ=0.00, μ=3.00, N=3
κ=0.00, μ=1.00, N=3
κ=0.00, μ=0.50, N=3
κ=0.80, μ=1.00, N=3

Figure 2 SEP curves for θ -QAM forM= 16 under κ − μ fading.

that both the results of Equations 15 and 19 can be
used in the calculation of the SEP under the main cate-
gories of fading. The difference is that Hoyt (Nakagami-q)
fading can only be modeled by the η − μ distribu-
tion, and Rice fading can be modeled by the κ − μ

distribution.

6.2 SEP as a function of SNR for a fixed θ

The curves in Figure 3 show the behavior of the SEP as a
function of SNR, under η − μ fading, for the parameter
values used in Section 6.1. The curves were obtained for
the order of the constellationM = 64 and diversity orders
N = 1 and N = 3.

As can be seen in Figure 3, regarding Nakagami fading
obtained from the η−μmodel with η = 0 andμ = 1.5, the
increase of the diversity order from N = 1 to N = 3 pro-
vides a gain in SNR of about 7.5 dB for a SEP fixed at 10−2.
For all types of fading under consideration (Nakagami for
η = 0 and μ = 1.5, Rayleigh for η = 0 and μ = 0.5,
one-sided Gaussian for η = 0 and μ = 0.25, and Hoyt for
η = 0.65 and μ = 0.5), one can note that a diversity order
N = 3 does not assure the SEP lower than 10−3 for SNR<

20 dB. The curves in Figure 4 present the behavior of the
SEP as a function of SNR under κ − μ fading for the con-
stellation order M = 64 and diversity orders N = 1 and
N = 3.
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Figure 3 SEP curves for θ -QAMwithM= 64 under η − μ fading.
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Figure 4 SEP curves for θ -QAMwithM= 64 under κ − μ fading and θ = 62◦.

The equivalence of η − μ and κ − μ models, for appro-
priated choices of the corresponding parameters, can be
observed in Figures 3 and 4, for which the SEP curves for
Nakagami, Rayleigh, and one-sided Gaussian fading are
exactly the same.
In Figure 4, the results for Rice fading are obtained using

κ = 0.8 and μ = 1.0. For all curves, a diversity order N
up to 3 does not guarantee a SEP lower than 10−3 for SNR
< 20 dB.
The curves in Figure 5 are obtained for η − μ fading,

constellation order M = 64, and diversity orders N = 1
and N = 3. The angle θ was considered 62◦ near the

angle 60◦ of the triangular QAM constellation. Consider-
ing only the dashed curves for η = 0.1, one can observe
that the SEP increases when μ decreases from 2.5 to 1.5.
This is expected because the corresponding fading inten-
sity also increases. A similar behavior occurs for η = 0.8.
For the parameters ranging from (η = 0.1, μ = 2.5) to
(η = 0.80, μ = 1.5) and N = 3, about 3 dB of SNR is
necessary to maintain the SEP at 10−4.
The curves in Figure 6 were obtained for κ − μ fading,

modulation order M = 256 and diversity order N = 3
and N = 4. The angle θ was maintained at 62◦. As one
can note, even for diversity order of N = 4, the curves
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Figure 5 SEP curves for θ -QAMwithM = 64 under η − μ fading and θ = 62◦.
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Figure 6 SEP curves for θ -QAMwithM= 256 under κ − μ fading.

of SEP remain above 10−2 for values of SNR lower than
20 dB. This occurs because the higher-order θ-QAM con-
stellations are more susceptible to fading effects. For the
parameters ranging from (κ = 2.50,μ = 2.50) to (κ =
0.60,μ = 1.50) andN = 4, about 1.25 dBmust be invested
in terms of the SNR to keep the SEP at 10−2.

7 Conclusions
This paper presents new and exact expressions for the
SEP of θ-QAMmodulation considering the MRC receiver
under η − μ and κ − μ fading, modeled by η − μ and
κ − μ distributions. An important aspect of those distri-
butions is the fact that they can provide a unified analysis
of the influence of different types of fading in the per-
formance of the communications system, such as Hoyt,
Rice, Nakagami-m, Rayleigh, and one-sided Gaussian. The
SEP expressions, obtained from the definite integrals of
the MGF function of the SNR at the input of the MRC
receiver, are written in terms of Lauricella functions.
Expressions obtained in the paper show that the spatial
diversity introduced by the MRC receiver has a strong
influence for reducing the SEP, even for high-order con-
stellations. As an example, considering 256-QAM con-
stellation and a SEP of 10−2, savings of about 1.7 dB can
be obtained when the diversity order is inscreased from
N = 3 to N = 4. The SEP expressions can be use-
ful to design and evaluate the performance of wireless
communication systems, since they alleviate the need for
Monte Carlo simulations. Future works include the effects
of fading correlation and the impact of channel estimation
errors on the performance of wireless systems.
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