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Abstract

Recent publications have explored coherent radar detection in a compound Gaussian clutter environment with
inverse gamma texture, since the latter clutter model has been validated for X-band high-resolution maritime
surveillance radar clutter returns. This paper explores the development of coherent constant false alarm rate (CFAR)
detectors for this scenario. In the first instance, a detector is constructed with explicit knowledge of the clutter
parameters. It is then shown that the probability of false alarm/threshold relationship does not vary with the clutter
power. To achieve a CFAR detector, clutter parameter approximations are then introduced, and the cost associated
with this is then analysed.
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1 Introduction
The compound Gaussian clutter model has provided
radar researchers and engineers with a mathematically
tractable model for correlated non-Gaussian radar returns
[1,2]. This clutter model has been validated by consid-
erations of observed real radar returns [3]. Essentially,
using the theory of spherically invariant random processes
(SIRPs), the clutter is modelled as locally Gaussian with a
random power level. From the random variable perspec-
tive, the clutter vector is a product of a fast fluctuating
component (the speckle) and a slowly modulating com-
ponent (the texture). The speckle is taken as a Gaussian
process, while the texture can be selected to generate a
specific marginal intensity distribution [4].
Coherent multilook radar detection in heavy-tailed

compound Gaussian clutter is a topic of much interest
in current signal processing research [2,5-11]. Specifi-
cally, with the validation of compound Gaussian clutter
with inverse gamma texture as a model for X-band high-
resolution maritime surveillance clutter returns, many
publications have been examining appropriate detection
schemes. Validation of the resultant Pareto clutter inten-
sity model for X-band radar returns has been included
in [12-14]. The analysis of relevant detection schemes
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can be found in [2,15-18]. Much work has been devoted
to examining the Neyman-Pearson optimal detector [19]
and its suboptimal variants, such as the generalised like-
lihood ratio test (GLRT) detector [2,18]. In addition, the
Gaussian optimal detector or whitening matched filter
(WMF) has been shown to be a useful suboptimal detector
for the compound Gaussian clutter model of interest [18].
This is mainly for the case where the clutter is approx-
imately Gaussian distributed, which tended to occur for
the vertically polarised case.
Constant false alarm rate (CFAR) detectors are impor-

tant because they eliminate the sensitivity of the prob-
ability of false alarm (Pfa) and threshold relationship to
variations in the clutter power level [20,21]. Coherent
multilook detectors are said to have the CFAR property if
their Pfa/threshold relationship is independent of clutter
parameters. Recently, a coherent CFAR detector has been
examined in [18]. In there, it is shown that a scaled ver-
sion of the WMF can result in CFAR control with respect
to the underlying Pareto clutter parameters. However, this
detector was found to have limited application due to the
fact that it required a significantly large number of looks to
avoid detector saturation [18]. Consequently, it became of
interest to investigate whether other such CFAR detectors
could be produced.
This paper introduces a new coherent detector for tar-

get detection in the clutter model of interest, which has
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explicit dependence on the clutter parameters. It will
be shown that this detector’s probability of false alarm
and threshold relationship does not vary with the clutter
power level. To achieve a CFAR detector, approximations
are made to these clutter parameters, together with a mis-
matched threshold. The cost of this is then analysed, and
conditions are established under which the resultant false
alarm probability is not increased to an undesirable level
in practice.
Throughout, detection in compound Gaussian clut-

ter with inverse gamma texture will be also referred to
as Pareto coherent detection for brevity. The paper is
arranged as follows. Section 2 sets the framework for the
analysis to follow. A general detector is then introduced
in Section 3, while a CFAR suboptimal version is pro-
posed in Section 4. The latter includes a full analysis of
the performance of this suboptimal CFAR from a mathe-
matical perspective. Section 5 examines the performance
of these detectors through detector performance curves.
These will be based upon simulated clutter, generated
with Pareto parameters estimated from real data sets.
A simple Gaussian target model will also be used in all
performance analysis, as in [2,18]. Further assumptions
employed will be introduced as appropriate.

2 Detection framework
The following framework has been taken from [18], which
has been based upon that in [9]. The radar return is
z, a complex N × 1 vector, and the coherent multilook
detection problem is stated in the form

H0 : zzz = ccc against H1 : zzz = Rppp + ccc, (1)

where all complex vectors are N × 1. The statistical
hypothesis H0 is that the return is pure clutter, while H1
is the alternative hypothesis that the return is a mixture
of signal and clutter. Vector ccc is the pure clutter return,
and ppp is the Doppler steering vector, whose components
are given by ppp(j) = ej2π ifD , for j ∈ {1, 2, . . . ,N}, where
fD is the target normalised Doppler frequency (product of
target Doppler frequency and radar pulse repetition inter-
val), with −0.5 ≤ fD ≤ 0.5. It is assumed that this is
fully known. The complex random variable R is the target
model, and |R| is its amplitude.
The Neyman-Pearson Lemma [19] states that the form

of the best test of (1) is a likelihood ratio under each of the
respective hypotheses, compared to a threshold τ . Hence,
if f0(zzz) is the density under H0 and f1(zzz) is the density
under H1, the statistical test that maximises the proba-
bility of detection for a fixed probability of false alarm is
given by

L(zzz) = f1(zzz)
f0(zzz)

H1
≷
H0

τ , (2)

where L(zzz) is the likelihood function. The notation

L(zzz)
H1
≷
H0

τ used in (2) means that we reject H0 if and only if

L(zzz) > τ .
The compound Gaussian clutter is modelled as a sta-

tionary stochastic process ccc = SGGG, whereGGG is a zero-mean
Gaussian process with covariance matrix �. Throughout,
as in [2,18], it will be assumed that this is completely
known. Further work in this area will attempt to remove
this restriction. It will also be assumed that its inverse is
semi-definite positive so that a whitening approach can be
applied to the detection problem. This is a valid exercise
because a SIRP is unaffected by linear transformations [4].
Hence, we suppose that a Cholesky factorisation exists for
�−1 so that there exists a matrix A such that �−1 = AHA.
The random variable S in the definition of the com-

pound Gaussian model is non-negative and univariate
and determines the form of the resultant marginal inten-
sity distribution of the clutter [4]. For the case of inverse
gamma texture, S has density given by

fS(s) = 2βα

�(α)
s−2α−1e−βs−2

, (3)

where α and β are non-negative texture distributional
parameters. Using the theory of SIRPs, it can be shown
that the corresponding clutter intensity model is Pareto,
with shape parameter α and scale parameter β [16].
We now specify the whitened version of the statistical

test (1). By applying the Cholesky factor matrix A to the
original statistical test and defining rrr = Azzz, nnn = Accc and
uuu = Appp, we arrive at the statistically equivalent form

H0 : rrr = nnn against H1 : rrr = Ruuu + nnn. (4)

The transformed clutter process is nnn = SAGGG, and AGGG
is a multidimensional complex Gaussian process, with
zero mean but covariance matrix, the N × N identity
matrix [11]. The whitening approach used here is invalu-
able in reducing the form of the likelihood densities, which
simplifies the resultant detector considerably.
Using the formulation above and by applying SIRP the-

ory to construct appropriate densities, the GLRT is shown
in [2,16,18] to take the form

L(rrr) = W (rrr)
‖uuu‖2 (‖rrr‖2 + β

) H1
≷
H0

τ , (5)

where

W (rrr) = |uuuHrrr|2 (6)

is the WMF. Detector (5) is known as the GLRT linear
threshold detector (LTD) in [2], which has been shown to
perform very well in spiky clutter. Throughout, detector
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(5) will be referred to as the LTD for brevity. Here, it is
assumed that the clutter scale parameter β is completely
known. Both these detectors are analysed in [18], where
closed form expressions between the Pfa and threshold for
each are derived. It is also shown explicitly that both (5)
and (6) are not coherent CFAR processes.
However, by scaling the WMF, it is shown in [18] that

the detector

T1(rrr) = W (rrr)
‖uuu‖2‖rrr‖2

H1
≷
H0

τ1 (7)

operating in Pareto clutter has threshold τ1 given by

τ1 = Pfa−1/N − 1. (8)

This is often referred to as the normalisedmatched filter
(NMF) and has been investigated in [3,6]. Its relation-
ship to the optimal Neyman-Pearson detector has been
explored in [22]. Consequently, (7) is a coherent CFAR
process. Analysis of this detector in [18] showed that
it had a tendency to saturate if the number of looks is
not sufficiently large. As an example, for a false alarm
probability of 10−6, one would require N >> 30 looks.
The motivation for the work presented here is to exam-
ine whether other coherent CFAR processes exist in the
context of interest. In particular, it will be of interest to
examine, as in the approach of [18], whether transforma-
tions of the NMF can yield new detectors with improved
performance.

3 General detector
This section assumes that the clutter parameters α and
β are known. In the next section, a CFAR detector will
be proposed, based upon approximating these. The main
purpose of this section is to propose a new detector, whose
Pfa/threshold relationship does not vary with the clutter
power. This will then provide one with a threshold rela-
tionship that can be used with the new detector, when
approximations of clutter parameters are applied.
The literature contains many examples of CFAR detec-

tors produced from ones not possessing the CFAR prop-
erty [8,23,24]. As an example, the LTD detector (5) has
been constructed with the assumption that β is known.
To produce a suboptimal version, with the CFAR prop-
erty, a maximum likelihood estimate of β could be applied
to produce a detector with no dependence on β . If the
Pfa/threshold relationship also contains clutter parameter
dependence, approximations can be introduced to min-
imise the effects of clutter power fluctuations. Alterna-
tively, a mismatched threshold can be applied to eliminate
clutter parameter dependence.
The development of the following detector resulted

from an analysis of the LTD (5) and NMF (7) and its

dependency on the underlying clutter parameters. Sup-
pose κ > 0 is a known fixed constant, which is inde-
pendent of both Pareto clutter parameters. Consider the
coherent detector given by

T2(rrr) = W (rrr) − β
(
κ1/α − 1

) ‖uuu‖2
‖uuu‖2‖rrr‖2 , (9)

with detection threshold τ2. The following result shows
that the Pfa and threshold do not vary with the clutter
parameters:
Lemma 3.1. The detector (9) has false alarm probability
given by

Pfa = (1 + τ2)
−N /κ . (10)

Observe that the choice of κ = 1 results in the CFAR
detector (7), and so is a special case of (9).
The proof of Lemma 3.1 is now outlined and follows

closely the proof of analogous results in [18]. Throughout,
IP denotes probability, while IE is the statistical mean with
respect to IP. By conditioning on S and then ‖rrr‖2|{S = s},
it can be shown that

Pfa =
∫ ∞

0

∫ ∞

0
fS(s)f‖rrr‖2|{S=s}×

IP
(
W (rrr) >

(
β

(
κ1/α + τ t

) ‖uuu‖2
∣∣∣{S = s},H0

))
dtds,
(11)

where fS is the density (3) and f‖rrr‖2|{S=s} is the density of
‖rrr‖2 conditioned on the event {S = s}. Using the fact that
under H0, ‖rrr‖2|{S = s} has a gamma distribution with
parameters N and s−2 while W (rrr)|{S = s} has an expo-
nential distribution with parameter s−2‖uuu‖−2 (see [18]), it
can be shown that the integrals in (11) simplify to

Pfa = 2βα

�(α)�(N)

∫ ∞

0
s−2α−2N−1e−s−2βκ1/α

∫ ∞

0
tN−1e−ts−2(1+τ)dtds

= 2βα

�(α)
(1 + τ)−N

∫ ∞

0
s−2α−1e−βκ1/αs−2

ds

= βα

�(α)
(1 + τ)−N

∫ ∞

0
xα−1e−βκ1/αxdx

= (1 + τ)−N/κ , (12)

where the definition of the gamma function has been
used to simplify the integral with respect to t, and the
transformation x = s−2 has then been applied, together
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with a second application of the definition of the gamma
function. This completes the proof.
The factor κ can be used to minimise the effects of

detector saturation, as observed in the practical imple-
mentation of the CFAR detector (7). For a small false
alarm probability, the threshold set by (8) can be quite
large if the number of looks is smaller than around 30 [18].
Such a number of looks will only be achieved if the radar’s
scan rate is slow. Hence, the factor κ should be able to
mitigate the effects of having only a small number of looks.
It is now important to determine suitable choices for κ .

Since the threshold is given by

τ2 = (κPfa)−1/N − 1, (13)

it is necessary to ensure that this threshold is non-
negative. Hence, in view of (13), we must constrain
(κPfa)1/N < 1. Consequently, suppose we select a κ

such that κPfa = 10n, for some n. Then, it is immedi-
ate that we must choose n < 0 to ensure the threshold is
non-negative.
In addition, since the detector (7) has a tendency to sat-

urate because of large thresholds, we can, without loss of
generality, aim to choose a κ that results in τ2 < 1. This
requires (κPfa)−1/N < 2, which can be shown to require
n > −N log(2)

log(10) ≈ −0.3010N .
Again, without loss of generality, constrain κ > 1. This

assumption will be useful in the analysis to follow. If we
assume that the false alarm probability is of the form Pfa =
10−m, for some m > 0, then κ = 10m+n > 1 provided
n > −m. Hence, we can choose any n such that

max{−m,−0.3010N} < n < 0. (14)

Further insight into the selection of an appropriate n
can be gained by examining the limiting behaviour of the
detection probability of (9) as n → 0. Note that, with the
choice of κ above, we can write the detection threshold
explicitly as a function of n as τ2(n) = 10−n/N − 1, which
converges to zero as n → 0. Notice also that κ = κ(n)

converges to 10m = Pfa−1 as n → 0. Hence, writing the
probability of detection (Pd) as a function of n, it is clear
with an application of (9) that

Pd(n) = IP
(
W (rrr) > β

(
κ(n)1/α − 1

)
‖uuu‖2

+ τ2(n)‖uuu‖2‖rrr‖2
∣∣∣H1

)
.

(15)

In order to examine the limiting behaviour of (15) as
n → 0, we require an application of functional analy-
sis limit theorems to justify taking the limit inside the
probability in (15). The relevant result is Lebesgue’s dom-
inated convergence theorem [25,26]. Here, we apply it
with n → 0, instead of an infinite limit; it is not difficult
to recast the theorem for the case under consideration.
Define a sequence of indicator random variables with

Xn(rrr= II
[
W (rrr) > β

(
κ(n)1/α − 1

) ‖uuu‖2 + τ2(n)‖uuu‖2‖rrr‖2],
which takes the value of 1 if and only if the inequality
specified in its definition is satisfied and is zero otherwise.
Then, Pd(n) = IE (Xn(rrr)), where the expectation is under-
stood to be with respect to the distribution of rrr under H1.
Then, it follows, using the limits specified above, together
with the fact that convergence of sets is equivalent to
pointwise convergence of indicator set functions [26],
limn→0 Xn(rrr) = II

[
W (rrr) > β

(
Pfa−1/α − 1

) ‖uuu‖2], which
is an integrable random variable. Also, Xn(rrr) ≤ 1 for all rrr,
and so |Xn(rrr)| is bounded by an integrable random vari-
able. Hence, Lebesgue’s dominated convergence theorem
justifies taking the limit inside the expectation in (15),
and so

lim
n→0

Pd(n) = IP
[
W (rrr) > ‖uuu‖2β [

Pfa−1/α − 1
]∣∣H1

]
.

(16)

The limit in (16) is the detection probability of theWMF
operating in Pareto clutter [18]. This result demonstrates
that it is important to not choose n too close to zero; oth-
erwise, the performance of (9) may be similar to theWMF.
In the case of horizontally polarised returns, the WMF
has been shown to experience a significant detection loss
because the clutter is very heavy tailed [16]. Hence, in
such cases, it is prudent to select an n further away from
zero. For a scenario with vertically polarised returns, this
restriction is less important.
As a simple example, suppose we are analysing detection

performance with N = 10 looks and a false alarm prob-
ability of 10−6. Then, max{−6,−3.010} = −3.010, which
means we need to select an n > −3.010. Hence, for the
case of detection in vertical polarised clutter, choose for
simplicity n = −1. Then, κ = 105 and τ2 = 100.1 − 1 ≈
0.2589. If the number of looks is reduced toN = 3 and the
false alarm probability increased to 10−4, then we need
to select an n such that −0.903 < n < 0. For example,
in the case of horizontally polarised clutter, we can select
n = −0.5 so that κ = 103.5 and τ2 = 100.1667−1 ≈ 0.4678.

4 Coherent CFAR detector
In a practical implementation of the detector (9), it is clear
that estimates of the Pareto clutter parameters will need to
be used. The most frequently used approach is to apply a
maximum likelihood estimation (MLE) process to approx-
imate these unknown parameters. Assuming a moderate
to slow scan rate, theMLE should have a sufficient number
of data points available to produce clutter estimates. Max-
imum likelihood estimation for the clutter modelled as a
compound Gaussian process with inverse gamma texture
has been analysed in [12].
Recently, it has been shown how a property of Pareto

order statistics can be used, together with a least squares
approach, to estimate the texture clutter parameters [27].
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This new approach has been shown to improve not only
on the accuracy of the MLE procedure, but additionally
results in a reduction of computation time. Further, the
method works well with sample sizes significantly smaller
than those required for accurate estimation with an MLE
procedure [27].
An alternative is that it is possible to guess these param-

eters using the radar’s polarisation and azimuth angle
as a guide to possible Pareto clutter parameters. Such a
crude practice can be justified for the Pareto scale param-
eter based upon the results in [15], where it is demon-
strated that various detectors for the clutter model of
interest do not seem to be overly sensitive to this param-
eter. Hence, bounds can be used to approximate it. For
example, it has been found that based upon the Defence
Science and Technology Organisation (DSTO) X-band
high-resolution radar clutter sets [14], very spiky hori-
zontally polarised returns, in the upwind direction, will
generally have very small shape parameters (3 < α < 5),
with scale parameter β < 0.1. For vertically polarised
returns, also in the upwind direction, the shape parame-
ter tends to be large (α > 12), while the scale parameter
0.1 < β < 1. Based upon these bounds, we can approx-
imate β quite easily. However, a statistical estimation
procedure is still required for approximation of the texture
shape parameter.
In this work, the focus will not be on the estimation

of these parameters but on the cost of approximating
them. For example, we will examine the performance of
the detector (9) when the Pareto parameters are esti-
mated with a percentage error. This will also be done
using Pareto parameters fitted to a number of different
X-band radar clutter data sets. Specifically, clutter param-
eters estimated from the DSTO Ingara radar data [28-30]
as well as the Canadian IPIX radar data [12] will be used.
Based upon the detector (9), consider the alternative

detector given by

T3(rrr) =
W (rrr) − β̂

(
κ1/α̂ − 1

)
‖uuu‖2

‖uuu‖2‖rrr‖2 , (17)

where α̂ and β̂ are estimates of the respective Pareto clut-
ter parameters. Then, using an analysis as in the derivation
resulting in (12), it can be shown that the probability of
false alarm for this detector is given by the following:
Lemma 4.1. For the detector (17), operating in a Pareto
clutter environment,

P̂fa =
(

β

β + β̂
(
κ1/α̂ − 1

))α

(1 + τ)−N . (18)

The proof is similar to that of the result (10) and so is
omitted for brevity.

Due to the fact that estimated clutter parameters are
used in the detector (17), the Pfa given by (18) is an esti-
mate. To produce a CFAR detector, a mismatched thresh-
old is used: suppose the threshold is actually set with (13).
Further, suppose θ ∈ (0, 1) is the desired probability of
false alarm of the detection scheme. Then, applying the
threshold τ = (κθ)−1/N − 1 to (18), it is immediate that

̂Pfaactual =
(

β

β + β̂
(
κ1/α̂ − 1

))α

κθ , (19)

where ̂Pfaactual is the resultant estimated false alarm prob-
ability due to using a mismatched threshold. The hope is
that if the clutter parameter estimates are fairly accurate,
there will neither be an increase in the desired false alarm
probability nor a significant detection loss.
Observe that when κ = 1, the actual false alarm prob-

ability and θ will match exactly due to the detector (7).
An analysis of (19) is now undertaken. To begin, the ques-
tions of estimator unbiasedness and standard deviation
are addressed. It is immediate that if α̂ and β̂ are unbiased
estimators of α and β , respectively, then it is unlikely that
(19) is also an unbiased estimator of Pfa (also since κ > 1).
Table 1 shows Monte Carlo estimates for the mean and
standard deviation of (19), for a selection of clutter param-
eter sets and Pfa. The choice for each κ has been on the
basis of the result (14) for examples to be considered in
the numerical examples to follow in the next section. Each
mean and standard deviation estimate has been generated
using a Monte Carlo sample size of 105, together with the
Pareto parameter estimation algorithm developed in [27].
The latter uses a property of the Pareto order statistics,
together with a linear regression algorithm. Each estimate
of α and β is produced using 1,000 sample points, which is
explained in [27] to be sufficient. What is immediate from
Table 1 is that the estimator (19) has a bias factor; however,
the mean is of the correct order. The standard deviation
estimates show that the estimator is efficient.
A mathematical analysis is now included to explore

properties of (19) further. It is informative to consider
the situation where the actual probability of false alarm is
smaller than θ . Performing some analysis of (19), this will
occur when β̂κ1/α̂ −βκ1/α > β̂ −β . Hence, define a func-
tion h(t) = β̂t1/α̂ − βt1/α , for t ≥ 1. Then, h(1) = β̂ − β ,
and by taking derivatives,

h′(t) = t−1
[

β̂

α̂
t1/α̂ − β

α
t1/α

]
. (20)

Observe that the derivative in (20) is positive when

t >

(
α̂β

αβ̂

) αα̂
α−α̂

,
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Table 1 Mean and standard deviation of ̂Pfa

α β κ θ Mean Standard deviation

15.8983 0.1812 104.99 10−5 1.2297 × 10−5 6.6180 × 10−6

15.8983 0.1812 106.5 10−7 1.3865 × 10−7 1.0199 × 10−7

3.4653 0.0029 103 10−4 1.0907 × 10−4 3.2809 × 10−5

3.4653 0.0029 105 10−6 1.2232 × 10−6 6.4658 × 10−7

1.5582 4.3286 × 10−4 102 10−5 1.0458 × 10−5 1.9906 × 10−6

1.5582 4.3286 × 10−4 102 10−6 1.0444 × 10−6 1.9879 × 10−7

1.8587 0.001 104.5 10−5 1.1831 × 10−5 5.5198 × 10−6

1.8587 0.001 103 10−4 1.0899 × 10−4 3.2448 × 10−5

provided α > α̂. Thus, it is required that α̂β

αβ̂
≤ 1. Hence,

assuming these conditions hold, it follows that h is an
increasing function for t ≥ 1, and so h(t) ≥ h(1) for all
t ≥ 1, and the estimated actual probability of false alarm
will be smaller than θ .
An alternative condition can be established by

introducing the function

f (t) = t[
1 + ω

(
t1/α̂ − 1

)]α , (21)

where ω = β̂/β . Note that f (1) = 1, and so in view
of (19), the estimated actual probability of false alarm
will be smaller than θ when f is a decreasing function.
By applying the quotient differentiation rule, it can be
shown that

f ′(t) = 1 − ω + (ω − δ) t1/α̂[
1 + ω

(
t1/α̂ − 1

)]α+1 , (22)

where δ = αβ̂
α̂β

. Note that the denominator in (22) is always
positive because t ≥ 1. In the case where δ ≥ 1, the
derivative is bounded by

f ′(t) ≤ (ω − 1)
(
t1/α̂ − 1

)[
1 + ω

(
t1/α̂ − 1

)]α+1 < 0, (23)

when ω < 1, since t > 1.
To summarise these results, the estimated resultant

probability of false alarm (19) is smaller than the desired
probability of false alarm θ provided the condition

α

α̂

β̂

β
≥ 1 (24)

holds, together with one of the requirements

(i) α̂ < α (25)

(ii) β̂ < β . (26)

In a practical implementation of the detector (17), using
the threshold based upon (13), the hope is that if these
condition are valid, we can achieve approximate CFAR
control, with at worst a reduction in the desired false
alarm rate. Observe that condition (26) justifies the usage
of a lower bound on the Pareto scale parameter.
Note that in the case where condition (25) holds, then

if β̂ > β , it is immediate that (24) is valid. Hence, under-
estimating the shape parameter is necessary in practice
in order to ensure that the false alarm probability does
not increase. This means it will be required to utilise
lower bounds on data, coupled with an MLE procedure.
The practical implementation of such a scheme, relative
to the DSTO Ingara data, will be explored in subsequent
research.
As some examples when these conditions are met in

practice, suppose we underestimate the Pareto shape
parameter with a 10% error, and the Pareto scale parame-
ter is overestimated by 10%. By this, it is understood that
α̂ = 0.9α and β̂ = 1.1β . Then, the conditions (24) and
(25) are both met. If both parameters are underestimated
by the same percentage error, then (24) will hold, as well
as both (25) and (26). If the shape parameter is underesti-
mated with an error of 10%, while the scale parameter is
underestimated with a 5% error, then all three conditions
will also hold.

5 Performance analysis of detectors
Performance assessment of the two detectors (9) and
(17) is now undertaken by examining curves plotting the
probability of detection (Pd) as a function of the signal-to-
clutter ratio (SCR), for a fixed probability of false alarm.
As a comparison, the performance of the LTD (5) and
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WMF (6) are included. Additionally, the NMF (7) is also
analysed since it is a special case of the detector (9),
which has no requirement for Pareto clutter parameter
estimation. In all cases, the detection probability has been
estimated using Monte Carlo simulation, with 106 runs.
The clutter is assumed to have an exponential correlation
structure, also known as a Toeplitz form, as in [8] and
also [18]. This means we assume �(i, j) = ρ|i−j|, where
0 < ρ < 1 and the indices i and j range from 1 to the
maximum number of looks. In addition, the normalised
Doppler frequency has been fixed at 0.5 throughout. A
simple Gaussian target model has also been employed in
all examples, as in [2,18], which is also known colloqui-
ally in the signal processing literature as a Swerling I target
model [2].
As remarked previously, clutter parameters will be

based upon estimates obtained using MLE on real data
sets. The Australian DSTO Ingara data set is a series
of pure clutter returns obtained using the Ingara radar
during a trial in the Southern Ocean in 2004. The
Ingara radar is an airborne X-band, fully polarimet-
ric radar, which operated in a circular spotlight mode.
Further details concerning this radar can be found in
[30], while a thorough analysis of the data is reported
in [28]. During the data gathering exercise, the radar
surveyed the same ocean patch at different azimuth
angles, operating at 10.1 GHz with a 20-μs compressed
pulse width, with a range resolution of 0.75 m. The fit-
ting of a Pareto intensity model to the Ingara data is
described in [14].
The IPIX radar is an experimental X-band search radar

belonging to Canada’s McMaster University [31,32], and
a clutter collection exercise was undertaken in 1998 as
reported in [12]. As detailed in the latter, this radar is
capable of dual polarised operations and used a dual fre-
quency transmission range of between 8.9 and 9.4 GHz,
with a pulse width of 0.06 μs. The range resolution is
reported to have been 9m. The clutter trial was conducted
at a fixed location observing Lake Ontario from a height
of 20m so that the radar was stationary. Clutter parameter
estimates are reported in [12], which provide a completely
different range of Pareto clutter parameters than those
obtained from the Ingara radar.
In the analysis to follow, four data sets will be used

to present the performance of the detectors under a
number of different scenarios. With reference to radar
polarisation, throughout, HH will represent horizontal
transmit and receive, and VV will be the vertical trans-
mit and receive case. No examples of cross polarisation
are included due to the fact that clutter parameter esti-
mates resulting from this polarisation tend to fall between
those obtained from the HH and VV polarisations [18].
Each example is listed by radar, polarisation and clutter
parameter estimates. The definition of the inverse gamma

distribution in [12] replaces β with its reciprocal in (3),
which has been taken into account in the IPIX-based
examples to follow.

5.1 Ingara, VV, α= 15.8983, β= 0.1812
The first example is based upon a typical VV-polarised
clutter set obtained from the Ingara data trial. For this
particular data set, the Pareto clutter parameters have
been estimated to be α = 15.8983 and β = 0.1812.
Additionally, this clutter set was obtained at an azimuth
angle of 255◦ (upwind direction is approximately 227◦).
Figure 1 shows two plots of the performance of the WMF,
LTD and NMF when the clutter parameters are assumed
to be known. The performance of the detector (9) is
also included and is referred to as the alternative NMF
(ANMF) in the plots. The left subplot is for the case
where the number of looks is N = 5, the Toeplitz fac-
tor is ρ = 0.8 and a probability of false alarm is 10−5.
With reference to (14), since max{−5,−1.505} = −1.505
and we are examining the VV-polarised case, we select
n = −0.01 so that κ = 104.99. The plot shows the WMF
and ANMF matching very closely, while the LTD has a
detection loss relative to these detectors. This is due to the
fact that the clutter is approximately Gaussian distributed.
The NMF saturates because of the small number of looks.
Hence, in this case, we see that the design of the ANMF
has improved detection performance in the case of a small
number of looks.
The right subplot in Figure 1 is for the same clutter, but

when N = 8, ρ = 0.8 and the false alarm probability is
set to 10−7. Hence, since max{−7,−2.408} = −2.408, we
select n = −0.5 to generate κ = 106.5. Here, we observe a
similar situation to the previous plot, except that the LTD
has a larger detection loss relative to theWMF andANMF.
The NMF has again saturated.
Figure 2 examines the performance of the detector

(17), relative to the four detectors WMF, LTD, NMF and
ANMF, where the latter detectors have full knowledge
of clutter parameters. In the figures to follow, detector
(17) will be abbreviated to ANMF Approx. In this simu-
lation, the left subplot is for N = 20 and ρ = 0.5, and
the false alarm probability has been set to 10−6. Since
max{−6,−6.02} = −6, n = −5 has been selected so that
κ = 10. It is assumed that α̂ has been overestimated by
double, while β̂ has been underestimated by 20%. By using
(19), it can be shown the resultant Pfa = 3.955 × 10−6,
yielding an increase in the false alarm rate. All the other
detectors have had their thresholds set so that they have
this same resultant false alarm probability to provide a
valid comparison. The left subplot in Figure 2 shows that
the WMF has the best performance, followed by the LTD
and then the ANMF. The detector (17) has better per-
formance than the NMF, despite the fact that it requires
parameter estimation.
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Figure 1 Detector performance in the VV-polarised case, corresponding to clutter simulated from the Ingara radar data trial. Due to the
large Pareto shape parameter, the data are roughly Gaussian, resulting in the WMF performing very well. In the left subplot, N = 5, ρ = 0.8 and
probability of false alarm is 10−5. The new detector ANMF matches the WMF almost exactly. Additionally, the ANMF improves on the NMF, which
saturates. The right subplot is for N = 8, ρ = 0.8 and the false alarm probability of 10−7. Here, we can see a difference in the WMF and ANMF. The
latter still improves on the NMF.

The right subplot in Figure 2 is for the case where
N = 10, ρ = 0.5 and false alarm probability is
10−7. Noting that max{−7,−3.01} = −3.01,n = −1
has been selected, and consequently, κ = 106. In
this example, it is assumed that the shape parameter
estimate is overestimated by triple, while the scale param-
eter is also overestimated, but by double. The subplot
shows the ANMF matching the WMF very closely, while

the estimator (17) has better performance than the LTD.
The NMF has completely saturated due to an insuffi-
cient number of looks. In this example, the resultant false
alarm probability is 2.8255 × 10−5, which has been used
to set the thresholds for the four other detectors. What
is observed here is an increase in the false alarm proba-
bility due to severe inaccuracy in the clutter parameter
estimates.
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Figure 2 Examples of performance of the CFAR (17), which is denoted by ANMF Approx in the figure. In all cases, the four other detectors
have had their thresholds set so that they have the same false alarm probability as in (17). The left subplot is for the case where N = 20, ρ = 0.5 and
false alarm probability is 10−6. The CFAR (17) is such that the Pareto shape parameter is overestimated by double, while the scale parameter is
underestimated by 20%. We observe that the detector (17) has performance bounded by that of the ANMF and NMF. The right subplot corresponds
to N = 10, ρ = 0.5 and a false alarm probability of 10−7. Here, it is assumed that the shape parameter is overestimated by triple, and the scale
parameter is overestimated by double. In this case, the detectors have closer matched performance, while the NMF saturates.
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Figure 3 Performance analysis in HH-polarised clutter, based upon the Ingara data. The left subplot is for N = 20, ρ = 0.1 and a false alarm
probability of 10−6. This example shows that the ANMF can work very well, and certainly improves on the NMF. The right subplot is for
N = 25, ρ = 0.1 and false alarm probability of 10−5. In this scenario, we observe the ANMF provides a small gain on the LTD.

5.2 Ingara, HH, α= 3.4653, β= 0.0029
The second example is for the case of HH-polarised clut-
ter, again obtained from the Ingara data trial. In this case,
the azimuth angle was 315◦, and the Pareto clutter param-
eters are α = 3.4653 and β = 0.0029. Figure 3 shows
detector performance when the texture parameters are
known. The left subplot is for N = 20, ρ = 0.1 and a
false alarm probability of 10−6. Since max{−6,−6.02} =
−6, we have selected n = −1 so that κ = 105.
With this choice, it is observed that the ANMF intro-
duces a detection gain over the LTD and the WMF.
Additionally, the performance of the ANMF far exceeds
that of the NMF, which has poorer performance than
the WMF.

The right subplot in Figure 3 is for N = 25, ρ = 0.1 and
false alarm probability of 10−5. Since max{−5,−7.525} =
−5, n = −4 has been selected, and hence, κ =
10. Increasing the number of looks has resulted in
an improvement on the performance of the NMF,
which introduces a detection gain on the WMF. The
ANMF has the best performance, with a slight gain on
the LTD.
Figure 4 shows some examples of the performance of

the detector (17) in horizontally polarised clutter. The left
subplot corresponds to N = 30, ρ = 0.5 and a probabil-
ity of false alarm of 10−6. Due to max{−6,−9.03} = −6,
n = −5 has been selected so that κ = 10. It is assumed
that both texture parameters have been overestimated by
a factor of 5; consequently, the resultant false alarm prob-
ability is 3.0169 × 10−8, based upon (19). Hence, there is
a large reduction in the false alarm probability. All other
detectors have had their thresholds set relative to this
resultant probability. The subplot shows that the WMF

has very poor performance, as expected in heavy-tailed
clutter. The ANMF and LTD have very good perfor-
mance, with the ANMF having slightly larger probability
of detection. The ANMF approximation (17) has very
good performance, despite the inaccuracy with its param-
eter estimates. In fact, it is slightly better than the LTD.
The NMF’s performance trails that of the LTD. This exam-
ple shows that the new CFAR (17) can improve on the
NMF considerably.

The right subplot in Figure 4 is for N = 40, ρ =
0.9 and a false alarm probability of 10−7. Due to the
fact that max{−7,−12.04} = −7, n = −6 has been
selected so that κ = 10 as previously. Here, it is assumed
that the clutter parameter α is overestimated by dou-
ble, while there is a 20% error in the estimation of β .
The resultant false alarm probability is 3.0169 × 10−8,
which has resulted in an order of magnitude reduction
in the desired false alarm rate. The subplot shows similar
results to the previous subplot, except that all detectors
have closer performance, with the exception of the WMF.
The CFAR (17) is matching the performance of the LTD
almost exactly in this case.

5.3 IPIX, HH, α= 1.5582, β= 4.3286 × 10−4

Clutter parameters are now sourced from the IPIX radar
trial. For this example, we take the case of HH-polarised
returns, using the Pareto clutter parameters α = 1.5582
and β = 4.3286 × 10−4. It is interesting to note that
the IPIX clutter parameters are much smaller than those
obtained from the Ingara data trial. Such a small shape
parameter indicates very spiky returns. Figure 5 shows
detector performance when both texture parameters are
known. The left subplot corresponds to the case where
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Figure 4 HH-polarisation examples of performance of CFAR (17), relative to Ingara data-based clutter parameter estimates. The left
subplot is for the case where N = 30, ρ = 0.5 and probability of false alarm is 10−6. Both texture parameters have been overestimated by a factor of
5. Despite this large error, the new CFAR performs very well and certainly improves on the NMF. The right subplot is for N = 40, ρ = 0.9 and a false
alarm probability of 10−7. The clutter parameter α is overestimated by double, while there is a 20% error in the estimation of β . As before, we
observe that the CFAR (17) has very good performance.

N = 30, ρ = 0.4 and false alarm probability is 10−6. Since
max{−6,−9.03} = −6, n = −4 has been selected and
κ = 100. The subplot shows that the WMF has very poor
performance. The ANMF improves on the performance of
both the LTD and NMF.
The right subplot corresponds to N = 25, ρ =

0.7 and probability of false alarm of 10−5. Due to
max{−5,−7.525} = −5, n = −4 has been chosen and so
κ = 10. The results are similar to the previous subplot,
except that the performance of the ANMF is much more
pronounced. The ANMF is better than the LTD and NMF
as before.
Figure 6 shows the performance of the CFAR (17) rel-

ative to the other detectors. The left subplot is for N =
30, ρ = 0.4 and a false alarm probability of 10−6. Since
max{−6,−9.03} = −6, n = −4 has been selected so
κ = 100. For this simulation, it is assumed that the
shape parameter α has been overestimated by 50%, while
the scale parameter is overestimated by 5 times its actual
value. This results in an actual false alarm probability of
4.5453 × 10−7, which is a reduction in the desired false
alarm rate. The subplot shows that the WMF has very
poor performance, which is due to the very spiky nature
of the clutter. The CFAR (17) has performance bounded
above by that of the ANMF and bounded from below by
the LTD. Detector NMF has smaller probability of detec-
tion than LTD. In this example, the CFAR (17) has very
good performance. All detectors have the same probability
of false alarm.
The right subplot is for N = 25, ρ = 0.7 and a

false alarm probability of 10−7. Since max{−7,−7.525} =
−7, n = −5 has been selected, and hence, κ = 100.

Both clutter parameters are assumed to be underesti-
mated by 20%. The resultant false alarm probability can
be shown to be 4.4342 × 10−8, which is a reduction
in the design false alarm rate. The subplot shows that
the ANMF has the best performance, and the CFAR
(17) introduces only a tiny detection loss relative to the
ANMF. The LTD has a significant detection loss relative
to the ANMF and its approximation. The NMF also has
a significant detection loss relative to the ANMF, (17)
and the LTD. The WMF has very poor performance in
this example.

5.4 IPIX, VV, α= 1.8587, β= 0.001
The final example is for a VV-polarised case based
upon the IPIX radar trial. In this scenario, the clut-
ter parameters are α = 1.8587 and β = 0.001.
Although this example is for the VV channel, these clut-
ter parameters indicate very heavy-tailed non-Gaussian
clutter statistics [33]. Figure 7 shows detector perfor-
mance under the assumption of known clutter parame-
ters. The left subplot is for N = 30, ρ = 0.6 and a
false alarm probability of 10−5. Since max{−5,−9.03} =
−5, n = −3 has been selected, so κ = 100. The sub-
plot shows that the WMF has very poor performance.
The ANMF has better performance than the LTD and
NMF.

The right subplot in Figure 7 is for N = 25, ρ =
0.1 and a false alarm probability of 10−7. Due to
max{−7,−7.525} = −7, n = −6 has been chosen, with
κ = 10. The subplot shows that the ANMF has very
good performance relative to the LTD and NMF, while the
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Figure 5 Detector performance based upon clutter parameter estimates from the IPIX data, HH polarisation. The left subplot is for
N = 30, ρ = 0.4 and a false alarm probability of 10−6. The ANMF has the best performance, while the WMF has the worst, due to the heavy-tailed
clutter distribution. The right subplot corresponds to N = 25, ρ = 0.7 and probability of false alarm of 10−5. Here, the ANMF has a larger gain over
the other detectors.

WMFhas very poor performance. This is another example
showing that the ANMF works very well in spiky clutter.
Figure 8 now examines the performance of the CFAR

(17) in this clutter scenario. The left subplot is for N =
40, ρ = 0.6 and a false alarm probability of 10−5. In view
of the fact that max{−5,−12.04} = −5, n = −4 has been
selected so that κ = 10. It is assumed that the parame-
ter α is underestimated by 20%, while β is overestimated
by 20%. This results in an actual false alarm probability
of 4.2849 × 10−6, which is a decrease in the desired false

alarm rate level. The subplot shows that the ANMF and
its CFAR approximation (17) have very comparable per-
formance, with both detectors performing better than the
LTD and NMF. Here, as before, the WMF has the worst
performance. All detectors are operating with the same
false alarm probability, for consistency.
The right subplot is for N = 30, ρ = 0.1 and a false

alarm probability of 10−7. Since max{−7,−9.03} = −7,
n = −6 has been selected, yielding κ = 10. For this exam-
ple, the Pareto shape parameter is overestimated by 80%,
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Figure 6 Performance of the CFAR detector (17) in HH-polarised IPIX trial-based clutter. The left subplot is for N = 30, ρ = 0.4 and a false
alarm probability of 10−6. It has been assumed that the shape parameter α has been overestimated by 50%, while the scale parameter is
overestimated by 5 times its actual value. The plot shows that the new CFAR has very good performance despite parameter estimation inaccuracy.
The right subplot is for N = 25, ρ = 0.7 and a false alarm probability of 10−7. Both clutter parameters are assumed to be underestimated by 20%.
Here, we observe that the CFAR (17) has a very small loss relative to the ANMF, and both these two new detectors have the best performance.
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Figure 7 Detector performance with clutter parameter estimates based upon the IPIX radar trial, with VV polarisation. The left subplot is
for N = 30, ρ = 0.6 and a false alarm probability of 10−5. The ANMF has a gain over all other detectors. The right subplot is for N = 25, ρ = 0.1 and a
false alarm probability of 10−7. Again, the ANMF has very good performance. Due to the heavy-tailed nature of the clutter, the WMF has very poor
performance.

while the scale parameter is overestimated by 20%. This
results in an actual false alarm probability of 2.3328 ×
10−7, which is larger than the desired false alarm rate. The
plot shows similar results to the previous subplot, except
that it is easier to discern the differences in detector per-
formance. Again, the ANMF has the best performance,
and the CFAR (17) has very good performance.

6 Conclusions
This paper introduced a modification of the NMF detec-
tor, referred to as the ANMF and given by (9), which was

shown to work very well in practice. By using a parameter
κ , which is a function of the design false alarm probability
and the number of looks, and whose value is then deter-
mined by an application of (14), one can avoid the detector
saturation issues inherent in the NMF. This new detector
was shown to outperform the LTD and WMF in a large
number of cases, when clutter parameters are known. In
particular, this tended to occur for the case where the
number of looks was large (N >> 30), and the clut-
ter is very spiky. In addition to this, by then introducing
approximations to the clutter parameters, an approximate

−10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR (dB)

P
d

WMF
LTD
NMF
ANMF
ANMF Approx

−10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SCR (dB)

P
d

WMF
LTD
NMF
ANMF
ANMF Approx

Figure 8 Analysis of the CFAR detector (17) in the same clutter environment as for Figure 7. The left subplot is for the case where
N = 40, ρ = 0.6 and false alarm probability is 10−5. It is assumed that the parameter α is underestimated by 20%, while β is overestimated by 20%.
We see that the new CFAR has very good performance. The right subplot is for N = 30, ρ = 0.1 and a false alarm probability of 10−7. For this
example, the Pareto shape parameter is overestimated by 80%, while the scale parameter is overestimated by 20%. As before, the new CFAR has
excellent performance.
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CFAR version of this detector was analysed. It was shown
to perform very well in practice, depending on the error
in the approximation of the clutter parameters. The error
in clutter parameter estimation resulted in a change in
the desired false alarm probability. Some conditions were
established to ascertain when there was not an increase in
the false alarm rate. Provided that the clutter parameter
errors were small, there were only small variations in the
false alarm rate, as expected. Despite this, the CFAR (17)
was shown to have very good performance in practice.
In further research, the detector (17) will be applied to

real data to assess its performance in practice. This will
be coupled together with real-time parameter estimation
based upon the work of [27].

Abbreviations
ANMF: Alternative normalised matched filter; CFAR: Constant false alarm rate;
DSTO: Defence Science and Technology Organisation; GLRT: Generalised
likelihood ratio test; HH: Horizontal transmit and receive; LTD: Linear threshold
detector; MLE: Maximum likelihood estimation; NMF: Normalised matched
filter; Pd: Probability of detection; Pfa: Probability of false alarm; SCR:
Signal-to-clutter ratio; SIRP: Spherically invariant random process; VV: Vertical
transmit and receive; WMF: Whitening matched filter.

Authors’ contributions
The author declares that there are no competing interests.

Acknowledgements
The author would like to express thanks to an anonymous reviewer whose
comments significantly improved the content and results of this paper.

Received: 8 January 2013 Accepted: 2 May 2013
Published: 15 May 2013

References
1. KJ Sangston, F Gini, in IEEE Radar Conference. MS Greco, New results on

coherent radar target detection in heavy-tailed compound Gaussian
clutter, Washington, DC, 2010), pp. 779–784. 10–14 May

2. KJ Sangston, F Gini, MS Greco, Coherent radar target detection in
heavy-tailed compound Gaussian clutter. IEEE Trans. Aerosp. Electron.
Syst. 48, 64–77 (2012)

3. E Conte, M Longo, Characterisation of radar clutter as a spherically
invariant random process. IEE Proc, Pt. F: Commun. Radar Signal Process.
134, 191–197 (1987)

4. M Rangaswamy, D Weiner, A Ozturk, Non-Gaussian random vector
identification using spherically invariant random processes. IEEE Trans.
Aerosp. Elec. Syst. 29, 111–123 (1993)

5. KJ Sangston, K Gerlach, Coherent detection of radar targets in a
non-Gaussian background. IEEE Trans. Aerosp. Electron. Syst. 3, 330–340
(1994)

6. F Gini, Suboptimal coherent radar detection in a mixture of K-distributed
and Gaussian clutter. IEE Proceed. Part F: Radar, Sonar, Navig. 144, 39–48
(1997)

7. F Gini, MV Greco, A Farina, P Lombardo, Optimum and mismatched
detection against K-distributed plus Gaussian clutter. IEEE Trans. Aerosp.
Electron. Syst. 34, 861–876 (1998)

8. F Gini, MV Greco, Suboptimal approach to adaptive coherent radar
detection in compound Gaussian clutter. IEEE Trans. Aerosp. Electron.
Syst. 35, 1095–1104 (1999)

9. E Conte, M Lops, G Ricci, Asymptotically optimum radar detection in
compound Gaussian clutter. IEEE Trans. Aerosp. Elec. Sys. 31, 617–625
(1995)

10. Y Dong, Optimal coherent radar detection in a K-distributed clutter
environment. IET Radar, Sonar Navig. 6, 238–292 (2012)

11. GV Weinberg, in Digital Communication, ed. by C Palanisamy. Coherent
multilook radar detection for targets in KK-distributed clutter (Intech,
Croatia, 2012)

12. A Balleri, A Nehorai, J Wang, Maximum likelihood estimation for
compound-Gaussian clutter with inverse-gamma texture. IEEE Trans.
Aerosp. Electron. Syst. 43, 775–780 (2007)

13. M Farshchian, FL Posner, in IEEE Radar Conference. The Pareto distribution
for low grazing angle and high resolution X-band sea clutter,
Washington, DC, 2010), pp. 789–793. 10–14 May

14. GV Weinberg, Assessing the Pareto fit to high resolution high grazing
angle sea clutter. IET Electron. Lett. 47, 516–517 (2011)

15. X Shang, H Song, Radar detection based on compound-Gaussian model
with inverse gamma texture. IET Radar, Sonar, Navig. 5, 315–321 (2011)

16. GV Weinberg, Coherent multilook radar detection for targets in Pareto
distributed clutter. IET Electron. Lett. 47, 822–824 (2011)

17. P Stinco, M Greco, F Gini, Adaptive detection in compound-Gaussian
clutter with inverse gamma texture. IEEE Int. Conf. Radar. 1, 434–437
(2011)

18. GV Weinberg, Assessing detector performance, with application to Pareto
coherent multilook radar detection. IET Radar, Sonar, Navig. 7 (2013) (in
press)

19. GP Beaumont, Intermediate Mathematical Statistics. (Chapman and Hall,
London, 1980)

20. G Minkler, J Minkler, CFAR: The Principles of Automatic Radar Detection in
Clutter. (Magellan, Baltimore, 1990)

21. J Guan, YN Peng, Y He, Proof of CFAR by the use of the invariant test. IEEE
Trans. Aerosp. Elec. Sys. 36, 336–339 (2000)

22. KJ Sangston, F Gini, MV Greco, A Farina, Structures for radar detection in
compound Gaussian clutter. IEEE Trans. Aerosp. Elec. Sys. 35, 445–458
(1999)

23. R Ravid, N Levanon, Maximum-likelihood CFAR for Weibull background.
IEE Proceed. F. 139, 256–264 (1992)

24. V Anasstassopoulos, GA Lampropoulos, Optimal CFAR detection in
Weibull clutter. IEEE Trans. Aerosp. Elec. Sys. 31, 52–64 (1995)

25. P Billingsley, Probability andMeasure (2nd Ed). (Wiley, New York, 1986)

26. RG Kuller, Topics in Modern Analysis. (Prentice-Hall, Englewood Cliffs, 1969)

27. GV Weinberg, Estimation of Pareto clutter parameters using order
statistics and linear regression. IET Electron. Lett (2013). (in press)

28. Y Dong, Distribution of X-band high resolution and high grazing angle
sea clutter (DSTO Technical Report RR-0316,2006) (2013). http://www.
dtic.mil/cgi-bin/GetTRDoc?AD=ADA462947, Accessed 12 May

29. N Stacy, D Crisp, A Goh, D Badger, M Preiss, Polarimetric analysis of fine
resolution X-band sea clutter data. Proceed. Int. Geoscience Remote
Sensing Symp. 4, 2787–2790 (2005)

30. NJS Stacy, MP Burgess, Ingara: the Australian airborne imaging radar
system. Proceed. Int. Geoscience Remote Sensing Symp. 4, 2240–2242
(1994)

31. TJ Nohara, S Haykin, Canadian east coast radar trials and the
K-distribution. IEE Proc. F. 138, 80–88 (1991)

32. A Farina, F Gini, MV Greco, L Verrazzani, High resolution sea clutter data:
statistical analysis of recorded live data. IEE Proc. -Radar, Sonar, Navig.
144, 121–130 (1997)

33. GV Weinberg, Validity of whitening matched filter approximation to the
Pareto coherent detector. IET Sig. Proc. 6, 546–550 (2012)

doi:10.1186/1687-6180-2013-105
Cite this article as: Weinberg: Coherent CFAR detection in compound
Gaussian clutter with inverse gamma texture. EURASIP Journal on Advances
in Signal Processing 2013 2013:105.

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA462947
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA462947

	Abstract
	Keywords

	1 Introduction
	2 Detection framework
	3 General detector
	4 Coherent CFAR detector
	5 Performance analysis of detectors
	5.1 Ingara, VV, α= 15.8983, β= 0.1812
	5.2 Ingara, HH, α= 3.4653, β= 0.0029
	5.3 IPIX, HH, α= 1.5582, β= 4.3286 × 10-4
	5.4 IPIX, VV, α= 1.8587, β= 0.001

	6 Conclusions
	Abbreviations
	Authors' contributions
	Acknowledgements
	References

