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Abstract

Two algorithms for estimating the phase-difference between two real sinusoids with common frequency in the
presence of white noise are proposed. The first estimator utilizes the maximum likelihood criterion to find the phase
of each channel output in a separable manner, and the phase-shift estimate is then given by their difference. The
algorithm extension to unknown frequency and/or noise powers is also studied. On the other hand, the development
of the second method is based on the linear prediction approach with a properly chosen sampling frequency.
Furthermore, variance expressions for the two estimators are derived. Computer simulations are included to
corroborate the theoretical calculations and to contrast the performance of the proposed schemes with several
existing phase-difference estimators as well as Cramér-Rao lower bound.

Keywords: Phase-difference; Maximum likelihood estimation; Linear prediction; Time delay estimation; Sine-wave
model

1 Introduction
Finding the phase-difference between two noisy sinu-
soids with common frequency has applications such as
particle size and velocity estimation in laser anemome-
try [1], impedance measurements [2], and electric power
calibration [3]. In this work, we consider the following
dual-channel discrete-time sine-wave model:

xi(n) = si(n) + vi(n), i = 1, 2, n = 1, · · · ,N (1)

where

si(n) = Ai sin(ωn + φi). (2)

The Ai > 0 and φi ∈ [ 0, 2π) denote the sinusoidal
amplitude and initial phase at the i-th channel, respec-
tively, while ω = �T ∈ [ 0,π) is the common frequency
with � and T being the frequency of the continuous-time
counterpart and sampling period. The additive noises
v1(n) and v2(n) are uncorrelated whiteGaussian processes
with variances σ 2

1 and σ 2
2 . The task is to estimate the

phase-shift, denoted by θ = φ1−φ2, from x1(n) and x2(n).
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Handel [4] has proposed the nonlinear least squares
approach for (1) and (2), where there is an additional DC
offset term at each channel output, which corresponds
to the estimation of seven unknown parameters. Alter-
natively, the seven unknowns can also be solved by the
ellipse-fitting [5] technique. When ω in (2) is known,
we have proposed the unbiased quadratic delay estima-
tor (UQDE) and discrete-time Fourier transform-based
method in [6] for accurately estimating θ . The derivation
of both algorithms is based on utilizing the in-phase and
quadrature-phase components of {si(n)}, but they can give
optimum estimation performance only when π/(2�T) =
π/(2ω) is a positive integer. Using the idea of [6], the
modified simple algorithm (MSAL) [3] has recently been
developed for phase-difference estimation even if π/(2ω)

is not an integer.
The main contribution of this work is to develop and

analyze two accurate phase-shift estimation approaches
for the signal model of (1) and (2). In Section 2, the
maximum likelihood (ML) estimator for θ is presented.
It is proved that its variance is equal to the Cramér-Rao
lower bound (CRLB) in the presence of white Gaussian
noises. We also extend the ML algorithm to the sce-
narios of unknown frequency and/or noise powers. By
properly choosing T such that ω = π/2, a linear pre-
diction (LP)-based phase-difference estimator is derived
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and its performance is investigated in Section 3. Section
4 contains numerical examples for corroborating our the-
oretical development and comparing the performance of
the ML and LP algorithms with the UQDE and MSAL, as
well as CRLB. Finally, conclusions are drawn in Section 5.

2 Maximum likelihood estimator
First, we consider that ω and the ratio of noise powers,
denoted by r = σ 2

1 /σ 2
2 , are known a priori. By letting αi =

Ai cos(φi) and βi = Ai sin(φi) [7], si(n) can be written as

si(n) = αi sin (ωn) + βi cos (ωn), i = 1, 2. (3)

The logarithm of the probability density function of
{xi(n)} parameterized by αi and βi is

ln p({xi(n)}|αi , βi) = −N
2 ln(2πσ 2

i ) − 1
2σ 2

i

N∑
n=1

(xi(n)

−αi sin (ωn) − βi cos (ωn))2. (4)

Eliminating the terms in (4), which are irrelevant to αi and
βi, their ML estimates are given by the minimum of the
following function, denoted by 
i(αi, βi):


i(αi, βi) =
N∑

n=1
(xi(n) − αi sin (ωn) − βi cos (ωn))2. (5)

Taking the partial derivatives of (5) with respect to αi and
βi, and setting the resultant expressions to zero lead to

α̂i

N∑
n=1

sin2 (ωn) + β̂i

N∑
n=1

sin (ωn) cos (ωn)=
N∑

n=1
xi(n) sin (ωn)

(6)

and

α̂i

N∑
n=1

sin (ωn) cos (ωn) + β̂i

N∑
n=1

cos2 (ωn) =
N∑

n=1
xi(n) cos (ωn),

(7)

where α̂i and β̂i are the ML estimates of αi and βi, respectively.
Solving (6) and (7), we obtain:

According to [7], the ML estimate of φi is

φ̂i = tan−1

(
β̂i
α̂i

)
, i = 1, 2. (10)

As a result, the ML estimate of θ is:

θ̂ = φ̂1 − φ̂2. (11)

Note that this estimation procedure corresponds to a sim-
plified form for the ML formulation of the seven-parameter
model [4] with unknown frequency and additional DC offsets.
In Appendix 1, we have derived the variance of θ̂ , denoted by

var(θ̂ ), which has the form of:

var(θ̂) = 1
C

(
σ 2
1C1

A2
1

+ σ 2
2C2

A2
2

)
, (12)

where C = ∑N
n=1 sin2 (nω) · ∑N

n=1 cos2 (nω) − (
∑N

n=1
sin (nω) cos (nω))2, Ci = cos2(φi)

∑N
n=1 sin2 (nω) + sin2(φi)∑N

n=1 cos2 (nω) + 2 sin(φi) cos(φi)
∑N

n=1 sin (nω) cos (nω), i =
1, 2, which is identical to the CRLB (see Appendix 2).
When N → ∞, we simply obtain C = (N/2)2 and C1 =

C2 = N/2. As a result, the asymptotic variance is:

var(θ̂ ) = 1
N

(
1

SNR1
+ 1

SNR2

)
, (13)

where SNRi = A2
i /(2σ

2
i ), i = 1, 2, is the signal-to-noise ratio at

the i-th channel.
Analogous to (5), when the frequency is unknown, ML esti-

mation is achieved by minimizing


(ω,α1,β1,α2,β2) =
N∑

n=1
(x1(n) − α1 sin(ωn) − β1 cos(ωn))2

+ r
N∑

n=1
(x2(n) − α2 sin(ωn) − β2 cos(ωn))2 (14)

or in matrix form:


(ω, κ1, κ2) = (x1 − �κ1)
T (x1 − �κ1)

+ r(x2 − �κ2)
T (x2 − �κ2), (15)

where

� =
[
sin(ω) · · · sin(Nω)

cos(ω) · · · cos(Nω)

]T
(16)

α̂i =

N∑
n=1

xi(n) sin (ωn) ·
N∑

n=1
cos2 (ωn) −

N∑
n=1

xi(n) cos (ωn) ·
N∑

n=1
sin (ωn) cos (ωn)

N∑
n=1

sin2 (ωn) ·
N∑

n=1
cos2 (ωn) −

( N∑
n=1

sin (ωn) cos (ωn)
)2 (8)

and

β̂i =

N∑
n=1

xi(n) cos (ωn) ·
N∑

n=1
sin2 (ωn) −

N∑
n=1

xi(n) sin (ωn) ·
N∑

n=1
sin (ωn) cos (ωn)

N∑
n=1

sin2 (ωn) ·
N∑

n=1
cos2 (ωn) −

( N∑
n=1

sin (ωn) cos (ωn)
)2

.
(9)
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xi = [xi(1) · · · xi(N)]T , i = 1, 2 (17)

κ i = [αi,βi]T , i = 1, 2. (18)

Expressing κ i in terms of ω as
(
�T�

)−1
�Txi, which cor-

responds to (8) and (9), the ML frequency estimate is given
by

ω̂ = argmax
ω

g(ω), (19)

where

g(ω) = xT1 �(�T�)−1�Tx1 + rxT2 �(�T�)−1�Tx2. (20)

Once ω̂ is obtained by solving (19), the phase-difference is
estimated as in (8) to (11).
The proposed methodology can also be generalized to the

scenario when both r and ω are not known a priori, and we
have to estimate the noise powers and frequency in an iterative
manner as follows:

• Step 1. Set r = 1.
• Step 2. Compute ω̂ using (19).
• Step 3. Use ω = ω̂ to estimate the noise powers as

σ 2
i = xTi

(IN − �(�T�)−1�T ) xi/N , i = 1, 2, where IN is
the N × N identity matrix.

• Step 4. Repeat steps 2 and 3 until a stopping criterion is
reached.

• Step 5. Compute the phase-difference estimate θ̂ based on
(8) to (11).

3 Linear prediction estimator
The basic idea is to approximate x2(n + 1) using a linear com-
bination of x1(n) and x1(n + 1), and then minimize the least
squares cost function for the resultant LP error vector. To facil-
itate the development of the LP approach, the sampling interval
is properly chosen such that the discrete-time frequency is
ω = π/2. In doing so, x1(n) and x1(n + 1) are

x1(n) = A1 sin(ω0n + φ1) + v1(n) (21)

and

x1(n + 1) = A1 sin(ω0(n + 1) + φ1) + v1(n + 1)
= A1 sin(ω0n + φ1) cos(ω0)

+ A1 cos(ω0n + φ1) sin(ω0) + v1(n + 1)
= A1 cos(ω0n + φ1) + v1(n + 1). (22)

On the other hand, x2(n + 1) can be written as

x2(n + 1) = A2 sin(ω0(n + 1) + φ2) + v2(n + 1)
= A2 sin(ω0n + ω0 + φ1) cos(θ)

− A2 cos(ω0n + ω0 + φ1) sin(θ) + v2(n + 1)
= A2 sin(ω0n + φ1) cos(ω0) cos(θ)

+ A2 cos(ω0n + φ1) sin(ω0) cos(θ)

− A2 cos(ω0n + φ1) cos(ω0) sin(θ)

+ A2 sin(ω0n + φ1) sin(ω0) sin(θ) + v2(n + 1)
= A2 cos(ω0n + φ1) cos(θ)

+ A2 sin(ω0n + φ1) sin(θ) + v2(n + 1). (23)

From(21)to(23), we construct the LP error vector for n =
1, · · · ,N − 1:

e = μ − c̃1ν1 − c̃2ν2, (24)

where μ = [ x2(2) · · · x2(N)]T , ν1 = [ x1(1) · · · x1(N − 1)]T ,
ν2 = [ x1(2) · · · x1(N)]T , and c̃ is the variable for the LP coeffi-
cient vector c = [c1 c2]T = [sin(θ)A2/A1 cos(θ)A2/A1]T . The
optimum estimate of c = [ c1 c2]T , denoted by ĉ = [ ĉ1 ĉ2]T , is
obtained via weighted least squares:

ĉ = argmin
c̃

eTWe = (XT
1 WX1)

−1(XT
1 Wμ), (25)

where X1 = [ν1 ν2], and the weighting matrix W is computed
according to the Gauss-Markov theorem [8]:

W =
[
E{eeT }

∣∣∣
c̃=c

]−1 = (σ 2
1AAT + σ 2

2 IN−1)
−1, (26)

where E denotes the expectation operator, A =
[ Toeplitz([−c1 01×(N−2)]T , [−c1 −c2 01×(N−3)] )] with 0M×N
being theM×N zero matrix. Moreover, Toeplitz(u, vT ) stands
for the Toeplitz matrix with u and vT being the first column
and first row, respectively.
It is observed from (25) that a scaled version of W can be

used. As a result, we simplify the weighting matrix as W =
(rAAT + IN−1)−1 so that only the ratio r = σ 2

1 /σ 2
2 is required.

AsW is a function of the unknown c, we propose the following
iterative procedure to solve for θ̂ :

• Step 1. SetW = IN−1.
• Step 2. Compute ĉ using (25).
• Step 3. Use c = ĉ to constructW.
• Step 4. Repeat steps 2 and 3 until a stopping criterion is

reached.
• Step 5. Compute the phase-difference estimate as

θ̂ = tan−1(ĉ1/ĉ2).

For small error conditions such that ĉ is sufficiently close to
c, we follow Appendix 1 (see [9] for the first-order perturba-
tion analysis) to compute the variance of the phase-difference
estimate. The first-order estimation error �θ = θ̂ − θ is

�θ = ∂ tan−1(c1/c2)
∂c1

�c1 + ∂ tan−1(c1/c2)
∂c2

�c2, (27)

where the covariance matrix for ĉ, denoted by cov(ĉ), is
approximated as

C ≈ σ 2
2 (ST1WS1)−1 (28)

with S1 being the signal component in X1. As a result, from
(27) to (28), the variance is

var(θ̂) = E{(�θ)2} ≈ aTCa, (29)

where

a = A1
A2

[ cos θ − sin θ]T . (30)

When N → ∞, (29) is equivalent to (13). That is, the per-
formance of the LP estimator is optimum in the asymptotic
sense. Note that when r is not known a priori, we can use the
procedure in Section 2 to perform the noise level estimation.
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4 Simulation results
Extensive computer simulations are carried out to evaluate the
mean square error (MSE) performance of the two proposed
phase-difference estimators by comparing with the UQDE and
MSAL as well as CRLB. The validity of the theoretical calcu-
lations of (12), (13), and (29) is also investigated. For the LP
method, we use the number of iterations, which is selected
to be 15, as the stopping criterion. The amplitude and phase
parameters are assigned as α1 = 3, α2 = 1, φ1 = 2, and φ2 = 1.
The noises {v1(n)} and {v2(n)} are uncorrelated zero-mean
white Gaussian processes with variances σ 2

1 and σ 2
2 , respec-

tively. Unless stated otherwise, N = 10, σ 2
1 = 0.5σ 2

2 , and the
frequency as well as power ratio are assumed known. All the
results provided are averages of 500 independent runs.
In the first test, the sampling frequency is properly chosen

such thatω = π/2. Figure 1 shows theMSEs of the four estima-
tors versus σ 2

1 . It is seen that the performance of all estimators
is very close to the CRLB when σ 2

1 is sufficiently small. More-
over, the analytical variances of the ML and LP methods are
verified. We observe that the former is an optimum estima-
tor, while the difference between (29) and CRLB is very small.
This experiment is repeated with N = 100, and the results are
shown in Figure 2. The findings are similar to those of Figure 1
except now (29) is equal to the CRLB, confirming the asymp-
totic optimality of the LP algorithm. We repeat the test with
σ 2
1 = 0.1σ 2

2 , and Figure 3 shows theirMSE performance. Again,
the findings are similar to those of Figure 1, but theMSEs of the
four methods are close to CRLB for smaller noise conditions,
namely, when σ 2

1 < 0.1.
In the second test, ω = 0.3 is employed. Note that the LP

estimator and UQDE are not designed to work for this fre-
quency. The MSEs of the ML method and MSAL are plotted
in Figure 4. We see that the ML algorithm gives optimum
performance for sufficiently small noise conditions and out-
performs the MSAL particularly when σ 2

1 < 0.1, indicating
the latter is a biased estimator. Note that when the pro-
posed conditions [3] of the MSAL are satisfied, the bias will
be eliminated.
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Figure 2Mean square frequency estimation performance versus
σ 2
1 at ω = π/2, σ 2

1 = 0.5σ 2
2 , andN = 100.

In the third test, we compare the performance of the ML
method and MSAL for ω ∈ [ 0.1, 0.9]π at SNRi = (α2

1 +
α2
2)/(2σ

2
i ) = 0.01, i = 1, 2, and the results are shown in

Figure 5. We again see the optimality of the ML scheme for dif-
ferent frequencies, while the performance of the MSAL can be
close to CRLB only when ω is around 0.5 π . Nevertheless, the
MSE of the MSAL can approach the CRLB for all admissible
frequencies when proper conditions are satisfied.
In the final test, we consider the scenario when ω = 0.3 and

r = 0.5 are unknown. Figure 6 shows the MSE performance
of the ML method versus σ 2

1 . Note that the known frequency
information is required in the remaining three schemes, and
thus their results are not included. It is seen that the results are
similar to those of Figure 4, although larger estimation error
occurs at smaller σ 2

1 . Moreover, we observe that the CRLB with
unknown ω and r is only a little bit larger than (12). Neverthe-
less, it is worth pointing out that the proposed algorithms are
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Figure 4Mean square frequency estimation performance versus
σ 2
1 at ω = 0.3, σ 2

1 = 0.5σ 2
2 , andN = 10.

more computationally demanding than the UQDE and MSAL.
As we can see, the ML estimator requires a one-dimensional
search in (19). Moreover, both the ML and LP solutions need
matrix operations, the corresponding is around N × N . As a
result, the complexity of the proposed methods increases with
N.

5 Conclusion
Two algorithms for accurate phase-difference estimation
between two discrete-time real-valued sinusoids with com-
mon frequency have been developed and analyzed. The first
estimator first computes the ML solution for phase at each
channel output, and the phase-shift is given by the difference
between the two ML estimates. We have also extended the
method to work for scenarios when the frequency and/or noise
powers are unknown. When the discrete-time frequency is
properly chosen as π/2, one channel output can be represented
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Figure 5Mean square frequency estimation performance
versus ω.
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Figure 6Mean square frequency estimation performance versus
σ 2
1 with unknown ω and r.

as a linear combination of another channel output, where the
corresponding LP coefficients have simple relationship with
the phase-difference parameter. The second estimator utilizes
this LP relationship and applies the weighted least squares for
phase-difference estimation. The variance expressions for the
two methods are derived and confirmed by computer simu-
lations. It is shown that the ML and LP estimators perform
comparably with conventional methods when the frequency is
equal to π/2. For other frequencies, even if they are unknown,
theML algorithm can still achieve optimum performance when
the noise is sufficiently small. Nevertheless, the proposed algo-
rithms are more computationally demanding, particularly for a
larger data length.

Appendices
Appendix 1
Based on θ = tan−1 (β1/α1) − tan−1 (β2/α2), we utilize the
first-order perturbation analysis [9] to obtain

dθ = ∂ tan−1 (β1/α1)

∂α1
dα1 + ∂ tan−1 (β1/α1)

∂β1
dβ1

− ∂ tan−1 (β2/α2)

∂α2
dα2 − ∂ tan−1 (β2/α2)

∂β2
dβ2

= cos (φ1)dβ1 − sin (φ1)dα1
A1

− cos (φ2)dβ2 − sin (φ2)dα2
A2

⇒ �θ ≈ cos (φ1)�β1 − sin (φ1)�α1
A1

− cos (φ2)�β2 − sin (φ2)�α2
A2

. (31)

The variance is computed by squaring both sides of (31)
and taking the expected value. Since κ̂1 =

[
α̂1 β̂1

]
and κ̂2 =[

α̂2 β̂2
]
are uncorrelated, we have
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var(θ̂ ) = E

{(
cos (φ1)�β1 − sin (φ1)�α1

A1

)2
}

+ E

{(
cos (φ2)�β2 − sin (φ2)�α2

A2

)2
}

= sin2 φ1cov(α̂1, α̂1) + cos2 φ1cov(β̂1, β̂1) − 2 sinφ1 cosφ1cov(α̂1, β̂1)

A2
1

+ sin2 φ2cov(α̂2, α̂2) + cos2 φ2cov(β̂2, β̂2) − 2 sinφ2 cosφ2cov(α̂2, β̂2)

A2
2

, (32)

where cov(l1, l2) denotes the covariance of l1 and l2.
To determine the covariance matrices for κ̂i, denoted by Cκ̂i ,

i = 1, 2, we express (1) as the matrix form of xi = �κi + vi
which is linear in κi, i = 1, 2, and vi = [vi(1), vi(2), · · · , vi(N)]
is the noise vector with zero mean and covariance σ 2

i IN .
According to the Gauss-Markov theorem [8], Cκ̂i is simply

Cκ̂i = σ 2
i (�T�)−1, i = 1, 2. (33)

Substituting the corresponding entries of (33) into (32) yields
(12).

Appendix 2
We first compute the Fisher information matrix for κ =
[α1 β1 α2 β2]T , denoted by F. As the parameters are linear in
(1), the (i, j) entry of F in the presence of white Gaussian noise
is

[F]ij = s′Ti C−1s′j, (34)

where s = [sT1 , sT2 ]T with s1 = [s1(1) · · · s1(N)]T , s2 =
[s2(1) · · · s2(N)]T , and s′i stands for the partial derivative of s
with respect to the i-th parameter of κ , i = 1, · · · , 4. The C is
the noise covariance of

[xT1 , xT2 ]T which has the form of

C =
[

σ 2
1 IN 0N×N

0N×N σ 2
2 IN

]
. (35)

Using (34) and (35), we obtain:

F =
[

σ−2
1 � 02×2
02×2 σ−2

2 �

]
, (36)

where

� =

⎡
⎢⎢⎣

N∑
n=1

sin2 (nω)
N∑
n=1

sin (nω) cos (nω)

N∑
n=1

sin (nω) cos (nω)
N∑

n=1
cos2 (nω)

⎤
⎥⎥⎦ . (37)

The inverse of (36) can be shown as

F−1 =
[

σ 2
1 (�T�)−1 02×2
02×2 σ 2

2 (�T�)−1

]
. (38)

Let g(κ) = θ = tan−1 (β1/α1) − tan−1 (β2/α2). With the
use of the transformation formula [8], the CRLB for the phase-
difference, denoted by CRLB(θ) is

CRLB(θ) = ∂gT (κ)

∂κ
· F−1 · ∂g(κ)

∂κ
, (39)

where

∂g(κ)

∂κ
=

[
−β1

α2
1 + β2

1

α1

α2
1 + β2

1

−β2

α2
2 + β2

2

α2

α2
2 + β2

2

]T

=
[− sin φ1

A1

cosφ1
A1

− sin φ2
A2

cosφ2
A2

]T
. (40)

Substituting (40) into (39) yields (12).

Competing interests
Both authors declare that they have no competing interests.

Received: 30 August 2012 Accepted: 16 June 2013
Published: 27 June 2013

References
1. P Handel, A Host-Madsen, Estimation of velocity and size of particles from

two channel laser anemometry measurements. Measurement. 21(3),
113–123 (1997)

2. PM Ramos, MF da Silva, AC Serra, Low frequency impedance
measurement using sine-fitting. Measurement. 35(1), 89–96 (2004)

3. NM Vucijak, LV Saranovac, A simple algorithm for the estimation of phase
difference between two sinusoidal voltages. IEEE Trans. Instrum. Meas.
59(12), 3152–3158 (2010)

4. P Handel, Parameter estimation employing a dual-channel sine-wave
model under a Gaussian assumption. IEEE Trans. Instrum. Meas. 57(8),
1661–1669 (2008)

5. PM Ramos, FM Janeiro, M Tlemcani, AC Serra, Recent developments on
impedance measurements with DSP-based ellipse-fitting algorithms. IEEE
Trans. Instrum. Meas. 58(5), 1680–1689 (2009)

6. HC So, A comparative study of two discrete-time phase delay estimators.
IEEE Trans. Instrum. Meas. 54(6), 2501–2504 (2005)

7. RJ Kenefic, AH Nuttall, Maximum likelihood estimation of the parameters
of tone using real discrete data. IEEE J. Oceanic. Eng. 12(1), 279–280 (1987)

8. SM Kay, Fundamentals of Statistical Signal Processing - Estimation Theory.
(Prentice-Hall, Englewood Cliffs, 1993)

9. A Papoulis, Probability, Random Variables, and Stochastic Processes.
(McGraw-Hill, New York, 1991)

doi:10.1186/1687-6180-2013-122
Cite this article as: So and Zhou: Two accurate phase-difference
estimators for dual-channel sine-wave model. EURASIP Journal on Advances
in Signal Processing 2013 2013:122.


	Abstract
	Keywords

	Introduction
	Maximum likelihood estimator
	Linear prediction estimator
	Simulation results
	Conclusion
	Appendices
	Appendix 1
	Appendix 2

	Competing interests
	References

