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Abstract

Generating function (GF) has been used in blind identification for real-valued signals. In this paper, the definition of
GF is first generalized for complex-valued random variables in order to exploit the statistical information carried on
complex signals in a more effective way. Then an algebraic structure is proposed to identify the mixing matrix from
underdetermined mixtures using the generalized generating function (GGF). Two methods, namely GGF-ALS and
GGF-TALS, are developed for this purpose. In the GGF-ALS method, the mixing matrix is estimated by the
decomposition of the tensor constructed from the Hessian matrices of the GGF of the observations, using an
alternating least squares (ALS) algorithm. The GGF-TALS method is an improved version of the GGF-ALS algorithm
based on Tucker decomposition. More specifically, the original tensor, as formed in GGF-ALS, is first converted to a
lower-rank core tensor using the Tucker decomposition, where the factors are obtained by the left singular-value
decomposition of the original tensor’s mode-3 matrix. Then the mixing matrix is estimated by decomposing the
core tensor with the ALS algorithm. Simulation results show that (a) the proposed GGF-ALS and GGF-TALS
approaches have almost the same performance in terms of the relative errors, whereas the GGF-TALS has much
lower computational complexity, and (b) the proposed GGF algorithms have superior performance to the latest
GF-based baseline approaches.

Keywords: Blind identification; Generalized generating function; Tensor decomposition; Tucker decomposition;
Underdetermined mixtures
1. Introduction
Blind identification (BI) of linear mixtures has recently
attracted intensive research interest in many fields of
signal processing including blind source separation
(BSS). This work is devoted to BI of underdetermined
mixtures with complex sources. Underdetermined mix-
tures are commonly encountered in many practical
applications, such as in the radio communication con-
text, where the reception of more sources than sensors
becomes increasingly possible with the growth in recep-
tion bandwidth. In these applications, one often has to
also deal with complex sources. One reason is that the
communication signals are usually complex-valued such
as the quadrature-amplitude modulation (QAM) signal,
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and minimum-shift keying (MSK) signal. Another reason
is that frequency domain methods are often used for
blind separation or identification from convolutive mix-
tures due to its computational efficiency [1,2], while the
objective functions used in the frequency domain are
usually defined on complex-valued variables.
A large number of methods for BI of underdetermined

mixtures start from the assumption that the sources
are sparse by nature (i.e., in its own domain such as the
time domain) or could be made sparse in another domain
(e.g., a transform domain). A predefined transform
such as short-time Fourier transform (STFT) or a learned
transform using, e.g., simultaneous codeword optimization
(SimCO), is usually applied to sparsify the data [3,4] if the
signal by nature is not sparse. Due to the sparsity of the
sources, the scatter plot typically shows high signal values
in the directions of the mixing vectors, which can be local-
ized by using some clustering techniques [5,6]. It should
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be noted that although some signals such as speech signals
have some degree of sparsity in one domain or another,
many other signals such as the majority of communication
signals do not possess such a property. Hence, it is ne-
cessary to develop BI methods for the underdetermined
mixtures that do not impose any sparsity constraint on
the sources.
To this aim, many methods for BI of underdetermined

mixtures turn to the use of various decomposition
methods based on different data structures such as correl-
ation [7,8] and higher-order cumulant [9-14] matrices.
The main idea of these algorithms is to construct a tensor
based on the cumulants of the observations and then to
estimate the mixing matrix by the decomposition of such
a tensor. This is notably the case for second-order blind
identification of underdetermined mixtures (SOBIUM)
[7], fourth-order blind identification of underdetermined
mixtures (FOBIUM) [9], fourth-order-only blind iden-
tification (FOOBI) [10], FOOBI-2 [10], and blind iden-
tification of mixtures of sources using Redundancies in
the daTa Hexacovariance matrix (BIRTH) [11,12] algo-
rithms, which use second-order statistics tensors and
fourth- and sixth-order cumulant tensors, respectively.
A family of the methods named blind identification of
over-complete mixtures of sources (BIOME) is pro-
posed in [13], based on the even-order cumulants of
the observations. However, all the methods proposed
in [7-14] exploit only the statistical information contained
in the data measured by second-order or higher-order
statistics.
In order to exploit statistical information more effectively,

a family of BI approaches was proposed in [15-18] by
exploiting the statistical information with the characteristic
function (CAF) or generating function (GF). In these works,
the authors showed that the mixing matrix can be esti-
mated up to trivial scaling and permutation indeterminacies
by decomposing the tensor composed of partial derivatives
of the GF. It is worth mentioning that the algorithms in
[15-17] have been only applied to BI problems involving
real-valued sources. In [18], the CAF approach was
extended to the case of mixtures of complex-valued
sources, which often occurs in digital communications.
However, extra effort is required to obtain the correct
real and imaginary combination of the mixing matrix
since the real and imaginary parts of the mixing matrix
are treated separately, leading to an increased computa-
tional cost due to the increased dimension of the matrix
that needs to be processed. In this paper, we propose
the Generalized Generating Function (GGF) to exploit
the statistical information carried on the complex ran-
dom variable. We show that the proposed GGF can ex-
ploit the statistical information carried on complex
random variables in a more effective way than the GF
presented in [18] due to the algebraic structure adopted
by GGF (as detailed in Algebraic structure based on
generalized generating function). Furthermore, a sim-
ple method for the mixing matrix estimation is derived
based on tensor decomposition where the tensor is
composed of the Hessian matrices of the GGF of the
observations.
The remainder of this paper is organized as follows. In

Problem formulation the BI problem is formulated and
relevant assumptions are presented. In Algebraic struc-
ture based on generalized generating function we firstly
generalize the definition of the GF for complex-valued
random variables and then derive the corresponding core
equation for BI. In Blind identification based on tensor de-
composition, the GGF-ALS and GGF-TALS approaches
are developed for the estimation of the mixing matrix. In
the GGF-ALS algorithm, the mixing matrix is estimated
by directly decomposing the tensor, constructed from the
Hessian matrices of the second GGF of the observations,
using the alternating least squares (ALS) algorithm. In
the GGF-TALS algorithm, the Tucker decomposition is
firstly applied to convert the original tensor to a lower-
order core tensor, then the mixing matrix is obtained
by decomposing the core tensor with the ALS algorithm.
Furthermore, the factors of Tucker decomposition are
obtained by the left singular vectors of the original tensor’s
mode-3 matrix. Computer simulations are used to illustrate
the performance of the proposed GGF approaches in
Simulations and analysis. Finally, the paper is concluded
in Conclusions.

2. Problem formulation
Considering the following linear mixture model

z tð Þ ¼ As tð Þ þ w tð Þ ð1Þ

where the stochastic vector z(t) ∈C Q represents the
observation signals, s(t) ∈C P contains the unobserved
source signals, and w(t) ∈C Q denotes additive noise. From
now on, the noise w(t) is simply ignored for conveni-
ence, except when running computer experiments. The
unknown mixing matrix A ∈ C Q × P characterizes the
way that the sources are acquired by the sensors. BI
aims to estimate the mixing matrix from the observa-
tions based on the assumption that the source signals
are statistically independent. The mixing matrix obtained
may in turn be used to estimate the original source signals
from the observations. In addition, we make the following
assumptions:

(i). The mixing matrix A is of full (row) rank.
(ii).The number P of sources is known.
(iii) . The number of sensors is smaller than the number

of sources, i.e., Q < P.
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3. Algebraic structure based on generalized
generating function
3.1. Core equation based on generalized generating function
For a real stochastic vector x ∈R Q, the GF ϕx(u) obtained
by dropping the term of the square root of (−1) in the
exponent of a CAF is defined as

ϕx uð Þ ¼ E exp uTx
� �� �

;u ∈ RQ; ð2Þ

where u ∈R Q is an arbitrary vector referred to as a process-
ing point [15], and E[ ] denotes an expectation operator.
Nevertheless, both the observation vector z and the mixing
matrix A discussed in this paper belong to the complex
field. Hence, a definition of GF for complex variables is
required. One such definition has been presented in [18] as

ϕz R uð Þ;I uð Þð Þ ¼ E exp R uHz
� �� �� �

¼ E exp RT uð ÞR zð Þ þ IT uð ÞI zð Þ
� �� �

;u ∈ CQ;

ð3Þ

where R ⋅ð Þ and I ⋅ð Þ denote taking the real and imaginary
parts from their arguments (i.e., complex-valued vectors) to
form a real-valued vector of the same dimension. It is
actually defined by assimilating C to R2. Thus the GF of
a complex variable in (3) is defined as a function of the
real and imaginary parts. In this paper, we generalize
the definition of GF for real stochastic vector in (2) to
the following complex form

ψz uð Þ ¼ E exp uHz
� �� �

;u ∈ CQ ð4Þ

Note that the statistical information exploited by GF/
GGF is related to the number of processing points. Theor-
etically, a complete statistical description of the probability
density function requires the evaluation of the GF/GGF at
all (infinitely many) possible processing points. However,
this often becomes computationally infeasible. In practice,
such statistical information is obtained approximately by
the evaluation of GF/GGF at a finite number of processing
points. Hence, in comparison with the GF presented in
[18], the GGF defined in (4) can exploit the statistical infor-
mation carried on the complex variables more effectively
when the number of the processing points stays the same,
thanks to the incorporation of the imaginary part of the
exponent to the function. Furthermore, as compared with
the use of the GF in (3), using the GGF in (4) offers a sim-
pler way for the estimation of the mixing matrix due to the
exploitation of an elegant algebraic structure.
Now, replacing z by its model and neglecting the noise

contribution yield

ψz uð Þ ¼ E exp uHAs
� �� �

¼ ψs AHu
� �

;u ∈ CQ: ð5Þ

Defining φz(u) = log ψz(u), which is often referred to as
the ‘second’ GGF, and using the source independence
property, the second GGF of the observations can be
rewritten as

φz uð Þ ¼
XP

p¼1
φsp aHp u

� �
ð6Þ

Consequently, by calculating the derivative of the conju-
gate gradient of φz(u) with respect to u (more details can
be found in Appendix 1), we can obtain the following core
equation for the Hessian matrix ψz(u),

ψz uð Þ ¼ Aψs AHu
� �

AH ð7Þ

with

ψz uð Þ ¼ ∇uT ∇u�φz uð Þ½ � ¼ ∂
∂uT

∂φz uð Þ
∂u�

� 	
; ð8Þ

where (·)* denotes the conjugate operator. It is necessary to
point out that ψs(A

Hu) is a diagonal matrix (more details
can be found in Appendix 2).

3.2. Estimating ψz(u)
In this subsection, we discuss how to consistently estimate
the Hessian matrix ψz(u). Under the ergodicity assumption,
the mean value of a random variable can be estimated by a
time average. Hence, we can estimate the GGF of the
observation vector as

ψ̂ z uð Þ ¼ 1
T

XT

t¼1
exp uHz tð Þ

� �
The conjugate gradient ςz(u) = ∂ ψz(u)/∂ u* which is a

Q × 1 vector can be estimated by

ς̂z uð Þ ¼ 1
T

XT

t¼1
exp uHz tð Þ

� �
z tð Þ

Similarly, the gradient ζz(u) = ∂ ςz(u)/∂ u
T which is a

Q ×Q matrix can be estimated by

ζ̂z uð Þ ¼∂
ς̂z uð Þ
∂uT

¼ 1
T

XT

t¼1
exp uHz tð Þ

� �
z tð ÞzH tð Þ

Based on the above analysis, the Hessian matrix ψz(u)
of the second GGF φz(u) can be obtained as

ψ̂z uð Þ ¼ ζ̂z uð Þ
ψ̂ z uð Þ−

ς̂z uð Þς̂zHðuÞ
ψ̂2

z uð Þ

4. Blind identification based on tensor
decomposition
In this section, the GGF-ALS and GGF-TALS algorithms
are developed for the estimation of the mixing matrix.
In the GGF-ALS algorithm, the mixing matrix is esti-
mated by decomposing the tensor which is formed of
the Hessian matrices of the GGF of the observations.
An improved version of the GGF-ALS algorithm, i.e.,
the GGF-TALS algorithm, is also developed, where the
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Tucker decomposition is firstly employed to convert the
original tensor as used in the GGF-ALS algorithm to a
lower-rank core tensor, and the mixing matrix is then
estimated by decomposing the core tensor with the ALS
algorithm.

4.1. The GGF-ALS algorithm
Evaluating the Hessian matrices ψz(u) of GGF at a series
of processing points u1, u2,..., uK and using Equation (7),
one can obtain the following joint diagonalization (JD)
problem(

ψz u1ð Þ ¼ Aψs AHu1

� �
AH

⋮
ψz uK Þ ¼ Aψs AHuK

� �
AH

� ð9Þ

in which ψs(A
Huk) is diagonal, k =1,…,K. The problem we

need to address is to estimate the mixing matrix A based
on the set {ψz(u1),⋯,ψz(uK)}. For the determined/overde-
termined case, it is obvious that JD methods, such as the
AC-DC method [19], can be used to estimate the mixing
matrix. However, this method does not work when Q < P
i.e., in the underdetermined case.
As shown in [7], the JD problem (9) can be seen as a

particular case of the parallel factor (PARAFAC) decom-
position, also known as canonical decomposition (CAND),
of the third-order tensor M ∈ CQ�Q�K built by stacking
the K matrices ψx(uk) along the third mode. Specifically,
the tensor M ∈ CQ�Q�K is built by stacking ψz(u1),ψz

(u2),...,ψz(uK) as follows: Mð Þijk ¼ ψz ukð Þð Þij , i =,…,Q, j =

1,…,Q, k = 1,…,K. Define a matrix D ∈ C K × P by (D)kl =
(ψs(A

Huk)ll, l = 1,…,P, k = 1,…,K. Then we have

mijk ¼
XP

l¼1
aila

�
jldkl; ð10Þ

which we write as

M ¼
XP

l¼1
al∘a

�
l ∘dl; ð11Þ

where º denotes the tensor outer product, and al and dl
represent the lth column of A and D, respectively. In this
way, the mixing matrix A can be estimated by solving
the following problem. Given the third-order tensor
M ∈ CQ�Q�K , we can compute its CAND with P compo-
nents of the rank-one tensors that best approximates M ,
i.e.,

min
A;D

M−
XP

p¼1
ap∘a�p∘dp




 


2
F
; ð12Þ

where ‖‖F is the Frobenius norm.
Several algorithms exist for the computation of tensor

decomposition. The standard way for computing the
tensor decomposition is by using an ‘ALS’ algorithm
[20]. Several improved versions, such as the enhanced
line search (ELS) [21] and extrapolating search direction
(ESD) [22], are proposed to accelerate the rate of con-
vergence of the ALS. Hence, the ALS is chosen here to
compute the CAND.
To a large extent, the practical importance of tensor

decomposition stems from its uniqueness properties. It is
clear that the tensor decomposition can only be unique up
to a permutation of the rank-1 terms and scaling of the
factors of the rank-1 terms. Therefore, we consider the
tensor decomposition (11) as essentially unique if any
other matrix pair A’ and D’

, that satisfies (11) is related to
A and D via

A ¼ A
0
PΔ1; D ¼ D

0
PΔ2 ð13Þ

with Δ1, Δ2 ∈ C P×P being diagonal matrices, satisfying
Δ1Δ1Δ2 = I, and P ∈ R P×P being a permutation matrix.
The k-rank. The Kruskal rank or k-rank of a matrix A,

denoted by κA, is the maximal number λ such that any
set of λ columns of A is linearly independent.
Theorem 1. The tensor decomposition of (11) is essen-

tially unique if [23]

2κA þ κD ≥ 2 P þ 1ð Þ ð14Þ

We call a property generic when it holds with probabil-
ity one. Generically, the mixing matrix is of full rank and
of full k-rank when the parameters it involves are drawn
from continuous probability densities. Hence, in practice,
κA =min(Q, P) and κD =min(K, P).
In summary, we come to the following conclusion:

when Q ≥ P, P ≥ 2, then the generic essential uniqueness
is guaranteed for K ≥ 2; when Q < P and if K ≥ P, then the
generic essential uniqueness is guaranteed for P ≤ 2Q − 2, if
K < P, then the generic essential uniqueness is guaranteed
for P <Q − 1 +K/2.

4.2. The GGF-TALS algorithm
In order to ensure the GGF-ALS algorithm has robust
performance, a large value is often chosen for K in the
tensor M ∈ CQ�Q�K . Nevertheless, this will lead to a
heavy computational load. To reduce the computational
complexity, the Tucker decomposition [23-25] is firstly
applied to represent the tensor M as a lower-rank core
tensor, whose size is much smaller than the tensor M .
Then the ALS algorithm is used to perform the CAND of
the core tensor. In this way, the computational complexity
can be reduced dramatically.
Matricization. Matricization, also known as unfolding

or flatting, is the process of turning an N-way tensor
into a matrix. The mode-n matricization of a tensor
F ∈ CI1�I2⋯�IN is denoted by F(n) which arranges the
mode-n fibers to be the columns of the resulting
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matrix, that is, the tensor element (i1,⋯, iN) is mapped
to the matrix element (in, j) where

j ¼ 1þ
X
k¼1
k≠n

N

ik−1ð ÞJ k

with

Jk ¼
Y
m¼1
m≠n

k−1

Im

The n-rank. Let F be an Nth-order tensor of size
I1 × I2⋯ × IN. Then the n-rank of F , denoted by
rankn Fð Þ , is the column rank of F(n). In other words, if
we let rn ¼ rankn Fð Þ for n = 1,…,N, then we can say that
F is a rank r1,⋯, rN tensor.
The n-mode product. The n-mode (matrix) product

of a tensor F ∈ CI1�I2⋯�IN with a matrix UJ�In is de-
noted by F�n U and is of size I1 ×⋯ × In − 1 × J × In +

1 ×⋯ IN. Elementwise, we have

F�n Uð Þi1⋯in−1jinþ1⋯iN ¼
XIn

in¼1
f i1i2⋯iN ujin

Tucker decomposition is a form of higher-order principal
component analysis (PCA). It decomposes a tensor
into a core tensor multiplied by a matrix along each
mode as shown in Figure 1. Thus, in the three-way case
where F ∈ CI1�I2�I3 , we have

F ¼ G�1A 1ð Þ�2A 2ð Þ�3A 3ð Þ þ U

¼
XJ1

j1¼1

XJ2

j2¼1

XJ3

j3¼1
gj1j2 j3 a 1ð Þ

j1
∘a 2ð Þ

j2
∘a 3ð Þ

j3

� �
þ U;

ð15Þ

where G∈CJ1�J2�J3 is the core tensor; A 1ð Þ ∈ CI1�J1 ;A 2ð Þ

∈ CI2�J2 ;A 3ð Þ ∈ CI3�J3 are the factor matrices (which are
usually column unitary for real-valued data) and can
=

1
1

(1)

I
J

A

Figure 1 The Tucker decomposition of a three-way tensor F . For data
(I1 ≤ J1, I2 ≤ J2, and I3 ≤ J3), and A(1), A(2), and A(3) are thin matrices.
be thought of as the principal components in each
mode; and U ∈ CI1�I2�I3 represents errors or noise.
With the help of Tucker decomposition, the tensor

M , which is composed of the Hessian matrices ψz(uk)
of the second GGF of the observations, can be com-
pressed. Since the mixing matrix A is of full rank and
the Hessian matrices ψs(A

Huk) of the second GGF of
the sources are diagonal, the mode-n (n = 1, 2, 3) matri-
ces of tensor M are M(1) ∈ C Q ×QK, M(2) ∈ C Q ×QK, and
M(3) ∈ C K ×QQ respectively. Meanwhile, the n-rank of
the M(1) and M(2) is

rank1 Mð Þ ¼ rank2 Mð Þ ¼ rank M 1ð Þ
� �

¼ rank M 2ð Þ
� �

¼ Q ð16Þ

On the other hand, if we assume rank3 Mð Þ ¼ L and
L ≤ K, then M is a rank-(Q,Q,L) tensor. Thus, the Tucker
decomposition of tensor M is the so-called Tucker1 de-
composition [23]

M ¼ T �1 I �2 I �3 G ð17Þ

where T ∈ CQ�Q�L is the core tensor, I ∈R Q ×Q is an iden-
tity matrix, and G ∈C K × L is a column-unitary matrix. This
is equivalent to a standard two-dimensional PCA since

M 3ð Þ ¼ G� T 3ð Þ; ð18Þ

where T(3) ∈C
L×QQ is the mode-3 matrix of core tensor T .

It is obvious that (18) corresponds to the PCA of M(3).
Therefore, G ∈C K × L consists of the L-leading left singular
vectors of M(3). Since K > L and G is a column-unitary
matrix, it is straightforward to derive

T 3ð Þ ¼ GH �M 3ð Þ ð19Þ

Therefore, the core tensor can be obtained by

T ¼ M�1 I �2 I �3 GH ð20Þ

Because the first and second factors of the Tucker
decomposition in (17) are identity matrices, the core
tensor T ∈ CQ�Q�L is also a symmetric tensor [23], as
+

2
2

(2
)

I
J

A

3 3(3) I JA

compression, the size of the core tensor G is smaller than that of F
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for the tensor M ∈ CQ�Q�K and the CAND of the core
tensor is as follows

T ¼
XP

l¼1�
al∘―a

�
l ∘―dl; ð21Þ

where al and dl are the lth column of A and D, respectively.
The CAND process can also be implemented by the ALS
algorithm. Nevertheless, our goal is to estimate the mixing
matrix A, whereas the CAND of core tensor T ∈ CQ�Q�L

only conduces A. Hence, it is necessary to derive the
mixing matrix A based on A. Since the first and second
factors of Tucker decomposition (17) are identity matrices,
it is straightforward to derive

A ¼ I ―A ¼ ―A ð22Þ

4.3. Computational analysis
In this subsection, we aim at giving an insight into the
numerical complexity of the proposed algorithm. For the
GGF-ALS algorithm, the ALS algorithm is directly used to
decompose the tensor M ∈ CQ�Q�K ; therefore, the com-
putational complexity is O(3PKQ2 +QKP2 +Q2P2) per it-
eration. For the GGF-TALS algorithm, the computational
complexity is dominated by the Tucker decomposition of
the original tensor M ∈ CQ�Q�K (realized by the singular-
value decomposition (SVD) of the mode-3 matrix M(3))
and the decomposition of the core tensor T ∈ CQ�Q�L

using the ALS algorithm. Therefore, the computational
complexities for these two operations per iteration are
O(Q6) and O(3PLQ2 + QLP2 + Q2P2), respectively.
Table 1 shows the computational complexity for the
GGF-ALS, and GGF-TALS methods.
It is worth mentioning that a large value is usually chosen

for the number of processing points K in order to accumu-
late sufficient statistical information from data, while the
rank of the core tensor order L is often chosen to be much
smaller than K. For example, K = 100, L = 8 are chosen
typically in our simulations as shown in the next section.
The SVD is required to be calculated only once, whereas
the ALS algorithm needs multiple iterations to achieve
convergence, for example, 1,000 iterations as in our experi-
ments. Moreover, the number of sources P and the number
of sensors Q are usually small, for example, P = 4, Q = 3 in
our simulations. For these reasons, it can be readily derived
Table 1 Computational complexity of GGF-ALS, GGF-TALS
methods

Method Operation Complexity

GGF-ALS ALS (one iteration) O(3PKQ2 + QKP2 + Q2P2)

GGF-TALS SVD O(Q6)

ALS (one iteration) O(3PLQ2 + QLP2 + Q2P2)
from Table 1 that the computational cost of the GGF-TALS
algorithm is, in practice, much lower than that of the GGF-
ALS algorithm (note that the complexity of SVD becomes
negligible in this case).

5. Simulations and analysis
In this section, simulations are provided to illustrate
the performance of the proposed GGF approaches for
underdetermined mixtures of complex sources. The
performance of the tested algorithms is evaluated and
compared in terms of the relative error performance index
(PI) versus the sample size and the signal-to-noise ratio
(SNR) of the observations. Here the relative error PI is

defined as [7] PI ¼ EfjjA−A^ jj=jjAjjg, in which the norm
is the Frobenius norm and Â represents the optimally or-
dered and scaled estimate of the mixing matrix A.
The experiments refer to the scenario that P = 4 nar-

rowband source signals are received by a uniform circular
array (UCA) with Q = 3 identical sensors of radius Ra

Considering a free space propagation model, the entries of
the mixing matrix A are given by

aqp ¼ exp 2πj αq cos θp
� �

cos ϕp

� �
þ βq cos θp

� �
sin ϕp

� �� �� �
where αq= (Ra/λ)cos(2π(q− 1)/Q), βq= (Ra/λ)sin(2π(q− 1)/Q),
and j ¼

ffiffiffiffiffiffi
−1

p
. We have Ra/λ=0.55. The direction of arrival

(DOA) of the different sources are given by θ1 = 3π/10,
θ2 = 3π/10, θ3 = 2π/5, θ4 = 0 and ϕ1 = 7π/10, ϕ2 = 9π/10,
ϕ3 = 3π/5, ϕ4 = 4π/5. The sources are unit-variance
4-QAM with a uniform distribution, shaped by a raised
cosine pulse shaping filter with a roll-off ρ = 0.3. All
sources have the same symbol duration T = 4Te, where
Te is the sample period. The observations are contami-
nated by additive zero-mean complex Gaussian noise.
First, we compare the performance of the GGF-ALS

algorithm with that of the GGF-TALS algorithm and inves-
tigate the influence of the rank of the core tensor L on the
performance of the GGF-TALS algorithm. To this end, the
following two simulation experiments are conducted. In
the first simulation, we evaluate the performance of the
GGF-TALS algorithm with different core tensor rank L for
a fixed number of processing points K, and compare it with
GGF-ALS with the same number of processing points. In
this simulation, K is chosen to be 100 for the GGF-ALS
algorithm, both the real and imaginary parts of processing
points are randomly drawn from [−1; 1], the SNR of the
observations ranges from 0 to 25 dB, and the number of
samples is 4,000. The core tensor rank for the GGF-TALS
algorithm is chosen as L = 10,8,5, respectively. The thresh-
old value described in (12) to stop the ALS algorithm is
10−5, and 100 Monte Carlo experiments are run.
The average performance of the GGF-TALS algorithm

versus the core tensor rank for a fixed number of pro-
cessing points is shown in Figure 2. We can see that the



Figure 2 Performance of GGF-TALS versus core tensor order for
a fixed number of processing points. The results for GGF-ALS are
also shown for comparison.
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performance curves of the GGF-TALS and that of the
GGF-ALS almost coincide when the rank of the core
tensor is larger than 8, whereas the performance of
the GGF-TALS algorithm slightly deteriorates when
the rank of the core tensor is less than 8. This indicates
that the GGF-TALS algorithm maintains the identifica-
tion accuracy offered by GGF-ALS despite the fact
that the core tensors used by GGF-TALS have a much
lower rank than that of the original tensor used by
GGF-ALS.
In the second experiment, we investigate the per-

formance of the GGF-TALS algorithm with different
Figure 3 The performance of GGF-TALS versus the number of
processing points. The results for GGF-ALS are also shown
for comparison.
number of processing points K when the rank of the
core tensor L is fixed. The simulation conditions are
the same as those in the previous simulation except the
number of processing points for the GGF-ALS algo-
rithm which are 20, 40, and 100 respectively, and the
rank of the core tensor for the GGF-TALS which is 8.
The average performance of the GGF-TALS versus the
number of processing points for the fixed number of
the core tensor rank is shown in Figure 3.
We can see that the average performance of GGF-TALS

is consistent with that of GGF-ALS when both algorithms
use the same number of processing points. For instance,
when the number of processing points is 100, the perform-
ance of GGF-TALS is close to the performance of GGF-
ALS, so is for K = 40. Therefore, the GGF-TALS algorithm
consistently offers similar performance to GGF-ALS when
the number of processing points is varied.
Second, we compare the performance of the GGF-ALS

and GGF-TALS algorithms with that of the latest GF-based
BI algorithm. Here, the LEMACFAC-2 in [18] is chosen as
the baseline algorithm. The number of processing points
and the value of processing points for the GGF-ALS, GGF-
TALS, and LEMACFAC-2 are the same. Specifically, the
number of processing points is 100, both the real and
imaginary parts of processing points are randomly drawn
from [−1; 1], and the rank of the core tensor is 8. The
threshold value described in (12) to stop the LM algorithm
[26] exploited in LEMACFAC-2 method is also 10−5.
Figure 4 shows the PI of the tested algorithms as a

function of the SNR when 4,000 samples are used. It can
be seen from this figure that the performance of the
GGF-ALS is consistent with that of the GGF-TALS, and
both perform better than LEMACFAC-2. Figure 5 shows
Figure 4 The performance of the tested algorithms versus the
SNR of the observations.



Figure 5 The performance of the tested algorithm versus the
size of the data set.
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the PI of the tested algorithms as a function of the number
of data samples N when the SNR is equal to 20 dB. Again,
the LEMACFAC-2 underperforms the GGF-ALS and the
GGF-TALS algorithms, and the GGF-ALS and the GGF-
TALS have almost the same performance. This confirms
that the GGF algorithms perform better than the method
based on the GF defined in (3) in exploiting the statistical
information carried on the complex variables when using
the same number of processing points.
6. Conclusions
We have presented two algorithms, namely, GGF-ALS and
GGF-TALS, for blind identification from underdetermined
mixtures of complex sources using the second GGF of the
observations. In the GGF-ALS algorithm, the mixing
matrix is estimated by directly using the ALS algorithm
to decompose the tensor constructed from the Hessian
matrices of the second GGF of the observations. The
GGF-TALS algorithm is an improved version of the
GGF-ALS algorithm, where the Tucker decomposition
is first used to convert the original tensor into a lower-
rank core tensor, and the mixing matrix is then estimated
by applying the ALS algorithm to the core tensor.
Simulation results have shown that (a) the proposed
GGF-ALS and GGF-TALS approaches have almost the
same performances in terms of the relative errors,
whereas the GGF-TALS has a much lower computational
complexity, and (b) the proposed GGF algorithms have
superior performance to the latest GF-based BI ap-
proaches, since the GGF algorithms can exploit the
statistical information carried on complex variables in
a more effective way.
Appendix 1
In this appendix, we show the computational details of
the core equation in Equation 7. First, the differentiation
of (6) with respect to u* gives

∂φz uð Þ
∂u� ¼

XP

p¼1

∂φsp aHp u
� �
∂u� ¼

XP

p¼1

∂φsp aHp u
� �

∂ aHp u
� ��

∂ aHp u
� ��

∂u�

¼
XP

p¼1

∂φsp aHp u
� �

∂ aHp u
� ��

∂ aHp u
� �H

∂u� ¼
XP

p¼1

∂φsp aHp u
� �

∂ aHp u
� �� ap

ð23Þ

Second, the differentiation of (23) with respect to uT gives

∂φz uð Þ
∂uT∂u� ¼

XP

p¼1

∂φsp aHp u
� �

∂ aHp u
� �T

∂ aHp u
� �� ap

∂ aHp u
� �T

∂uT

¼
XP

p¼1

∂φsp aHp u
� �

∂ aHp u
� �H

∂ aHp u
� � ap

∂ aHp u
� �
∂uT

¼
XP

p¼1

∂φsp aHp u
� �

∂ aHp u
� �H

∂ aHp u
� � apaHp

ð24Þ

In a more compact form, we can obtain the core
equation

ψz uð Þ ¼ Aψs AHu
� �

AH ð25Þ

Appendix 2
Let ϕsð~uÞ denote the characteristic function of the
source signals s(t). Due to the statistical independence of
the elements of s(t) = [s1(t),⋯, sP(t)]

T, we have

ϕsð~uÞ ¼ ϕs1 ~u1ð Þ � ϕs2 ~u2ð Þ �⋯� ϕsP ~uPð Þ ð26Þ

where ϕsj ~uj
� �

¼ E exp ~u�
j sj

� �h i
, j = 1,⋯, P. Therefore,

for the second characteristic function φs(ũ), we have

φsð~uÞ ¼ φs1 ~u1ð Þ þ φs2 ~u2ð Þ þ⋯þ φsP ~uPð Þ ð27Þ

Consequently, the Hessian matrix ψs(ũ) can be easily
obtained as

ψsð~uÞ ¼ ∇~uT

�
∇~u�φsð~uÞ

	
¼ ∂

∂~uT

�
∂φsð~uÞ
∂~u�

	

¼ diag
∂φs1 ~u1ð Þ
∂~u1∂~u�

1
;
∂φs2 ~u2ð Þ
∂~u2∂~u�

2
;⋯;

∂φsP ~uPð Þ
∂~uP∂~u�

P

� 
ð28Þ
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where diag(·) represents an operator forming a diagonal
matrix by assigning its arguments to the entries of the
main diagonal.
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