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Abstract

In this paper, we show that the early-termination fixed-complexity sphere detector (ET-FSD) has a scale effect when
being employed in multi-antenna systems that have to detect signals of multiple users under the constraint of sum
complexity. The so-called scale effect stands for a kind of effect in which the complexity per user can be reduced as
the number of users increases without loss of diversity order. The main contributions of this study are as follows: (1)
we establish a mathematical model based on the large deviation principle to apply the concept of scale effect to
ET-FSD; (2) we prove the existence of the scale effect of ET-FSD in a multi-user scenario; and (3) we demonstrate that
within multi-user systems, the scale effect can be exploited to realize ET-FSD that has the optimal performance in the
point view of diversity order under polynomial complexity constraint per user.

1 Introduction
1.1 Research onMIMO detection
Consider a spatial-multiplexing multiple-input multiple-
output (MIMO) system with nT transmit and nR receive
antennas, with the channel represented by the matrixH =
[h1 h2 · · · hnT]∈ C

nR×nT , where hi is the ith column
of H. All entries of the channel matrix H are indepen-
dent and identically distributed (i.i.d.) zero-mean complex
Gaussian random variables with unit variance. Let the
entries of the vector s = [s1 s2 · · · snT ]T ∈ C

nT×1 be the
transmit symbols, with each si belonging to the constel-
lation set D with size m. The signal model of the MIMO
system is given by

y = Hs + v =
nT∑
i=1

hisi + v,

where y is the received signal vector, and v is the zero-
mean circularly symmetric complex Gaussian noise with
covariance matrix E(vvH) = σ 2InR,nR . We suppose that H
is perfectly known at the receiver. Let Es denote the energy
at the transmitter per symbol period, i.e., Es = E(|si|2).
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Without loss of generality, we assume that Es = 1/nT and
nR ≥ nT. Under these conditions, the optimal scheme
of MIMO detection that minimizes the average error
probability is the maximum-likelihood (ML) detector
expressed by

s̃ML = arg min
s̃∈DnT

‖y − H̃s‖2F . (1)

In the context of high signal/noise ratio (SNR), the
optimality of the ML detector can be interpreted
as the full diversity which means that the detector
is capable of achieving the diversity order nR [1].
Despite the optimal performance, however, the ML
detector is not a promising scheme of MIMO detec-
tion in practice because of its extremely high com-
plexity. It is evident from (1) that the ML detector
has to perform an exhaustive search of mnT possible
candidates and, thus, has the exponential complexitya
CML = O(mnT).
Ever since MIMO techniques became widely accepted

as among the few emerging key technologies for wireless
communications, realizing the performance of the opti-
mal or near-optimal MIMO detection without exhaustive
search has been an interesting topic for decades [2-9]. It is
known from [2-7] that the problem of Equation 1 can be
formulated as a lattice search problem [2-4], an integer-
least-squares problem [5], a semidefinite relaxation prob-
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lem [6], and a shortest path problem [7] which are
shown to have their own efficient solution methods (algo-
rithms). Many low-complexity strategies can also be used
to restrict computational complexity or make the search
more efficient, including restricting the search or invoking
early termination. Even in recent years, MIMO detection
has remained an attractive topic [10-15].
A lot of prior works have been done. However, to

the authors’ knowledge, it is still hard to realize the
MIMO detector with optimal performance (regarding
both error probability and diversity order) with the poly-
nomial complexity constraintb. It is shown in [5] that,
for integer-least-squares problemwith small problem size,
the expected complexity of the sphere decoder (SD) at
high SNR can be approximated by a polynomial func-
tion. The closet-lattice search and shortest path algorithm
can efficiently cut down the complexity of solving the
integer-least-squares problem [4,7]. However, there does
not exist a polynomial upper bound on SD complex-
ity [16], closet-lattice search, or shortest path algorithm
for any fixed SNR. With some fixed performance degra-
dation (14) [16], the SD has an exponential complexity
(in both the worst and the average cases) of CSD =
O(mγnT) with γ ∈ (0, 1] [16]. The fixed-complexity
sphere decoder (FSD) is proved to maintain full diversity
with a complexity of CFSD = O(m

√nT) that is ‘subex-
ponential’ [17]. On the other hand, the linear receivers,
e.g., zero-forcing (ZF) and minimum mean square error
schemes, have low complexity but quite poor diversity
order nR − nT + 1 [1]. The situation is discouraging as
several profound studies show that many MIMO detec-
tors have their own inherent limitations [16,18,19]. Under
this situation, the authors believe that exploiting more
potential positive factors in MIMO detectors might be
one of the appropriate ideas to make the next break-
through. In this paper, we focus on exploiting the poten-
tial positive factor of MIMO detection in a multi-user
scenario.

1.2 MIMO detection in a multi-user scenario
It can be found that most studies on the complexity
of MIMO detection are under a single-user assumption
[2-13], while this study focuses on the complexity of
MIMO detection in a multi-user scenario. To understand
the motivation behind, one can think of the factor that
MIMO receivers in base stations would have to detect
signals from multiple-access users. In previous studies
[20,21], the scale effect-oriented MIMO detector (SEOD)
was developed for multi-user system, which was also
shown to have a kind of effect called the scale effect in
which the complexity per user can be reduced as the
number of users increases without loss of diversity order.
Moreover, from [21], we know that scale effect would play
an important role in a cloud base station because the cloud

base station is a large-scale multi-user system where the
baseband processes of a great number of base stations
(each could have a lot of accessed users) are performed
together within a virtual base station pool under the limit
of overall run-time.
However, a big question left to us is whether the scale

effect only exists in SEOD. If the answer is ‘yes’, it will
mean that the scale effect has limited practical mean-
ings since the SEOD is a very special MIMO detection
scheme which has been carefully designed. Whereas if
other schemes of MIMO detection also have the scale
effect, we would expect that the scale effect could become
an important feature of MIMO detection in multi-user
scenarios.

1.3 Contributions
In this study, we focus on investigating the early-
termination fixed-complexity sphere detector (ET-FSD)
that is an extended version of FSD by incorporating early-
termination mechanism. The existence of scale effect in
ET-FSD is proven (Theorems 2 and 3). Due to the scale
effect, the complexity per user of ET-FSD can be kept
under a polynomial constraint while maintaining full-
diversity performance (Theorem 3). We note that the
original FSD has no scale effect; thus, in a multi-user case,
it still achieves full diversity with subexponential com-
plexity. This result implies that the scale effect not only
exists in SEOD but also in ET-FSD and, thus, encourages
us to extend and deepen the studies on scale effect in
the future. Moreover, an analytical framework based on
the large deviation principle is established to investi-
gatethe scale effect in this paper, while [20] does not
provide such a framework.

1.4 Organization
The rest of this paper is organized as follows: In Section 2,
the ET-FSD scheme is specified, and its underlying math-
ematical model is presented. In Section 3, we prove that
the ET-FSD in a single-user scenario is able to achieve full
diversity; meanwhile, the complexity behavior of ET-FSD
is studied considering both single-user and multi-user
scenarios. With respect to the multi-user scenario, the
scale effect of ET-FSD is rigorously defined, which in
Section 4 is proven to exist. Consequently, the numerical
results are provided in Section 5. We conclude our paper
in Section VI.

2 Early-termination fixed-complexity sphere
decoder

2.1 ET-FSD scheme
Among the existing MIMO detectors, the FSD [9] is
an attractive scheme; it is highly suitable for hardware
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implementation due to its fixed complexity and parallel-
computing-friendly features. By simply incorporating an
early-termination mechanism into the FSD, we can estab-
lish the ET-FSD scheme. The main process of the ET-FSD
is a constrained tree search through a tree with nT levels
where m branches originate from each node. The whole
tree search can be realized in two stages: full expansion
(FE) and single expansion (SE) search stages, which can be
summarized as follows:

• The first stage is the FE search in which a full search
is performed in p levels, expanding all m branches
per node. In this stage, the transmit symbol with
larger noise amplification appears at an earlier level
of the tree. Note that a larger noise amplification
can also be understood as a smaller post-processing
SNR.

• The second stage is the SE search in which a single
search needs to be performed in the remaining
nT − p levels. Analogous in principle to previous
studies (such as in [17,22]), the SE search expands
one branch per node followed by the ZF
estimate.

Besides the constrained tree search, the complete real-
ization of the ET-FSD also includes the preprocessing
of the channel matrix (as FSD [9,17,22] does), which
determines the detection order of the transmit symbols
and has two stages as well: the preprocessing for the FE
search and that for the SE search. To be specific, the pre-
processing of the channel matrix can be expressed by
Algorithm 1 using the following notations. (·)† denotes
the Moore-Penrose pseudoinverse. FlagET is a flag that
determines whether the early termination is enabled in
the algorithm or not, i.e., FlagET = True means enabled,
otherwise disabled. The function denoted by find(b �= x)
finds the indices of the elements of the vector b that do
not equal x. The preprocessing is realized iteratively, and
within the jth iteration, the effective channel matrix Hj

is reconstructed by removing some column from Hj−1,
where the initialization condition is H0 = H. Accord-
ingly, Pj denotes the Moore-Penrose pseudoinverse of Hj.
Algorithm 1 returns a as the ordered indices of the trans-
mit symbols. The elements of a with indices 1 to p are
the indices of the transmit symbols to be detected in
the FE search. Then the remaining nT − p elements of
a are the indices of the transmit symbols to be detected
in the SE search. Furthermore, b = [b1, b2, · · · , b(nT−j)]
is just an intermediate vector with its elements satisfy-
ing {b1, b2, · · · , b(nT−j)} = {1, 2, · · · , nT} \ {a1, a2, · · · , aj}.
Also, ρ � nTEs/σ 2 = 1/σ 2 is the average SNR at the
receiver (a.k.a. the average receive SNR), and γ ∈ (0, 1) is a
real value.

Algorithm 1 (a, p) = CHANNELPREPROCESSING (H, p,
nT, FlagET, γ )
/ * Initialization * /

1. a :=[0 0 · · · 0]
2. b :=[1 2 · · · nT]
3. j := 0
/ * Preprocessing for FE search stage * /

4. while (j ≤ p − 1)
5. Hj :=[hb1 hb2 · · · hb(nT−j) ]
6. Pj := (

Hj)†
7. imax := argmax1≤i≤(nT−j)[Pj(Pj)H ]i,i
8. a(j+1) := bimax

9. if ([Pj(Pj)H ]imax,imax ≤ 1
nT ρ(1−γ )) &&

(FlagET = True)
10. p := j
11. break
12. end
13. b := b(find(b �= a(j+1))) / * Reset b by

removing a(j+1) from it * /
14. j := j + 1
15. end
/ * Preprocessing for SE search stage * /

16. while (j ≤ nT − 1)
17. a(j+1) := b(j−p+1)
18. end

Compared with the channel preprocessing algorithm
of the FSD [9,17,22], Algorithm 1 of the ET-FSD has a
newly introduced functionality, as seen in lines 9 to 12,
which can terminate early the loop of the preprocessing
for the FE search depending on the channel matrix and
update p before breaking the loop when FlagET := True
is set. Moreover, we have p as one input of Algorithm 1
to guarantee full diversity. Early termination implies that
the number of levels of the FE search stage could be less
than p. If we set FlagET := False, Algorithm 1 would exe-
cute identically as [17,22]. Thus, FSD could be considered
as a special case of ET-FSD. In line 7, the index of the
largest diagonal entry of Pj(Pj)H , imax, is found. In fact,
the diagonal entries of Pj(Pj)H reflect the post-processing
noise amplification (see (5) as well). In line 8, the origi-
nal index of the transmit symbol, a(j+1), is obtained based
on imax. It is clear that in the jth iteration of channel pre-
processing, the a(j+1)th transmit symbol has the largest
noise amplification. In this work, for both the convenience
of mathematical analysis and the reduction of computa-
tional complexity, ZF is employed in the SE stage. Thus,
the preprocessing for the SE stage is performed as in
line 17.
The constrained tree search of the ET-FSD utilizes a

and p, which are generated from the preprocessing of the
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channel matrix as the two most significant parameters.
Analogous to the FSD, the tree search of the ET-FSD con-
sists of two stages and can be illustrated as in Figure 1.
On the other hand, we can express such tree search by
Algorithm 2, which is in the iterative fashion. Before
the details are examined, the required notation can be
given as follows: D(k) is the kth element of constel-
lation set D; ZF(·, ·) denotes the functionality of zero-
forcing estimate; s̃SE � [ s̃ap+1 , s̃a(p+2) , · · · , s̃anT ]T; HSE �
[ha(p+1) , ha(p+2) , · · · , hanT ]; yj is the intermediate vector
in the jth iteration; and s̃a(j+1) is the a(j+1)th element of s̃.
The initial input of Algorithm 2 includes y0 := y, j := 0,
dmax := +∞ and s̃ := [0, 0, · · · , 0]. We note that, similar
tomost previous works [9,22], the complexity spent on the
preprocessing of channel matrix is ignored in our further
analysis.

Algorithm 2 (̃sFSD, dmax) = TREESEARCHFSD (yj, p̄, j,
dmax, s̃)
1. if (j ≤ p − 1)
2. for k = 1, 2, · · · ,m
3. s̃a(j+1) := D(k)
4. y(j+1) := yj − ha(j+1)̃sa(j+1)
5. (̃sFSD, dmax) := TREESEARCHFSD

(y(j+1), p, j + 1, dmax, s̃)
6. end
7. else
8. s̃FE :=[ s̃a1 s̃a2 · · · s̃ap ]
9. s̃SE := ZF(yp,HSE)
10. if (‖yp − HSẼsSE‖2F < dmax)
11. s̃FSD(a) := [ s̃FE s̃SE]
12. dmax := ‖yp − HSẼsSE‖2F
13. end
14. end

2.2 Mathematical model of the ET-FSD
Here we introduce the underlying mathematical model of
the ET-FSD. Lines 2 to 6 of Algorithm 2 correspond to the
manipulation of the FE search stage, while line 5 recur-
sively invokes TREESEARCHFSD. After the final iteration
of the FE search, the signal model becomes

yp =
∑

i∈{a(p+1),a(p+2),··· ,anT }
hisi

+
∑

k∈{a1,a2,··· ,ap}
hk(sk − s̃k)

︸ ︷︷ ︸
�w

+v,

where w is the interference caused by the difference
between the symbols of s̃FE and those of the transmit
vector. Thus, the signal model left for the SE search is

yp =
[
ha(p+1) ha(p+2) · · · hanT

]⎡⎢⎢⎢⎣
sa(p+1)
sa(p+2)

...
sanT

⎤⎥⎥⎥⎦ + w + v

= HSE

⎡⎢⎢⎢⎣
sa(p+1)
sa(p+2)

...
sanT

⎤⎥⎥⎥⎦ + w + v.

(2)

Applying the ZF estimate to (2), s̃SE would be obtained
as s̃SE = (HSE)

†yp.
Herein we consider the path which is perfectly can-

celed at the FE search and satisfies sk − s̃k = 0 for all

0,1, , 1j p=  −

Figure 1 Parallel-computing model of Algorithm 2. It is an example that has nT = nR = 8 andm = 4. The number of levels of the FE stage
p = 	√nT
 − 1.
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k ∈ {a1, a2, · · · , ap} such that w = [0, 0, · · · , 0]. We can
simplify the signal model left for the SE search as

yp =
∑

i∈{a(p+1),a(p+2),··· ,anT }
hisi + v.

Under such signal model, it should be clear that after the
ZF estimate in the SE stage, s̃SE = sSE + (HSE)†v, where
sSE = [sa(p+1) , sa(p+2) , · · · , sanT ]T.
Meanwhile, lines 8 to 13 of Algorithm 2 perform the SE

search in whichmp candidate paths would be equalized by
the ZF estimate, while one path with minimum Euclidean
distance from y that corresponds to s̃FSD is returned as the
detected vector. In line 11, a specifies the indices of the
elements of s̃FSD.

2.3 A first look at the complexity of ET-FSD
Let us keep in mind that the FE search of ET-FSD has p
levels, where p is determined by Algorithm 1. By referring
to [17,22], we know that the complexity of the SE search
in ET-FSD does not dominate the overall complexity, but
the FE search does. Thus, the overall complexity of the
ET-FSD is dominated by p as ζp = O(mp), where ζp, for
the convenience of expression, is defined as the overall
complexity of the ET-FSD when the FE search stage has p
levels. Obviously, ζp is determined by p. We should also be
aware that the ET-FSD can maintain full diversity as the
ML detector as long as p ≥ p, where p is the least integer
that satisfies

(nR − nT)(p + 1) + (p + 1)2 ≥ nR, (3)

because it is proven in [17,22] that setting the number of
the FE stage to p is a sufficient condition for the FSD to
achieve full diversity.

3 ET-FSD in a single-user scenario
3.1 Error probability analysis
The error probability of the proposed ET-FSD with dis-
abled early termination (in this case the ET-FSD is actually
identical to the FSD), which in general is defined as the
probability of the error event s̃FSD �= s averaged over the
channel matrix, the additive noise, and the transmitted
codewords, has the relation as (see Equations 4 to 7 of
[22]) peFSD � P(̃sFSD �= s) ≤ peML + peSE, where peML
is the error probability of the ML detector and peSE is the
probability of the error event s̃SE �= sSE [22]. Analogously,
with enabled early termination, the error probability of the
proposed ET-FSD algorithm is defined and bounded as
(see Equations 4 to 7 of [22] as well)

peET−FSD � P(̃sET−FSD �= s) ≤ peML + peET−SE, (4)

where peET−SE is the probability of the error event s̃SE �=
sSE with FlagET = True.

Recall from Algorithm 1 that the smallest post-
processing SNR (related to the largest noise amplification)
of the transmit symbols in the jth iteration of the prepro-
cessing for the FE search stage, given the effective channel
matrixHj, can be written as

η(j+1) = min
1≤i≤(nT−j)

ρ

nT
1[

Pj(Pj)H
]
i,i
. (5)

Otherwise, equivalently, we have [23]

max
1≤i≤(nT−j)

[
Pj(Pj)H

]
i,i = ρ

nTη(j+1)
. (6)

Similar to the derivations in (32) and (33) of [24], since
the largest eigenvalue is not less than any diagonal term
of a Hermitian matrix (see Section 5.3.1 of [25]), (5)
yields η(j+1) ≥ ρ

nT
1

λmax(Pj(Pj)H)
, where λmax(·) denotes the

maximum eigenvalue of a square matrix. On the other
hand, Pj(Pj)H = (

(Hj)HHj)−1 such that λmax
(
Pj(Pj)H

) =
1/λ1

(
(Hj)HHj), and we can get

η(j+1) ≥ ρ

nT
λ1

(
(Hj)HHj) , (7)

where λk(·) is the kth smallest eigenvalue of the matrix.
According to Algorithm 1 and (6), early termination

occurs when

ρ

nTη(j+1)
≤ 1

nT
ρ(1−γ ), (8)

with 0 < γ < 1. It then means that the event η(j+1) ≥
ργ is identical to the early-termination event. We will see
later why the judging criterion for early termination is set
as (8). Given (7), the probability of no early termination
satisfies

P(η(j+1) < ργ ) ≤ P
(
λ1

(
(Hj)HHj) < nTρ(γ−1)

)
≤ P

((
nT
j

)−1
λ(j+1)

(
HHH

)
< nTρ(γ−1)

)

≤ β

((
nT
j

)
nTρ(γ−1)

)(nR−nT)(j+1)+(j+1)2

,

(9)

where the second and third inequalities are derived by fol-
lowing Equations 17 and 14 of [22], respectively, and β is
some real constant according to [26].
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Let Aj be the no early termination event that is identical
to the event below

η(j+1) < ργ . (10)

Thus, the complementary event Aj is equivalent to
η(j+1) ≥ ργ .

Lemma 1. For the event Aj, it holds that

lim
ρ→+∞P(Aj) = 0, ∀j ≥ 0. (11)

Proof. Taking both the relation of (9) and the definition
of Aj as (10) into consideration, as γ − 1 < 0, (11) can be
obtained directly.

In addition, let ESE and EET−SE denote the event that
s̃SE �= sSE where sSE consists of the symbols of the trans-
mit vector, which are detected in the SE search stage with
the early termination disabled and enabled, respectively.
Hence, peSE = P(ESE) and peET−SE = P(EET−SE).

Lemma 2. In considering the error probability of
the ET-FSD, we can first get peET−SE ≤ p(nT −
p)Ne exp

(
−ργ d2min

4

)
+ peSE. Thus, recalling from (4),

we are further able to obtain peET−FSD ≤ p(nT −
p)Ne exp

(
−ργ d2min

4

)
+peSE +peML, where Ne and dmin are

constants that can be found in the proof of this lemma.

Proof. See Appendix 1.

3.2 Diversity order analysis
To simplify the expression, evaluation of the performance
of MIMO detectors makes use of diversity order, which is
a metric constructed from the error probability and aver-
age received SNR [27] (an introduction to the diversity
order metric and its associated properties can be found in
Appendix 2).
Consequently, we define

dET−FSD � − lim
ρ→+∞

log peET−FSD
log ρ

,

dML � − lim
ρ→+∞

log peML
log ρ

,

dET−SE � − lim
ρ→+∞

log peET−SE
log ρ

,

(12)

where dET−FSD and dML denote the diversity order of the
ET-FSD and theML detector, respectively. Herein (12) can
be interpreted as

peET−FSD
.= ρ−dET−FSD ,

peML
.= ρ−dML ,

peET−SE
.= ρ−dET−SE .

(13)

Based on the above discussion, for the diversity order of
the ET-FSD in a single-user scenario, we can obtain the
following theorem.

Theorem 1. As the condition of triggering the early ter-
mination is appropriately constructed, i.e., η(j+1) ≥ ργ

with 0 < γ < 1, the ET-FSD specified by Algorithms 1 and
2 retains full diversity, i.e., dET−FSD = nR.

Proof. See Appendix 3.

3.3 Complexity behavior
Recalling from Algorithm 1, one should be aware that the
number of FE search of the ET-FSD, p, varies with the
channel matrix H. Thus, in the reminder of the paper, we
will use p(H) to denote p so as to emphasize that p(H) is
a function of H. Due to the early termination, the com-
plexity of the ET-FSD, ζp(H), is a random variable when
the channel matrix is random. For any p(H), it fulfills that
ζp(H) ∈ {ζ0, ζ1, · · · , ζp}, where ζi = O(mi), 0 ≤ i ≤ p.
Thus, ζ0 = O(1). Note that mi implies the number of
all possible candidates of s. This complexity measure is
the same as in a previous study [17]. We now investi-
gate the properties of ζp(H) in terms of the probability and
expectation of ζp(H).

Lemma 3. There exist the relations

lim
ρ→+∞P(ζp(H) �= ζ0) = lim

ρ→+∞P(A1) = 0, (14)

in particular,

P(ζp(H) �= ζ0) = P(A1) ≤̇ ρ−(1−γ )(nR−nT+1), (15)

and

lim
ρ→+∞ E(ζp(H)) = ζ0, (16)

where ≤̇ is defined similarly as .= in Appendix 2.

Proof. See Appendix 4.

It is apparent that, given Lemma 3, in the high-SNR
regime, the early termination employed by the ET-FSD
can efficiently reduce the expected complexity (compared
with the FSD) but seems to have no improvement on
the worst-case complexity, which is more significant for
practical hardware implementation.

4 Scale effect of ET-FSD
As a long run concept in microeconomics, ‘economies of
scale’ refers to reductions in unit cost as the size of a facil-
ity and the usage levels of other inputs increase [28]. In
previous studies [20,21], we proposed extracting the scale
effect so as to realize the reductions in complexity per user
of SEOD as the number of users increases. In this section,
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we investigate the scale effect of ET-FSD with a large
deviation principle-based analytical framework. For nota-
tional brevity, we use SCC-ET-FSD to represent the sum
complexity constrained ET-FSD in a multi-user scenario.

4.1 Complexity behavior in a multi-user scenario
In the point of view of worst-case complexity, this study
will show that in a multi-user scenarioc, the scale effect is
one positive factor that should be beneficial to the real-
ization of the ET-FSD (the corresponding analysis can be
found in the next subsection). Since the scale effect exists
in a multi-user scenario, we now focus on discussing the
complexity behavior of the ET-FSD in a multi-user sce-
nario where the MIMO receiver has to detect the signals
of n users with the ET-FSD performed for each user.
To simplify the analysis, we assume that different users

in a multi-user scenario suffer i.i.d. channel fading and
have the same average received SNR. Therefore, if we let
the random variable, ζp(H),j, denote the complexity of the
ET-FSD of the jth user, we will naturally get that ζp(H),j and
ζp(H),k are i.i.d. random variables as long as j �= k. This
assumption should be reasonable in practice. For instance,
different users within a base station might stay in different
locations, and the wireless channels they encounter could
have no spatial correlation. Moreover, current base sta-
tion systems always employ the open-loop power control;
hence, the average received SNR of each user at the base
station side can be adjusted to an identical value.

Definition 1. In a multi-user scenario, we define Sn �∑n
j=1 ζp(H),j as the sum complexity of the ET-FSD of n

users, while 1
nSn is just the complexity per user.

Obviously, Sn and 1
nSn are not constants but random

variables.

Assumption 1. We assume that, due to the run-time
limit, the MIMO receiver is only capable of performing the
ET-FSD for n users with the sum complexity being less than
Cn, i.e.,

Sn < Cn, (17)

where Cn is called the sum complexity constraint and
its subscript n denotes the number of users. Besides, we
assume that nζ0 < Cn < nζp, which means that the
sum complexity constraint is less than the worst-case sum
complexity nζp while larger than nζ0 that is the minimum
possible value of the sum complexity of ET-FSD with n
users.

Because the run-time limit is always demanding, we are
interested in how the ET-FSD behaves in a multi-user sce-
nario with the sum complexity constraint Cn that satisfies

nζ0 < Cn < nζp. Since nζ0 < Cn < nζp, Sn shall exceed
Cn with certain probability. Once Sn ≥ Cn occurs, to meet
the run-time limit, the ET-FSD of some users will have
to unconditionally quit before completely executing the
tree search of Algorithm 2, which can be seen as a detec-
tion outage that would cause performance degradation to
the corresponding users. Such detection outage is unde-
sirable; however, it is inevitable. The performance impact
brought by the outage event due to the occurrence of Sn ≥
Cn to the ET-FSD of each user will be quantified by means
of diversity order loss. The probability P(Sn ≥ Cn) attracts
us because it can reveal the complexity behavior of the ET-
FSD in a multi-user scenario. To make a fair comparison
between the results derived in a multi-user scenario and
those traditionally in a single-user scenario, it is better for
us to focus the analysis on the behavior of complexity per
user. Therefore, we will restrict our attention to studying
P( 1nSn ≥ 1

nCn).
To conveniently make use of the large deviation princi-

ple, the random variables below are introduced

Xp(H),j �
{

ζ0, if ζp(H),j = ζ0
ζp, if ζp(H),j �= ζ0

, (18)

where P(Xp(H),j = ζ0) = P(η1 ≥ ργ ) and P(Xp(H),j =
ζp) = P(ζp(H),j �= ζ0) = P(η1 < ργ ). Observing that
Xp(H),j ≥ ζp(H),j, we can further define and get

Sn �
n∑

j=1
Xp(H),j ≥ Sn. (19)

In the following, we will firstly investigate P( 1nSn ≥
1
nCn) and then extend to derive an upper bound of
P( 1nSn ≥ 1

nCn) by using (19). Several theoretical results
could be derived as follows.

Lemma 4 (Cramer’s theorem for empirical average
[29]). Since Xp(H),j satisfies

ϕ(t) � E
(
etXp(H),j

)
< +∞, ∀t ∈ R, (20)

it holds for all δ > 0 that

lim
n→+∞

1
n
logP

(
1
n
Sn ≥ E(Xp(H),j) + δ

)
= −I

(
E
(
Xp(H),j

) + δ
)
,

(21)

where

I(z) = sup
t∈R

(
zt − logϕ(t)

)
. (22)
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Lemma 5. For I
(
E
(
Xp(H),j

) + δ
)
in (21), its closed-form

expression can be given by

I
(
E
(
Xp(H),j

) + δ
)

=
[
P(A1) + δ

�ζ

]
× log

δ[1 − P(A1)]+ �ζ P(A1)[1 − P(A1)]
�ζ P(A1)[1 − P(A1)]−δP(A1)

− log
�ζ [1 − P(A1)]

�ζ [1 − P(A1)]−δ
,

where �ζ� ζp − ζ0, and P(A1) = 1 − P(Xp(H),j = ζ0) =
1 − P(ζp(H),j = ζ0).

Proof. See Appendix 5.

To make the result of Lemma 5 more comprehensi-
ble, we investigate I

(
E
(
Xp(H),j

) + δ
)
in both high-SNR

regime. When SNR ρ grows to +∞, P(A1) → 0 and 1 −
P(A1) → 1, I

(
E
(
Xp(H),j

) + δ
)
can thus be approximated

by I
(
E
(
Xp(H),j

) + δ
) ≈ δ

�ζ
log δ

�ζ −δ
− δ

�ζ
logP(A1) −

log( �ζ

�ζ −δ
). Hence, it is reasonable to conclude that at high

SNR, I
(
E
(
Xp(H),j

) + δ
)
is a positive number dominated by

−δ logP(A1)/ �ζ .
Furthermore, by utilizing Lemma 3, it can be obtained

that limρ→+∞
I(E(Xp(H),j)+δ)

log ρ
≥ δ(1−γ )(nR−nT+1)

�ζ
. Assum-

ing that g(n) is a function of n, we use the expression
g(n) � e−nγ with the specific symbol � to represent the
mathematic meaning that, for any ε > 0, there exists
a number N with which e−n(γ+ε) < g(n) < e−n(γ−ε),
∀n ≥ N .

Lemma 6. From (19) and (21), it follows that
P
( 1
nSn ≥ E(Xp(H),j) + δ

) � e−nI(E(Xp(H),j)+δ), where the
exact expression of I

(
E
(
Xp(H),j

) + δ
)
is given in Lemma 5.

For any ε > 0, the relationship in Lemma 6 allows us to
calculate

lim
ρ→+∞

n[I
(
E
(
Xp(H),j

) + δ
) − ε]

log ρ

≤ − lim
ρ→+∞

logP
( 1
nSn ≥ E(Xp(H),j) + δ

)
log ρ

≤ lim
ρ→+∞

n[I
(
E
(
Xp(H),j

) + δ
) + ε]

log ρ
,

which further yields

− lim
ρ→+∞

logP
( 1
nSn ≥ E(Xp(H),j) + δ

)
log ρ

= lim
ρ→+∞

nI
(
E
(
Xp(H),j

) + δ
)

log ρ

≥ nδ(1 − γ )(nR − nT + 1)
�ζ

.

The above also implies

P
(
1
n
Sn ≥ E(Xp(H),j) + δ

)
≤̇ ρ−nδ(1−γ )(nR−nT+1)/�ζ .

(23)

We can observe from Lemma 6 that, as
I
(
E
(
Xp(H),j

) + δ
)
is independent of n, the larger n is,

the smaller the probability P
( 1
nSn ≥ E(Xp(H),j) + δ

)
will be. Furthermore, given both relations in (19) and
(23), it can be obtained that P( 1nSn ≥ E(Xp(H),j) + δ)

is upper bounded by P( 1nSn ≥ E(Xp(H),j) + δ), and
P( 1nSn ≥ E(Xp(H),j) + δ) decays as n increases with speed
faster than ρ−nδ(1−γ )(nR−nT+1)/�ζ , i.e.,

P
(
1
n
Sn ≥ E(Xp(H),j) + δ

)
≤̇ ρ−nδ(1−γ )(nR−nT+1)/�ζ .

(24)

4.2 The existence of the scale effect
Assume that the sum complexity of the SCC-ET-FSD is
restricted by the constraint condition in (17). Since the
event 1

nSn < 1
nCn is identical to Sn < Cn, 1

nCn can be
regarded as the complexity constraint imposed on every
user.

Definition 2. If there exits Cn that satisfies 1
nCn < ζp,

the scale effect is said to exist if the SCC-ET-FSD for each
user can maintain full diversity.

It should be stressed here that to prove the existence of
the scale effect, we at same time need to think about the
sufficient condition for the existence of scale effect regard-
ing Cn. We are inspired by (24) to assume that Cn satisfies

C∗
n = nE(Xp(H),j) + nδ. (25)

Then let us continue to explore the diversity order of the
SCC-ET-FSD in the presence of the constraint as in (25).
Analogous to Lemma 3, we can get

lim
ρ→+∞ E(Xp(H),j) = ζ0. (26)
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Themeaning behind (25) is that the complexity per user,
1
nSn, would have the worst-case value

1
nC

∗
n = E(Xp(H),j)+δ

that tends to ζ0 + δ at an adequately high SNR.
Consequently, letAn denote the event of Sn that violates

the constraint of (25) as

An =
{
Sn | 1

n
Sn ≥ 1

n
C∗
n

}
=
{
Sn | 1

n
Sn ≥ E(Xp(H),j) + δ

}
= {

Sn | Sn ≥ C∗
n
}
,

(27)

which could lead to the detection outage. Moreover, let
An be the complement ofAn such thatAn = {Sn} \ An.
It is assumed that, without any sum complexity con-

straint, EET−FSD,k is the error event of the ET-FSD for the
kth user, which satisfies

P(EET−FSD,k) =P
(
EET−FSD,k|Sn ∈ An

)
P (Sn ∈ An)

+ P
(
EET−FSD,k|Sn ∈ An

)
P
(
Sn ∈ An

)
.

(28)

Next, under the constraint of (25), let E∗
SCC−ET−FSD,k be

the error event of the SCC-ET-FSD for the kth user, which
can be expressed as

P(E∗
SCC−ET−FSD,k)

= P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
P (Sn ∈ An)

+ P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
P
(
Sn ∈ An

)
,

(29)

where the probability P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
is

directly affected by the detection outage.

Lemma 7. Let dE∗
SCC−ET−FSD,k

be the diversity
order corresponding to P(E∗

SCC−ET−FSD,k) such that

P(E∗
SCC−ET−FSD,k)

.= ρ
−dE∗

SCC−ET−FSD,k .
It can be obtained that

min
(
nR,

nδ(1 − γ )(nR − nT + 1)
�ζ

)
≤ dE∗

SCC−ET−FSD,k
≤ nR.

(30)

Proof. See Appendix 6.

Moreover, according to the proof procedure of Lemma
7, we find that, if nδ(1−γ )(nR−nT+1)

�ζ
≤ nR, the detection

outage due to the occurrence of event Sn ≥ Cn might
cause diversity order loss to the SCC-ET-FSD for every
user; otherwise no loss of diversity order would happen.
Therefore, one of the most important results of this study
can be obtained as follows.

Theorem 2. We can expect dE∗
SCC−ET−FSD,k

= nR, i.e., the
SCC-ET-FSD in the presence of the constraint of (25) main-
tains full diversity for every user as long as n is sufficiently
large such that

n >
nR �ζ

δ(1 − γ )(nR − nT + 1)
. (31)

Proof. Theorem 2 stems from Lemma 7 in a straightfor-
ward manner.

It should be noted here that Theorem 2 shows one suf-
ficient condition for the SCC-ET-FSD to achieve the scale
effect, which at same time validates the existence of the
scale effect in the SCC-ET-FSD. However, C∗

n in the form
of (25) implicitly varies with ρ, which then is neither fixed
nor intuitive enough. This motivates us to think of other
better sufficient condition for the existence of scale effect
with respect to the sum complexity constraint Cn. Thus,
we simply assume that Cn satisfies

C�
n = nτ , (32)

where τ ∈ (ζ0, ζp) is fixed, regardless of ρ or other system
parameters.
Then let Bn denote Bn =

{
Sn | 1

nSn ≥ 1
nC

�
n
}

={
Sn | 1

nSn ≥ τ
}
, and correspondingly, let Bn be the com-

plement of Bn, i.e., Bn = {Sn} \ Bn.
Hereafter, we would like to let E�

SCC−ET−FSD,k be the
error event of the SCC-ET-FSD for the kth user under the
constraint of (32), which can be written as

P(E�

SCC−ET−FSD,k)

= P
(
E�

SCC−ET−FSD,k|Sn ∈ Bn
)
P (Sn ∈ Bn)

+ P
(
E�

SCC−ET−FSD,k|Sn ∈ Bn
)
P
(
Sn ∈ Bn

)
,

(33)

where the detection outage impacts P(E�

SCC−ET−FSD,k) by
affecting the probability P

(
E�

SCC−ET−FSD,k|Sn ∈ Bn
)
.

By applying the approach of analyzing the vanishing
gap to the ML performance developed in [13], the perfor-
mance gap between the SCC-ET-FSD with the constraint
in (32) and the ML detector can be defined in the quanti-
fied form as

gk(ρ) �
P(E�

SCC−ET−FSD,k)

peML
,

where generally gk(ρ) ≥ 1 since the ML detector has the
optimal performance. Furthermore, gk(ρ) has the relation
as (34).
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If we take (33) into consideration, let δτ = 1
2 (τ − ζ0) for

any τ and then let Aτ
n = {

Sn | 1
nSn ≥ E(Xp(H),j) + δτ

}
. It

should be clear according to (26) that E(Xp(H),j)+δτ tends
to be less than τ eventually with increasing ρ. This implies
that limρ→+∞ P(Sn∈Bn)

peML
≤ limρ→+∞

P(Sn∈Aτ
n)

peML
.

gk(ρ) =
P
(
E�

SCC−ET−FSD,k |Sn ∈ Bn
)
P (Sn ∈ Bn)

peML

+
P
(
E�

SCC−ET−FSD,k |Sn ∈ Bn
)
P
(
Sn ∈ Bn

)
peML

≤ P (Sn ∈ Bn)

peML

+
P
(
E�

SCC−ET−FSD,k |Sn ∈ Bn
)
P
(
Sn ∈ Bn

)
peML

.

(34)

As long as the number of users, n, satisfies (31) in
which case P

(
Sn ∈ Aτ

n
)
<̇ρ−nR , the above will lead to

limρ→+∞ P(Sn∈Bn)
peML

= 0 since P (Sn ∈ Bn) tends to zero at
a faster rate than peML.
On the other hand, similar in essence to (56), it holds

that

lim
ρ→+∞

P
(
E�

SCC−ET−FSD,k|Sn ∈ Bn
)
P
(
Sn ∈ Bn

)
peML

≤ lim
ρ→+∞

P(EET−FSD,k)

peML
= 1.

Therefore, our derivation would arrive at

lim
ρ→+∞ gk(ρ) = 1. (35)

This means that by following the analytical framework
of [13], P(E�

SCC−ET−FSD,k) has a vanishing gap to peML. To
be more specific, the performance degradation caused by
the detection outage due to the occurrence of the event
Sn ∈ Bn is insignificant in comparison with the error
probability of the ML decoder.

Theorem 3 (Extension of (35)). Given the sum com-
plexity constraint in the form C�

n = nτ (see (32)
as well), let dE�

SCC−ET−FSD,k
denote the diversity order

related to P(E�

SCC−ET−FSD,k), i.e., P(E�

SCC−ET−FSD,k)
.=

ρ
−d

E�
SCC−ET−FSD,k . It would hold that dE�

SCC−ET−FSD,k
= nR if n

is sufficiently large to meet (31).

Both Theorems 2 and 3 show the existence of the scale
effect. Moreover, from Theorem 3, one shall find that if
the complexity per user of the SCC-ET-FSD is limited by

some fixed τ ∈ (ζ0, ζp), since ζ0 = O (1) is polynomial
complexity, τ can be chosen as close as possible to ζ0 such
that the complexity constraint per user of the SCC-ET-FSD
could have a polynomial d value while each user of the
SCC-ET-FSD still maintains full diversity.

4.3 The benefit of scale effect
It is not easy to (theoretically) ensure full-diversity MIMO
detection with polynomial complexity, while in a multi-
user scenario, we propose to take advantage of the scale
effect as a positive factor to improve MIMO detection.
How can the scale effect improve MIMO detection?
Theorems 2 and 3 give us the answer. Especially, in view
of Theorem 2, the diversity order of the SCC-ET-FSD is
affected by n as (30). As long as n is large enough to
meet (31), the SCC-ET-FSD can maintain full diversity
under the constraint of (25), C∗

n , that tends to nζ0 + nδ

when the average received SNR approaches +∞. Further-
more, in view of Theorem 3, when the sum complexity
constraint of the SCC-ET-FSD satisfies C�

n = nτ as (32),
the detection outage incurs performance degradation that
vanishes considerably fast with increasing ρ, in which case
the error probabilities of the SCC-ET-FSD for each user
and the ML detector have a vanishing gap as (35). Herein,
τ is fixed and can arbitrarily approach ζ0 where ζ0 =
O(1) is polynomial. It is also obvious that, under the con-
straints of both (25) and (32), the scale effect can always be
exploited.

5 Numerical results
This section is devoted to presenting numerical results
that help make the analytic outcomes achieved above
more intuitive. Throughout the rest of this section, with-
out loss of generality, we assume that the complexity of
a single ET-FSD is ζp if the initial number of levels of
the FE stage is p. Meanwhile, the specification of MIMO
system can be referred to Section 1.1 such that the path
between each transmitter and receiver antenna suffers
Rayleigh fading. Within the Monte Carlo simulation, 106
realizations of channel are used.

5.1 Diversity order of ET-FSD
The development of the ET-FSD starts the theoretic anal-
ysis of the scale effects, where the ET-FSD is proven
by Theorem 1 to possess full diversity under the con-
dition specified by line 9 of Algorithm 1. In Figure 2,
the error probabilities of the (original) FSD [9] and
the ET-FSD are compared with each other under three
system deployments. We can observe that there is no
evident degradation in performance caused by the intro-
duction of early termination. At this point, it is ensured
that the ET-FSD still has full diversity as announced
in Theorem 1.
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Figure 2 The curves of error probability. The modulation scheme used is QPSK. The number of levels of the FE stage is p = 	√nT
 − 1 for FSD,
and the initial number of levels of the FE stage is p̄ = 	√nT
 − 1 for ET-FSD. This figure shows the numerical result for Theorem 1.

5.2 Asymptotic behavior of P(A1)

According to Lemma 3, P(A1) tends to 0 as ρ →
+∞, which decays faster than ρ−(1−γ )(nR−nT+1). Several
results of this study (including Lemma 6 and Theorems
2 and 3) are directly or indirectly affected by the asymp-
totic behavior of P(A1). Hence, we pay special atten-
tion to the numerical results of P(A1). In the upper
subgraph of Figure 3, the curves of −10 log10(P(A1))
against 10 log10(ρ) are shown for three system deploy-
ments, the slopes of which grow large and converge at
some constant values as the average SNR ρ increases
within the regime 0 to 60 of 10 log10(ρ). Next, we
apply the Matlab tools of polynomial curve fitting to
acquire the fitting curves for −10 log10(P(A1)) against
10 log10(ρ), as may be seen in the upper subgraph of
Figure 3 as well. Then by computing the slopes of the
fitting curves via the derivative of the functions asso-
ciated with the fitting curves, the approximate slopes
can be plotted as the lower subgraph of Figure 3, which
approach but are not larger than (1 − γ )(nT − nR +
1) = 1/2. When − limρ→+∞ log10 P(A1)

log10 ρ
exists, the slope

of the curve of −10 log10(P(A1)) against 10 log10(ρ)

shall be asymptotic to − log10 P(A1)
log10 ρ

as ρ → +∞.
Since in the lower subgraph of Figure 3 the slopes are
already shown to converge at a constant value 1/2, it
implies that − limρ→+∞ log10 P(A1)

log10 ρ
would also converge

at 1/2. This is in accordance with what we can expect
from Lemma 3.

5.3 Asymptotic behavior of E(Xp(H))

As we can see in (26), E(Xp(H),j) → ζ0 as ρ → +∞.
Now it is verified again via Figure 4 that (26) holds
true. Given this asymptotic behavior of E(Xp(H)), we
would also be aware that the constraint of sum com-
plexity, C∗

n , which is set as (25), converges at nζ0 +
nδ at high SNR. In other words, 1

nC
∗
n → ζ0 + δ as

ρ → +∞. Thus, in this case, we can expect that the
complexity constraint per user tends to ζ0 + δ as ρ

increases.

5.4 Statistics of P
(
1
nSn ≥ E(Xp(H),j) + δ

)

Based on (19) and (27), it can be found that P (Sn ∈ An) ≤
P
( 1
nSn ≥ E(Xp(H),j) + δ

)
, where P (Sn ∈ An) affects the

error probability of the SCC-ET-FSD for each user as (29).
Lemma 6 reveals the property of P

( 1
nSn ≥ E(Xp(H),j) + δ

)
which is a key point to prove the existence of the scale
effect. Therefore, we present herein the results produced
by computer simulations in Figures 5 and 6, where for
the purpose of notational simplification, it is defined as
P′ � P

( 1
nSn ≥ E(Xp(H),j) + δ

)
and P′′ � e−nI(E(Xp(H),j)+δ).

In Figure 5, if 20 ≤ 10 log10(ρ) ≤ 90, the value of
P′ is mostly less than P′′ under the same system con-
figuration with the same ρ since in all the considered
system configurations nT = nR such that �ζ = ζp −
ζ0 grows as nR increases, which might be why we see
both P′ and P′′ of nT = nR = 8 system as the largest
among the three systems. In any case, from Figure 5,
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Figure 3 The curves show the asymptotic behavior of P(A1)with the eventA1 defined as (10). The modulation scheme used is QPSK. γ is set
to 1/2. The initial number of levels of the FE stage is p̄ = 	√nT
 − 1 for ET-FSD. This figure shows the numerical result for Lemma 3.

P′ = P
( 1
nSn ≥ E(Xp(H),j) + δ

)
seems to be less than P′′ =

e−nI(E(Xp(H),j)+δ). In Figure 6, by setting n = 32, 64, or
160, the curves of P′ = P

( 1
nSn ≥ E(Xp(H),j) + δ

)
, P′′ =

e−nI(E(Xp(H),j)+δ), and e−nδ loge P(A1)/�ζ become closer as n
increases. This is coincident with the theoretical results
derived earlier.

6 Conclusion

This paper provides the insights into the scale effect of
ET-FSD. Under the scale effect, the worst-case complex-
ity per user of ET-FSD could decrease as the number of
users increases without loss of the diversity order. Within
the study, the large deviation principle is used as an
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Figure 4 The expectation of Xp(H), E(Xp(H)) against 10 log10(ρ). The initial number of levels of the FE stage is p̄ = 	√nT
 − 1. Note that Xp(H),j

is defined in (18). This figure shows the numerical result for (26).
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Figure 5 P′ � P
(
1
n Sn ≥ E(Xp(H),j) + δ

)
and P′′ � e−nI(E(Xp(H),j)+δ) against 10 log10(ρ)with n = 16. The initial number of levels of the FE

stage is p̄ = 	√nT
 − 1 for ET-FSD.

appropriate and powerful tool to prove the existence of
the scale effect.

Endnotes
a Within this study, unless otherwise stated, the

complexity of MIMO detection is measured by the
number of all possible candidates of s.

b The polynomial complexity constraint stands for the
complexity constraint of MIMO detection being no more
than a polynomial function in either nT orm.

c For the multi-user scenario of MIMO system, we
assume that all users have the same number of antennas
and different users operate on orthogonal resources via
time division multiple access or frequency division
multiple sccess technologies.

d Even if we take the length of s candidate or the
complexity of ZF estimate into consideration, the
complexity related to ζ0 is still polynomial.

Appendices
Appendix 1
Proof of Lemma 2
Proof. It should be emphasized that, for 0 ≤ j ≤ p − 1,

A0A1 · · ·Aj can represent the event wherein Algorithm 1
encounters early termination in the jth iteration. Mean-
while, the event wherein no early termination happens
in Algorithm 1 can be denoted by A0A1 · · ·A(p−2)A(p−1).
Moreover, the events A0A1 · · ·Aj with 0 ≤ j ≤ p − 1

and A0A1 · · ·A(p−2)A(p−1) are mutually exclusive. Then, it
follows from [30] that

peSE =P(ESE,A0) + P(ESE,A0A1) + . . .

+ P
(
ESE,A0A1 · · ·A(p−2)A(p−1)

)
+ P

(
ESE,A0A1 · · ·A(p−2)A(p−1)

)
,

(36)

and

peET−SE =P(EET−SE,A0) + P(EET−SE,A0A1) + . . .

+ P
(
EET−SE,A0A1 · · ·A(p−2)A(p−1)

)
+ P

(
EET−SE,A0A1 · · ·A(p−2)A(p−1)

)
,
(37)

where P(·, ·) denotes the joint probability of two joint
events.
Concerning the items in (36) and (37), it follows that

P
(
EET−SE,A0A1 · · ·A(p−2)A(p−1)

)
= P(ESE,A0A1 · · ·A(p−2)A(p−1)) < peSE.

(38)

Given that Proposition 4.2 of Section 2 in [31] states that
if one event is contained in another, then the probability
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Figure 6 P′ � P
(
1
n Sn ≥ E(Xp(H),j) + δ

)
, P′′ � e−nI(E(Xp(H),j)+δ) and e−nδ loge P(A1)/�ζ against− loge P(A1). The initial number of levels of

the FE stage is p̄ = 	√nT
 − 1 for ET-FSD. This figure shows the numerical result for Lemma 6.

of the former is no larger than the probability of the latter,
(37) leads to

peET−SE ≤P
(
EET−SE,A0

) + P(EET−SE,A1) + . . .

+ P
(
EET−SE,A(p−1)

)
+ P

(
EET−SE,A0A1 · · ·A(p−2)A(p−1)

)
,
(39)

where because of EET−SE = ⋃nT
i=p+1{̃sai �= sai},

P(EET−SE,Aj)

≤
nT∑

i=p+1
P(̃sai �= sai , η(j+1) ≥ ργ ).

(40)

In the above, with p + 1 ≤ i ≤ nT, s̃ai is the element of
s̃SE, while the corresponding sai is the element of sSE.
If A0A1 · · ·A(j−1) happens and the ET-FSD meets

η(j+1) ≥ ργ , the event Aj will occur and p will be set to j
by Algorithm 1 before quitting the loop of preprocessing
for the SE stage, i.e., p := j. Then with p + 1 ≤ i ≤ nT,
let η′

ai denote the post-processing SNR of the ZF estimate
for the aith transmit symbol, sai , in the SE search stage
under the condition η(j+1) = x with x ≥ ργ . In this case,
due to the definition of η(j+1) as (5), it should be known
that η(j+1) = η(p+1) ≤ η′

ai . Hence, there exist some x′ ≥ x
such that P(̃sai �= sai |η(j+1) = x) = P(̃sai �= sai |η′

ai =
x′). Herein for each transmit symbol, the ZF estimate in

the SE search always utilizes the ML symbol detection.
Therefore, it satisfies that

P
(̃
sai �= sai |η(j+1) = x

) = P
(̃
sai �= sai |η′

ai = x′)
= NeQ

⎛⎝√
x′d2min

2

⎞⎠ ≤ Ne exp
(

−x′d2min
4

)

≤ Ne exp
(

−xd2min
4

)
,

(41)

where Ne and dmin are the number of nearest neighbors
and the minimum distance of separation of the underly-
ing scale constellation, respectively [1,30]. To obtain the
inequality of (41), the Chernoff bound has been used, i.e.,
Q(x) ≤ exp(−x2/2). Therefore, we can have

P
(̃
sai �= sai , η(j+1) ≥ ργ

)
=

+∞∫
ργ

P(̃sai �= sai |η(j+1) = x)fη(j+1) (x)dx

≤ Ne exp
(

−ργ d2min
4

) +∞∫
ργ

fη(j+1) (x)dx

≤ Ne exp
(

−ργ d2min
4

)
.

(42)

In view of (42), the relation of (40) may also be expressed
as

P(EET−SE,Aj) ≤ (nT − p)Ne exp
(

−ργ d2min
4

)
. (43)
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Moreover, the combination of (43) with (38) and (39)
leads to

peET−SE ≤ p(nT − p)Ne exp
(

−ργ d2min
4

)
+ P(EET−SE,A0A1 · · ·A(p−2)A(p−1))

≤p(nT − p)Ne exp
(

−ργ d2min
4

)
+ peSE.

(44)

By combining (9) and (44), we can conclude that set-
ting the judging criterion for early termination as (8) is
reasonable since ργ with 0 < γ < 1 can make the rela-
tions in (9) and (44) able to simultaneously establish tight
upper bounds (which decay rapidly as ρ increases) for the
associated probabilities, P(η(j+1) < ργ ) and peET−SE.
Therefore, Lemma 2 is verified.

Appendix 2
Background knowledge of diversity order
Definition 3. Suppose there is a function f (ρ). The

symbol .= is always employed to simplify the expres-
sions of exponential equality as f (ρ)

.= ρ−d ⇔
limρ→+∞ log f (ρ)

log ρ
= −d. If f (ρ) is the error probability of

some MIMO detector and ρ denotes average received SNR,
d will be the diversity order [27].

Meanwhile, the notation ≤̇ and <̇ follow after replacing
= with ≤ and < in above the definition, respectively.

Lemma 8. With the functions f1(ρ)
.= ρ−d1 and f2(ρ)

.=
ρ−d2 , for f (ρ) = f1(ρ) + f2(ρ), it is established that

f (ρ)
.= ρ−min(d1,d2), (45)

wheremin(·, ·) returns the minimum of two inputs.

Proof. Without loss of generality, we assume d1 ≥ d2.
Thus,

lim
ρ→+∞

log f (ρ)

log ρ
= lim

ρ→+∞
log(f1(ρ) + f2(ρ))

log ρ

= lim
ρ→+∞

log f2(ρ)

log ρ

+ lim
ρ→+∞

log(1 + f1(ρ)/f2(ρ))

log ρ

= − d2 = −min(d1, d2).

Lemma 9. Having f1(ρ)
.= ρ−d1 and f2(ρ)

.= ρ−d2 , if
f1(ρ) ≤ f2(ρ) for 0 < ρ < +∞, it will hold true that

d1 ≥ d2. (46)

Proof. We can prove (46) by d1 = − limρ→+∞ log f1(ρ)

log ρ
≥

− limρ→+∞ log f2(ρ)

log ρ
= d2.

Appendix 3
Proof of Theorem 1
Proof. Recalling from (4), keeping (13) in mind and

utilizing (45) and (46), we get

min(dML, dET−SE) ≤ dET−FSD ≤ dML = nR, (47)

where dET−FSD ≤ dML is true because the ML detector
has the optimal performance. Thus, the diversity order of
the ET-FSD will not go beyond that of the ML detector.
Once more applying (45) and (46) to (44), the following

can be obtained:

dET−SE ≥ min(+∞,− lim
ρ→+∞

log peSE
log ρ

). (48)

Since peSE corresponds to the probability of the error
event s̃SE �= sSE in the FSD (or equivalently, the ET-
FSD without early termination), by referring to [9], we get
− limρ→+∞ log peSE

log ρ
= (nR − nT)(p + 1) + (p + 1)2. With

the special setting of p as (3), it is true that (nR − nT)(p +
1) + (p + 1)2 ≥ nR.
Therefore, (48) yields dET−SE ≥ nR, and (47) finally

reduces to

dET−FSD = nR. (49)

We can conclude that the ET-FSD is able to achieve full
diversity.

Appendix 4
Proof of Lemma 3
Proof. For (14), as the event ζp(H) = ζ0 is identical to

another event η1 ≥ ργ according to (10), we can get
P(ζp(H) = ζ0) = P(A1) = 1 − P(A1). Due to Lemma 1,
P(A1) → 0 or P(A1) → 1 as ρ → +∞.
Then taking the logarithm of (9) and then dividing by

log ρ, we could derive (15).
For (16), the expectation of ζp(H) can be given by

E
(
ζp(H)

) =P
(
A0

)
ζ0 + P

(
A0A1

)
ζ1 + . . .

+ P
(
A0A1 · · ·A(p−2)A(p−1)

)
ζ(p−1)

+ P
(
A0A1 · · ·A(p−2)A(p−1)

)
ζp

≤P
(
A0

)
ζ0 + P(A0)ζ1 + . . .

+ P(A(p−2))ζ(p−1) + P(A(p−1))ζp.

Then by applying Lemma 1, (16) can be verified.
This completes the proof of Lemma 3.
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Appendix 5
Proof of Lemma 5
Proof. Given the definition of (18) and (20), we get

ϕ(t) = P(Xp(H),j = ζ0)etζ0 + P(Xp(H),j = ζp)etζp. (50)

Also, we can have P(Xp(H),j = ζ0) = 1 − P(A1). As a
consequence, (50) becomes

ϕ(t) = [1 − P(A1)] etζ0 + P(A1)etζp. (51)

Define

f (t) �
[
E(Xp(H),j) + δ

]
t − logϕ(t), (52)

where E(Xp(H),j) =[1−P(A1)] ζ0 +P(A1)ζp. With the first
derivative of f (t), we can compute the critical point of f (t)
through the equation as

f ′(t) = [1− P(A1)] ζ0 + P(A1)ζp + δ − ϕ′(t)
ϕ(t)

= 0. (53)

Incorporating ϕ(t) of (51) into (53) and organizing
the items, we have δ[1 − P(A1)]+δP(A1)et(ζp − ζ0) =
−P(A1)[1 − P(A1)] (ζp − ζ0)(1 − et(ζp − ζ0)).
Having�ζ = ζp−ζ0, the above equation results in et�ζ =

δ[1−P(A1)]+�ζ P(A1)[1−P(A1)]
�ζ P(A1)[1−P(A1)]−δP(A1)

, from which the critical point of
f (t) can be computed as

tcp = 1
�ζ

log
δ[1 − P(A1)]+ �ζ P(A1)[1 − P(A1)]

�ζ P(A1)[1 − P(A1)]−δP(A1)
.

(54)

Investigating the second derivative of f (t), it can be
obtained that

f ′′(t) = −
(

ϕ′(t)
ϕ(t)

)′
= −ϕ′′(t)

ϕ(t)
+

(
ϕ′(t)
ϕ(t)

)2

= − P(A1)[1 − P(A1)] et(ζ0+ζp)(ζ0 − ζp)
2

(ϕ(t))2
< 0.

Hence, it is apparent that the critical point obtained
by (54) yields the maximum value of f (t), which can be
written as (55).

fmax = f
(

1
�ζ

log
δ[1 − P(A1)]+ �ζ P(A1)[1 − P(A1)]

�ζ P(A1)[1 − P(A1)]−δP(A1)

)
= [1 − P(A1)] ζ0t + P(A1)ζp t

+ δt − ζ0t − log([1 − P(A1)]

+ P(A1)et�ζ )

∣∣∣∣∣t=(
1

�ζ
log

δ[1−P(A1)]+�ζ P(A1)[1−P(A1)]
�ζ P(A1)[1−P(A1)]−δP(A1)

)

=[P(A1) + δ

�ζ

]

× log
δ[1 − P(A1)]+ �ζ P(A1)[1 − P(A1)]

�ζ P(A1)[1 − P(A1)]−δP(A1)

− log
( �ζ [1 − P(A1)]
�ζ [1 − P(A1)]−δ

)
.

(55)

It should be clear from a look at the items on the
right-hand side of the second equality in (55) that [1 −
P(A1)] ζ0t + P(A1)ζp t + δt = P(A1)(ζp − ζ0)t + ζ0t + δt.
It can also be observed that log ([1 − P(A1)] +P(A1)

et�ζ
) = log

(
1 + P(A1)(et�ζ − 1)

)
.

By replacing t with the critical point of (54), we get
log([1 − P(A1)]+P(A1)etcp�ζ ) = log( �ζ [1−P(A1)]

�ζ [1−P(A1)]−δ
).

Therefore, the exact expression of the maximum value
of f (t), i.e., fmax, is eventually obtained by (55). By recalling
(22), (52), and (55), we obtain I

(
E
(
Xp(H),j

) + δ
) = fmax.

Thus, the validation of Lemma 5 is established.

Appendix 6
Proof of Lemma 7
Proof. Based on the conclusion of (49), it follows that

P(EET−FSD,k)
.= ρ−nR .

Then in view of (28), (45), and (46), it suffices to show
that P

(
EET−FSD,k|Sn ∈ An

)
P
(
Sn ∈ An

)
≤̇ ρ−nR .

Provided that, when Sn ∈ An, no detection out-
age occurs, which means that the sum complex-
ity constraint has no effect on the detected result,
it is true that P

(
EET−FSD,k|Sn ∈ An

)
P
(
Sn ∈ An

)
=

P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
P
(
Sn ∈ An

)
.

Thus,

P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
P
(
Sn ∈ An

)
≤̇ ρ−nR .

(56)

For P (Sn ∈ An), by referring to (19), we can get

P (Sn ∈ An) =P
(
1
n
Sn ≥ E(Xp(H),j) + δ

)
≤P

(
1
n
Sn ≥ E(Xp(H),j) + δ

)
.

(57)

As P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
≤ 1, together with (23)

and (57), it is established that

P
(
E∗
SCC−ET−FSD,k|Sn ∈ An

)
P (Sn ∈ An)

≤̇ P (Sn ∈ An) ≤̇ P
(
1
n
Sn ≥ E(Xp(H),j) + δ

)
≤̇ ρ−nδ(1−γ )(nR−nT+1)/�ζ .

(58)

Therefore, by combining (56) with (58) while having
(45), the proof of Lemma 7 is complete.
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