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Abstract

Optimal power allocation for multiple-input multiple-output radar waveform design subject to combined peak and
sum power constraints using two different criteria is addressed in this paper. The first one is by maximizing the
mutual information between the random target impulse response and the reflected waveforms, and the second
one is by minimizing the mean square error in estimating the target impulse response. It is assumed that the radar
transmitter has knowledge of the target’s second-order statistics. Conventionally, the power is allocated to transmit
antennas based on the sum power constraint at the transmitter. However, the wide power variations across the
transmit antenna pose a severe constraint on the dynamic range and peak power of the power amplifier at each
antenna. In practice, each antenna has the same absolute peak power limitation. So it is desirable to consider the
peak power constraint on the transmit antennas. A generalized constraint that jointly meets both the peak power
constraint and the average sum power constraint to bound the dynamic range of the power amplifier at each
transmit antenna is proposed recently. The optimal power allocation using the concept of waterfilling, based on
the sum power constraint, is the special case of p = 1. The optimal solution for maximizing the mutual information
and minimizing the mean square error is obtained through the Karush-Kuhn-Tucker (KKT) approach, and the
numerical solutions are found through a nested Newton-type algorithm. The simulation results show that the
detection performance of the system with both sum and peak power constraints gives better detection
performance than considering only the sum power constraint at low signal-to-noise ratio.
1. Introduction
Multiple-input multiple-output (MIMO) radar is an
emerging technology that has significant potential for
advancing the state of the art of modern radar. The ap-
plication of information theory to radar was proposed
more than 50 years ago by Woodward and Davies [1,2].
In [3], maximizing the mutual information (MI) between
a Gaussian-distributed extended target reflection and the
received signal was suggested. This is believed to be the
first to apply information theory to radar waveform de-
sign. An information theoretic approach is used in [4] to
design radar waveforms suitable for simultaneously esti-
mating and tracking the parameters of multiple targets.
The authors in [5] have introduced a criterion for wave-
form selection in adaptive radar and other sensing appli-
cations, which are also based on information theory.
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There exist some recent works in the area of radar tar-
get identification and classification, which apply both in-
formation theoretic and estimation theoretic criteria for
optimal waveform design. For example, the research in
[6] considered waveform design for MIMO radar (e.g.,
see [7-15]) by optimizing two criteria: maximization of
the MI and minimization of the minimum mean square
error (MMSE). It was demonstrated that these two dif-
ferent criteria yield essentially the same optimum solu-
tion. Further, this is also true for an asymptotic
formulation [6], which requires only the knowledge of
power spectral density (PSD). However, it might be very
difficult to obtain perfect knowledge of the PSD in prac-
tice. In such a circumstance, robust procedures, which
can overcome those problems by incorporating a model-
ing uncertainty into the design from the outset [16],
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seem quite attractive. For the design of optimal signal
for the estimation of correlated MIMO channels, the in-
formation theoretic and estimation theoretic criteria are
used in [17].
Naghibi and Behnia [18] have investigated the problem

of waveform design for target classification and estima-
tion in the presence of clutter using a MMSE estimator
for widely separated and closely spaced antenna configu-
rations. It is shown that the waveform design that
resulted from MI, MMSE, and normalized mean square
error is all different when the noise is assumed to be col-
ored and when the target and noise statistics are not
perfectly known [19]. We have proposed a waveform de-
sign technique for minimizing the mean square error for
estimating the target impulse response in [20], and it has
not been addressed before.
The optimal solution for waveform design employs

waterfilling that uses sum power constraint (SPC) at the
transmitter to allocate limited power appropriately [6].
However, it results in wide power variations across the
transmit antennas, and it poses a severe constraint on
the dynamic range and peak power amplifier at each an-
tenna. In a multi-antenna system where each antenna
has the same power amplifier, this would result in peak
power clipping. Recently, a transmit beamformer design
is proposed under the uniform elemental power con-
straint. It has been shown that transmit beamforming
with the uniform elemental power constraint has better
bit error rate performance compared to transmit
beamforming with peak power clipping [21]. Another
simple way to control the dynamic range of the power
amplifier at each transmit antenna is by imposing the
per-antenna power constraint such that the maximum
eigenvalue of the channel power matrix is less than the
specified per-antenna power [22]. In a multi-antenna
base station where each antenna has its own power
amplifier in its analog front-end and is limited individu-
ally by the linearity of the power amplifier, a power con-
straint imposed on a per-antenna basis is more realistic
[23]. The focus of this paper is to design a beamforming
vector that minimizes the per-antenna power on each
transmit antenna while enforcing a set of SINR con-
straints on each user.
Recently, the p-norm constraint which jointly meets

the sum power constraint and the maximum average
individual power constraint has been proposed [24].
From a mathematical point of view, the sum power
constraint turns out to be the case of a family of con-
straints with p = 1, and the equal power constraint
turns out as p = ∞. Therefore, the p-norm power con-
straint seems to be a very powerful measurement to
characterize a more general constraint for MIMO sys-
tem. The directional derivative method is shown to be
an efficient method to solve the optimum linear
transceivers, subject to the p-norm constraint [24,25].
In [25], the mutual information between the input and
output of Gaussian vector channels is considered, given
the channel state information.
This paper addresses the problem of designing wave-

forms for MIMO radar that maximizes mutual informa-
tion and that minimizes the mean square error in
estimating the target impulse response subject to the p-
norm constraint assuming that the radar transmitter has
knowledge of the target PSD. The target PSD could be
obtained through some feedback mechanism referred to
as covariance feedback. The focus of this paper is to
meet the peak power constraint and the sum power con-
straint to a maximum possible extent. The rest of this
paper is organized as follows: In Section 2, the signal
model is presented. The general concept of p-norm is
introduced in Section 3. The problem formulation is
briefed in Section 4. The waveform design with the p-
norm constraint using the Karush-Kuhn-Tucker (KKT)
approach is derived in Section 5. Detection performance
of the MIMO radar waveform is considered in Section 6,
and a numerical example is given in Section 7. Section 8
concludes this paper.

1.1. Notation
Bold uppercase and lowercase letters denote matrices
and vectors, respectively. Superscripts {.}H and {.}T are
used to denote the complex conjugate transpose and
transpose of a matrix, respectively. det{.} and tr{.} repre-
sent the determinant and trace of a matrix, respectively.
The symbol " ‖ ∘ ‖ " denotes the Euclidean norm of a vec-
tor, and diag{a} denotes a diagonal matrix with its
diagonal given by the vector a. Complex Gaussian distri-
bution with mean m and covariance matrix R is denoted
by N m;Rð Þ . Finally, (a)+ denotes the positive part of a,
i.e., (a)+ = max[0,a].

2. System model
Consider a MIMO radar equipped with M transmitting
antenna elements and N receiving antenna elements
with extended target. The target is assumed to be point-
like between each pair of transmit and receive antennas.
The received signal component at the nth antenna elem-
ent in the kth time instant is expressed as

yn kð Þ ¼
XM
i¼1

hinsi kð Þ þ ξn kð Þ; k ¼ 1;…;K ; ð1Þ

where si(k) represents the transmit signal at the ith
transmit antenna, hin is the target impulse response from
the ith transmit antenna to the nth receive antenna, and
ξn(k) is the noise in the nth receive antenna. The compo-
nents of the noise vector are assumed to be independent
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and identically distributed (i.i.d.) Gaussian random vari-
ables with zero mean and variance σξ

2. In vector form,
the signal model is written as

yn kð Þ ¼ hn
T s kð Þ þ ξn kð Þ; ð2Þ

where hn = [h1n, h2n,…, hMn]
T and s(k) = [s1(k), s2(k),…,

sM(k)]
T. The received signal at the nth receive element

obtained by stacking the K samples for an observation
time of T seconds in a row is given by

yn ¼ hn
TST þ ξn ð3Þ

where S = [s(1), s(2),…, s(K)]T. It is assumed that the
channel is unchanged during the observation time of T
seconds. Collecting the received waveforms from all the
N receive elements, the received signal in matrix form
can be written as

Y ¼ SH þ ξ; ð4Þ
where Y = [y1

T, y2
T,…, yN

T] is Gaussian distributed with zero
mean and covariance (SRHS

H + σξ
2Ik), the columns of

H = [h1, h2,…, hN] are i.i.d. with distribution N 0;RHð Þ
and the columns of ξ = [ξ1

T, ξ2
T,…, ξN

T] are i.i.d. with zero
mean and covariance matrix σξ

2IK.

3. Preliminaries
The concept of p-norm and its relation to various power
constraints is briefly summarized in this section. In lin-
ear algebra theory, the p-norm is given by

xk kp :¼
Xn
i¼1

xij jp
 !1�p

for p≥1:

1. For p = 1, xk k1 :¼
Xn
i¼1

xij j. This is 1-norm and it is

simply the sum of the absolute values of xi. So this
refers to the sum power constraint if xi denotes the
power in each antenna.

2. For p = ∞, ‖x‖∞ := max(|x1,..., |xM||). In linear
algebra theory, this infinity norm is a special case of
the uniform norm. So this refers to equal power
allocation.

3. For 1 < p < ∞, the p-norm constraint can be
formulated into an optimization problem and can
satisfy both the sum power constraint with an upper
bound β that is not tight and a peak power
constraint with threshold α for an appropriate value
for ‘p’ as discussed below.

4. Problem formulation
In this paper, the design of MIMO radar waveform with
combined peak and sum power constraints is addressed
using two different criteria. The first one is to maximize
the conditional mutual information between the target
impulse response and the reflected waveform. The sec-
ond one is to minimize the mean square error in esti-
mating the target impulse response.

4.1. MI criterion
The conditional mutual information between the re-
ceived signal Y and the target impulse response H, given
the knowledge of S is

I Y ;H=Sð Þ ¼ h Y=Sð Þ−h Y=H; Sð Þ: ð5Þ
From [26], h(Y/S) = log[det(SRHS

H + σξ
2Ik)] and h(Y/H,S) =

h(ξ); then, the mutual information in (5) can be written as

I Y ;H=Sð Þ ¼ log det Ik þ σ ‐2
ξ SRHS

H
� �h i

: ð6Þ

Using the determinant property, det(Ip + AB) = det(Iq +
BA), (6) can be written as

I Y ;H=Sð Þ ¼ log det IM þ σ ‐2ξ RHS
HS

� �h i
:

If the variance of noise is assumed to be unity,

I Y ;H=Sð Þ ¼ log det IM þ RHS
HS

� �� �
: ð7Þ

The objective is to maximize the mutual information
I(Y;H/S). In the case of the sum power constraint, the
constraint is given by

tr SHS
� �� �

≤ β;

where β is the sum of the average transmit powers.
However, it results in wide power variations across the
transmit antennas [22]. So the p-norm power constraint
that jointly satisfies the sum power constraint and the
peak power constraint is considered here [25]. Then, the
problem of waveform design can be expressed as

maxs log det IM þ RHSHS
� �� �

s:t: tr SHS
� �p� �1=p

≤ J ;
ð8Þ

where J is a constant, the value of which depends on the
constraint. Let α be the constraint on the peak power on
the antenna. If p = 1, the constraint is tr(SHS) = J, then the
constant J will be equal to the sum power constraint β. If
p = ∞, the norm becomes aninfinity norm which is a spe-
cial case of the uniform norm in linear algebra theory. To
meet both the sum power constraint and the peak power
constraint, the maximum value cannot be greater than
the equal power, i.e., β/M. For values of p within the inter-
val 1 < p < ∞, J = α satisfies both the per-antenna power
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constraint and sum power constraint. The individual

power constraint α can be chosen in the interval β
M ; β
h i

.

The norm factor p is appropriately chosen as [22]

p ¼ lnM
ln αM=βð Þ ð9Þ

Applying singular value decomposition on RH, it can
be expressed as RH = UΛUH, where Λ = diag(λ11, λ22,…,
λMM), where λii is the eigenvalue of the covariance
matrix of the target impulse response. Substituting for
RH in (7) and simplifying,

I Y ;H=Sð Þ ¼ log det IM þ ΛXHX
� �� �

; ð10Þ

where X = SU is a (K × M) matrix. Let D = XHX. Since
U is unitary, tr(SHS) = tr(XHX). Now the problem for-
mulation can be expressed as

max
D

log det IM þ ΛDð Þ½ �

s:t: tr Dð Þp½ � 1=pð Þ≤ J :

ð11Þ

4.2. MMSE criterion
The problem of radar waveform design under the sce-
nario of target identification requires the estimation of
target impulse response. MMSE, in estimating the target
impulse response, is given by [3]

MMSE ¼ tr σ−2
ξ SHS þ RH

−1
� �−1	 


: ð12Þ

If the noise is assumed to have unit variance, then

MMSE ¼ tr SHS þ RH
−1� �−1n o

: ð13Þ

As given for mutual information, the problem formu-
lation for MMSE could be given as

min
D

tr Dþ Λ−1� �−1n o
s:t: tr Dð Þp½ � 1=pð Þ≤ J :

ð14Þ

5. Waveform design with p-norm power
constraint
According to Hadamard’s inequality, the optimal solu-
tion of (11) and (14) can be achieved when (IM + ΛD) in
(11) and (D + Λ−1)−1 in (14) are diagonal. Hadamard’s
inequalities for the determinant and trace of an n × n
positive semidefinite Hermitian matrix A are

det Að Þ≤
Yn
i¼1

aii;

tr A−1� �
≥
Xn
i¼1

1
aii

;

ð15Þ

where aii is the ith diagonal element of A, and equality
is achieved in both cases if and only if A is diagonal [27].
Thus, D = XHX must be a diagonal matrix with nonneg-
ative elements dii ≥ 0, ∀i ∈ [1,M]. Now, the mutual infor-
mation in (10) can be written as

I Y ;H=Sð Þ ¼ log det IM þ ΛDð Þ½ �: ð16Þ

It can be shown that (16) is concave as a function of D
[28]. Similarly, the minimum mean square error in (13)
can be written as

MMSE ¼ tr Dþ Λ‐1
� �‐1n o

: ð17Þ

The MMSE function in (17) is convex as a function
of D [18]. If D = XHX should be a diagonal matrix, the
columns of X should be orthogonal. Hence, X is fac-
tored as [29]

X ¼ φD1=2; ð18Þ

where the columns of φ are orthonormal. As X = SU,
the transmitted signal matrix is given by

S ¼ φD 1=2ð ÞUH ; ð19Þ

S ¼ φ diag d11; d22; :::; dMMð Þð Þ 1=2ð ÞUH ;

where dii is the diagonal element of D. The two prob-
lems given in (11) and (14) are convex optimization
problems that can be solved using the KKT optimality
conditions [28].

5.1. MI criterion
The problem statement in (11) is now written as

max
XM
i¼1

log 1þ λidið Þ; ð20Þ

XM
i¼1

di
p≤ Jp and di ≥ 0:
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The Lagrangian for (20) can be written as

L d; η; hð Þ ¼
XM
i¼1

log 1þ λidið Þ þ
XM
i¼1

diηi

þ h Jp−
XM
i¼1

di
p

 !
; ð21Þ

where d = (d1, d2,…, dM), η = (η1, η2,…, ηM), and η and
h are Lagrangian multipliers. The optimality conditions
are [20]

∂L d;η; hð Þ
∂di

¼ λi
1þ λidi

þ ηi−hpd
p−1
i ¼ 0

di; ηi ≥ 0; i ¼ 1; 2;…;M
diηi ¼ 0; i ¼ 1; 2;…;M

Jp−
XM
i¼1

di
p ¼ 0:

ð22Þ

If λi > 0, (22) can be solved as

λi
1þ λidi

¼ hpdp−1
i −ηi

λid
1−p
i

1þ λidi
¼ hp−ηid

1−p
i

1þ λidi

λi
dp−1
i ¼ 1

hp

dp
i þ

1
λi
dp−1
i ¼ μ

ð23Þ

where μ ¼ 1
hp. If λi = 0, then di = 0.

5.1.1. Case 1: sum power constraint (p = 1)
The transmit sum power constraint turns out as the spe-
cial case of the p-norm constraint at p = 1. Substituting
p = 1 in (23) gives

di ¼ μ −
1
λi

� �þ
ð24Þ

μ such that
XM
i¼1

di ¼ J :

This case yields the well-known waterfilling solution.

5.1.2. Case 2:equal power constraint (p = ∞)
The case p = ∞ turns out as the equal power constraint
of the p-norm constraint. It is known that

Dk kp ¼ max d1j j; d2j j;…; dMj jð Þ: ð25Þ

5.1.3. Case 3: peak and sum power constraints (1 < p < ∞)
The solution of di for 1 ≤ i ≤ M is obtained by solving the
simultaneous equations which are obtained using KKT
optimality conditions. The simultaneous equation in (23)
can be solved using a fast quadratically convergent algo-
rithm for finding numerical solutions. It consists of nested
Newton iterations of the general type xn+1 = xn − h(xn)/
h’(xn), useful for finding a solution of x of h(x) = 0.
The monotone function is given by

qi dð Þ ¼ dp þ 1
λi
dp−1; d ≥ 0; 1 ≤ i ≤M: ð26Þ

The zero of the monotone function is

L μð Þ ¼
X
i

q−1i μð Þ� �p
−Jp; μ ≥ 0; 1 ≤ i ≤M: ð27Þ

For μ = μ(n), the iteration is

d nð Þ
i;kþ1 ¼ d nð Þ

i;k −
d nð Þ
i;k

� �p
þ d nð Þ

i;k

� �p−1
=λi − μ nð Þ

p d nð Þ
i;k

� �p−1
þ p−1ð Þ d nð Þ

i;k

� �p−2
=λi

; 1 ≤ i ≤M:

ð28Þ
The outer iteration is

μðnþ1Þ ¼ μðnÞ−
L μðnÞ
� �

L0 μðnÞð Þ ; ð29Þ

where

L
0
μð Þ ¼

X
i

p q−1i μð Þ� �p−1
q−1

0

i μð Þ

¼
X
i

1

1þ p−1
pλi

q−1i μð Þ� �−1: ð30Þ

5.2. MMSE criterion
The problem statement of (14) can be written as

min
XM
i¼1

λi
diλi þ 1

� �
s:t:

XM
i¼1

di
p ≤ Jp and di ≥ 0:

ð31Þ

The Lagrangian for (31) can be written as

L d; η; hð Þ ¼
XM
i¼1

λi
diλi þ 1

� �
þ
XM
i¼1

diηi

þ h Jp−
XM
i¼1

di
p

 !
; ð32Þ

where d = (d1, d2,…, dM), η = (η1, η2,…, ηM), and η and h
are Lagrangian multipliers. The optimality conditions are
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∂L d;η; hð Þ
∂di

¼ −λi2

1þ λidið Þ2 þ ηi−hpd
p−1
i ¼ 0

di; ηi ≥ 0; i ¼ 1; 2;…;M
diηi ¼ 0; i ¼ 1; 2;…;M

Jp−
XM
i¼1

di
p ¼ 0:

ð33Þ

If λi > 0, (25) can be solved as

−λi2

1þ λidið Þ2 ¼ hpdp−1
i −ηi

di
pþ1 þ 2

λi
di

p þ 1
λi2

di
p−1 ¼ μ: ð34Þ

5.2.1. Case 1: sum power constraint (p = 1)
Substituting p = 1 in (34) gives the well-known
waterfilling solution as in the case of the MI criterion:

di ¼ μ −
1
λi

� �þ
ð35Þ

μ such that
XM
i¼1

di ¼ J :

5.2.2. Case 2:equal power constraint (p = ∞)
For p = ∞,

Dk kp ¼ max d1j j; d2j j;…; dMj jð Þ: ð36Þ

5.2.3. Case 3: peak and sum power constraints (1 < p < ∞)
For the case of peak and sum power constraints, (34)
can be solved using the nested Newton algorithm. The
monotone function is given by

qi dð Þ ¼ dPþ1 þ 2
λi
dP þ 1

λi2
dP−1; d ≥ 0; 1 ≤ i ≤M:

The update equation for di is

d nð Þ
i;kþ1 ¼ d nð Þ

i;k −

d nð Þ
i;k

� �p−1
λi2

þ 2 d nð Þ
i;k

� �p
λi

þ d nð Þ
i;k

� �pþ1
− μ nð Þ

p−1ð Þ d nð Þ
i;k

� �p−2
λi2

þ 2p d nð Þ
i;k

� �p−1
λi

þ pþ 1ð Þ d nð Þ
i;k

� �p ;
1 ≤ i ≤M:

ð37Þ

As an initial value in the iteration of (28) and (37), di,0
(n) =

qi
−1(μn−1) is chosen, and this yields excellent convergence
results.
6. Detection performance - Neyman-Pearson
detector
The MIMO radar detection problem can be formulated
as a binary hypothesis test as

H0 : Y ¼ ξ; no target;
H1 : Y ¼ SH þ ξ; target exists:

ð38Þ

The probability density functions (pdfs) of Y under H0

and H1 are given by [30]

po Yð Þ ¼ 1

πKNdetN σ2ξIK
� � exp −tr σ−2ξ IK

� �
Y YH

h in o
p1 Yð Þ ¼ 1

πKNdetN SRHSH þ σ2
ξIk

� �
� exp −tr SRHS

H þ σ2ξIk
� �−1

Y YH

 �	 

;

respectively. The log-likelihood becomes

l Yð Þ ¼ log log
p1 Yð Þ
po Yð Þ

¼
XN
k¼1

y�k σ−2ξ IK− SRHS
H þ σ2ξIk

� �−1 �
yTk þ cl

ð39Þ
where

cl ¼ N log det σ2ξIK
� �

− log det SRHS
H þ σ2ξIk

� �h i

is a constant term independent of Y. The optimal
Neyman-Pearson detection statistics is given by

T Yð Þ ¼
XN
k¼1

y�k σ−2ξ IK − SRHS
H þ σ2ξIk

� �−1 �
yTk :

ð40Þ
If T(Y) exceeds a given threshold, a target exists. To

find the detection threshold, we have

yTk e CN 0; σ2ξIK
� �

; H0

CN 0; SRHSH þ σ2
ξIk

� �
; H1

:

8<:
Let

P ¼ σ−2
ξ IK− SRHS

H þ σ2ξIk
� �−1

: ð41Þ
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Then, we have [31]

2y�kPy
T
k e XK

j¼1

α ið Þ
j χ22 jð Þ: ð42Þ

Under Hi; i ¼ 0; 1; where αj
(i) is the jth eigenvalue of

P1/2(γSRHS
H + σξ

2Ik)P
1/2, γ = 0 under H0 and γ = 1

under H1. Therefore, we have

2 T Yð Þ ¼ 2
XN
k¼1

y�kPy
T
k e XK

k¼1

α ið Þ
k χ22N kð Þ ð43Þ

under Hi; i ¼ 0; 1 . The test statistics is the weighted
sum of chi-squares. It is approximated as gamma dis-
tribution [32]. If Cq are real positive constants and Nq

are independent standard normal random variables, ∀q =
1,…, K, then the pdf of the gamma approximation of

R ¼
X
q¼1

K
CqNq

2 is given as

f R r; a; bð Þ ¼ ra−1e−
r
b

baΓ að Þ ; ð44Þ

where the parameters a and b are given as

a ¼ 1
2

XK

q¼1
Cq

� �2
XK

q¼1
C2

q

264
375; ð45Þ

b ¼ 1
2

XK

q¼1
CqXK

q¼1
C2

q

0@ 1A24 35−1

; ð46Þ

where Γ is the gamma function defined as

Γ að Þ ¼ ∫
∞

0
ta−1e−tdt: ð47Þ

For the test statistics in (43), Cq corresponds to αk
(i)

and Nq
2 corresponds to χ22N kð Þχ . After approximating the

pdf using the gamma density, the probability of detec-
tion (PD) and the probability of false alarm (PFA) are de-
fined as

PD ¼ ∫
∞

γ
taH1−1 e−

t
bH1

baH1
H1 Γ aH1ð Þ dt; ð48Þ

PFA ¼ ∫
∞

γ
taH0−1 e−

t
bH0

baH0
H0 Γ aH0ð Þ dt; ð49Þ

where aH0 and bH0 are the parameters of the gamma
density for null hypothesis H0ð Þ and aH1 and bH1 are the
parameters of the gamma density for alternate hypoth-
esis H1ð Þ. It is known that

PFA ¼ Pr T Yð Þ > γ H0Þ:jð ð50Þ

For a given value of PFA, the threshold γ is calculated
using (49), and the probability of detection is calculated
using (48) with the functions available in MATLAB.

7. Numerical example
This section provides numerical examples to illustrate
the performance of MIMO radar waveform with com-
bined peak and sum power constraints. A MIMO radar
system with M = 5 transmit and N = 5 receive antenna
system is considered. First, we consider the power allo-
cation among the transmit antennas. Figure 1 illustrates
the optimal transmitting power on one of the antennas
for 100 different target impulse response realizations for
various values of the norm, p:

1. p = 1, SPC: This case corresponds to the waterfilling
strategy, and power is allotted in proportion to the
quality of the target mode. More power is allotted to
a better mode. For low values of total power, no
power is allotted to poor quality modes. As shown
in Figure 1, the transmit power fluctuates as much
as 4 W in the transmit antenna under the sum
power constraint.

2. 1 < p < ∞, peak and sum power constraints (PSPC):
When the value of p is appropriately chosen, this
satisfies the sum power constraint of the whole
system and the peak power constraint of the
individual antenna. If the individual power
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constraint is chosen as 2 W, the value of p that
satisfies both the sum power constraint and the
individual power constraint according to (9) is 2.32.
It is observed in Figure 1 that for the same total
power of 5 W, the constraint on the power of the
individual antenna has made the power to be
distributed to all the five antennas. It is also ensured
that the peak power through the individual antenna
does not exceed 2 W. If the initial value of the outer
iteration μ0 and the initial values for computing
qi
−1(μ(0)) are appropriately chosen, the numerical
algorithm yields excellent convergence results with
eight digit accuracy after four to six iterations.

3. p = ∞, equal power constraint (EPC): For this case,
the total power is equally divided among all transmit
antennas.

7.1. Mutual information and MMSE performance
The MI performance of the three power allocations is
shown in Figure 2a,b, and the MMSE performance is
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Figure 2 MI performance (a) without and (b) with constraint on
the power amplifier for c = 0.1.
shown in Figure 3a,b. The MI and MMSE values are
averaged for 100 different target impulse response
realizations.
Figures 2a and 3a show the MI performance and

MMSE performance, respectively, when there is no
power constraint on the power amplifiers used in the
transmit antennas. It is observed that the sum power
constraint that results in waterfilling power allocation
has the best performance. This is analytically attractive,
but such a sum power constraint is often unrealistic in
practice because in practical implementations each an-
tenna is equipped with its own power amplifier and is
limited individually by the linearity of the amplifier. So
there would be a maximum limit on the power that
could be amplified. The remaining power would be
clipped off. If such practical considerations are taken
into account, the MI and MMSE performance would be
as shown in Figures 2b and 3b. At low signal-to-noise
ratio (SNR), the waterfilling power allocation strategy
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(b)
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Figure 3 MMSE performance (a) without and (b) with constraint
on the power amplifier for c = 0.1.
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allocates more power to target modes with high target
PSD values and no power to some target modes with
very low target PSD values. In such circumstances, the
power amplifiers would experience a clipping effect and
only low power would be transmitted. As given in the
problem formulation, the peak power constraint α
should be β/M ≤ α ≤ β. So

α ¼ β

M
þ c� β: ð51Þ

If c = 0, then α ¼ β
M (equal power), and if c ¼ 1− 1

M ,

then α = β (sum power). So 0 ≤ c ≤ 1− 1
M

� �
. In Figures 2

and 3, it is assumed that c = 0.1, that is the maximum
power that can be transmitted through the power ampli-
fiers is the equal power plus 10% of the total power (e.g.,
if β = 5 W for M = 5, the maximum individual power
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Figure 4 Detection performance of MI criterion (a) without and
(b) with constraint on the power amplifier for c = 0.1.
constraint is α = 1.5 W). It is quite evident that the sum
power constraint has got inferior performance up to
about an SNR value of 3 dB.

7.2. Detection performance
We consider the detection performance of the waveform
under the sum power constraint and maximum individ-
ual power constraint. It is assumed that the target PSD
is known to the transmitter and receiver. The detection
performance of the optimal Neyman-Pearson detector
is considered. The probability of false alarm is kept as
PrFA = 10−5. To obtain the threshold of the detection
statistics and the detection probability, 103 Monte
Carlo trials are conducted for 100 different target im-
pulse response realizations. The detection performance
is shown in Figures 4 and 5 for the MI criterion and
Figures 6 and 7 for the MMSE criterion.
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Figure 5 Detection performance of MI criterion (a) without and
(b) with constraint on the power amplifier for c = 0.3.
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It is observed in Figures 4a and 6a that the detection
performance for the sum power constraint that results
in the waterfilling type of power allocation is superior
compared to that for the peak power constraint and
equal power allocation schemes with c = 0.1 for MI and
MMSE criteria, respectively. However, when there is a
limitation on the maximum power of the power ampli-
fier in each antenna, the clipping effect would result in
inferior detection performance for the waterfilling type
of power allocation in a low-SNR region as shown in
Figures 4b and 6b. A similar observation is made in
Figure 5a,b for the MI criterion and Figure 7a,b for the
MMSE criterion with c = 0.3 The detection performance
of the waveform with equal power allocation in all the an-
tennas is inferior.
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Figure 6 Detection performance of MMSE criterion (a) without
and (b) with constraint on the power amplifier for c = 0.1.
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Figure 7 Detection performance of MMSE criterion (a) without
and (b) with constraint on the power amplifier for c = 0.3.
When observing Figures 4a and 5a for the MI cri-
terion and Figures 6a and 7a for the MMSE criter-
ion, it is inferred that when the value of individual
power constraint ∝ is increased (from c = 0.1 to c =
0.3), the detection performance of the combined
peak and sum power constraints move towards the
waterfilling case.
7.3 Convergence behavior
The combined peak and sum power constraints usea
nested Newton algorithm for power allocation. When
the initial values are appropriately chosen, the algorithm
converges in approximately five to six iterations as
shown in Figure 8.
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8. Conclusions
We have investigated the performance of MIMO radar
waveform design under peak and sum power constraints.
For the design of optimum radar waveform for MIMO
radar, the second-order statistics of the extended target
impulse response which contains important information
regarding the target characteristics is exploited. The
KKT approach is used to identify optimal solutions. The
well-known waterfilling principle turns out as a special lim-
iting case when p = 1. For the general case of 1 < p < ∞, it
is shown that the power allocation can be determined nu-
merically. The MI performance, MMSE performance, and
detection performance are studied for the sum power con-
straint and peak power constraint. It is observed that in
practical implementation when the linearity of the power
amplifier is considered, the performance with combined
peak and sum power constraints is superior at low SNR.
Though the results are suboptimal, this constraint has
practical significance. So it is suggested that a hybrid power
allocation can be adopted. At low SNR, combined peak
and sum power constraints can be used, and at high SNR,
the sum power constraint can be used.
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