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Abstract

In this paper, the probability density function (PDF) estimation is introduced in the framework of estimating the
Nakagami fading parameter. This approach provides an analytic procedure for finding the fading parameter. Using the
copula theory, an accurate PDF estimate is obtained even when the desired signal is corrupted in a noisy
environment. In the real world, the noise samples could be highly dependent on the main signal. Copula-based
models are a general set of statistical models defined for any multivariate random variable. Thus, they depict the
statistical behavior of a received signal including two dependent terms, representative of the desired signal and noise.
Previous works in the Nakagami parameter determination have mainly examined estimation based on either a
noiseless sample model or an independent trivial noisy one. In this paper, we consider a more comprehensive
situation about the noise destruction and our investigation is done in low signal-to-noise ratios. The parametric
bootstrap method approves the accuracy of the analytically estimated PDF, and simulation results show that the new
estimator has superior performance over conventional estimators.
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1 Introduction
The Nakagami-m distribution is considered as one of the
most important models among all the statistical ones that
have been proposed to characterize the fading envelope
due to multipath fading in wireless communications [1].
With a simple exponential family form, the Nakagami-m
distribution often leads to closed-form analytical results.
The Nakagami fading exploits Nakagami probability den-
sity function (PDF) for the envelope of received signal
which possesses two parameters: scale and shape param-
eters. The latter is more important and called the fading
parameter or m-parameter. Determining m is a problem
in Nakagami PDF estimation.
The most prominent conventional procedures used

for the estimation of the Nakagami fading param-
eter, m, are based on either maximum likelihood
estimation or moment-based estimators [2,3]. Among
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maximum likelihood (ML)-based conventional methods,
the Greenwood-Durand estimator is well known in m-
parameter estimation [4]. There are also analytic and
bootstrap bias-corrected ML estimators for estimating
m that improve conventional ML estimators [5]. On the
other hand, the inverse normalized variance and general-
ized method of moments (GMM) are the moment-based
procedures, in which the latter presents the Nakagami
parameter estimation in noisy environment with accept-
able performance [4].
However, all aforementioned approaches either do not

take into account noisy cases or consider trivial noises. In
this paper, we intend to estimate the Nakagami parame-
ter in a dependent noise environment based on the PDF of
received signal and the copula concept.We present a com-
prehensive noise model that is not confined to restrictive
assumptions, such as uncorrelatedness or independence.
Signal-dependent noise is used in the paper which is a
more realistic assumption in practical applications such as
image transmission [6], radar [7], and wireless communi-
cations [8]. The copula theory is one of the best methods
used for modeling the dependency in conventional works
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[9]. The copula theory is an elegant concept introduced
by Sklar in order to find the link between a joint PDF and
its marginal PDFs [10]. Then, copula functions have been
extensively studied and a comprehensive discussion of
their mathematical properties has been presented [11,12].
Now, a new copula-based method is presented to esti-

mate the Nakagami fading parameter in the faded received
signal contaminated by dependent noise. The novelty of
our approach lies on determining the analytic PDF of the
received data under the assumption of dependent noise by
using the copula theory in order to estimate the parameter
of the Nakagami-m fading model. To measure the accu-
racy of the estimation approach, the result is examined by
using a goodness of fit test called parametric bootstrap
algorithm [13].
This paper is organized as follows: In Section 2, we recall

basic facts and definitions on copulas and the dependency
problem. Section 3 includes the main signal and noise
model used in the paper. The introduced models are such
comprehensive ones which precisely correspond to actual
signals. Using copula, the PDF of the received signal is
estimated in Section 4, and the fading parameter is deter-
mined. Finally, simulation results are given in Section 5,
and some conclusions are drawn in Section 6.

2 Copula
One popular method of modeling the dependencies is the
copula approach. The word copula is a Latin noun which
means ‘a link, tie, or bond’ and was first employed by
Sklar in mathematical and statistical problems [10]. Math-
ematically, copula is a function that combines univariate
PDFs to obtain a joint PDF with a particular dependency
structure. In this paper, the fading parameter is estimated
based on the PDF of the received signal, given that the
received signal has been corrupted by a signal-dependent
noise. Due to the signal-dependent nature of noise, we are
required to determine the PDF of a signal that is com-
posed of two dependent components. Thus, the copula
concept is a tool that is compatible with our problem, and
it facilitates the PDF estimation procedure. The founda-
tion theorem for copula was introduced by Sklar which
states that for a given joint multivariate PDF and the rel-
evant marginal PDFs, there exists a copula function that
relates them. In a bivariate case, Sklar’s theorem is as
follows:
Let Fxy be a joint CDF with margins Fx and Fy. Then,

there exists a function C : [0, 1]2 → [0, 1] such that:

Fxy (x, y) = C
(
Fx (x) , Fy (y)

)
. (1)

If Fx and Fy are continuous, then C is unique; otherwise, C
is uniquely determined on the (range of Fx) × (range of Fy).
Conversely, if C is a copula and Fx and Fy are CDFs, then

the function Fxy defined by (1) is a joint CDF with margins
Fx and Fy.

The proof of the theorem can be found in [12]. Since
C is a rather particular type of function, it possesses
some inherent properties. A thorough description of these
properties is found in [12]. The mentioned properties
state that a copula is itself a CDF, defined on [0, 1]2, with
uniform margins.
Building multivariate CDFs by applying the copula

approach provides a suitable flexibility because it allows
to choose separately the margins and their dependence
relationship [14]. For any copula function, there is a cor-
responding copula density function, which is the mixed
partial derivative of function C, and can be given by:

c (u, v) = fxy (u, v)
fx (u) fy (v)

, (2)

where fxy, fx, and fy are the PDFs related to the CDFs
presented in (1). Equation (2) can be expressed in an
equivalent and more suitable form:

fxy (x, y) = c (u, v) fx (x) fy (y) , (3)

where u, v are related to x, y through the marginal CDFs:

u = Fx (x) ,
v = Fy (y) .

(4)

The copulas have two main families. One of them is the
family of elliptical copulas. The most common elliptical
copulas are normal and Student’s t. The key advantage of
an elliptical copula is that one can specify different levels
of dependency between the margins. Another important
class of copulas is known as the Archimedean copu-
las. Archimedean copulas are popular because they are
constructed easily and allow modeling the dependence
in arbitrarily high dimensions with only one parameter,
governing the strength of dependence [12].
In this paper, the bivariate normal and Clayton copu-

las are applied as the representative of both families. The
normal copula is given by:

Cρ (u, v) =
∫ �−1(u)

−∞

∫ �−1(v)

−∞
1

2π
√
1 − ρ2

× exp
{

−x2 − 2ρxy + y2

2
(
1 − ρ2)

}
dx dy,

(5)

where ρ is the normal copula parameter and �−1 is the
inverse of the univariate standard normal CDF. It is called
the normal copula because, similar to bivariate normal
distribution, it also enforces dependency by using pair-
wise correlations among the variables. However, in the
normal copula, the marginal distributions are arbitrary.
On the other hand, the Clayton copula is given by:

Cα (u, v) = [−1 + u−α + v−α
]−1/α , α > 0, (6)

where α is the Clayton copula parameter.
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3 Signal model
In this section, a new model is introduced for the received
signal in which noise and fading are statistically embed-
ded. By estimating the PDF of the received signal, the
nonlinearminimummean square error (NMMSE) estima-
tor principle is invoked to estimate the fading parameter.
To transmit information over a communication channel,
there are different methods to modulate the information.
Quadrature amplitude modulation, phase shift keying,
frequency shift keying, and continuous phase modulation
are some prominentmodulationmethods. All thesemeth-
ods use a sinusoidal function as the carrier signal. Hence,
we base signaling assumption on a sinusoidal transmission
entering a multipath environment infested by generally a
non-Gaussian noise. Thus, the procedure is extensible to
all of the above types of modulation schemes.
Suppose that the main transmitted signal is in the fol-

lowing form:

sc (t) = A cos (ωct + θ) , (7)

where A > 0 and θ are the amplitude and the phase of
the transmitted signal, respectively, and ωc is the carrier
frequency. Let us assume sc(t) enters a multipath channel
with L distinct paths. Then, the output of this channel is
expressed as follows:

s (t) =
L∑

i=1
ai A cos

(
ωct + ωdi t + θ + θi

)

= �
{ L∑

i=1
aiA exp

(
jωdi t + jθ + jθi

)
exp

(
jωct

)}
,

(8)

where ai, ωdi , and θi are the attenuation factor, Doppler
shift, and the phase on the ith path, respectively, and �(·)
denotes the real part of its argument.
Define:

s�(t)
	=

L∑
i=1

ai exp
(
jωdi t + jθ + jθi

)
. (9)

According to (8) and (9),

s (t) = � {
s� (t)A exp

(
jωct

)}
= R (t) A cos (ωct + 
 (t)) .

(10)

The envelope R and the phase 
 are given by:

R (t) =
√
I2(t) + Q2(t) (11)


 (t) = arctan
(
Q (t)
I (t)

)
, (12)

where I(t) and Q(t) are the inphase and quadrature com-
ponents of signal s(t)/A. When L is large, the inphase
and quadrature components will be normally distributed.

Therefore, the phase 
 is uniformly distributed over
[ 0, 2π).
Due to various fading channels, i.e., short-term, long-

term, and mixed fading, different PDF models are pro-
posed for R(t). Some new models, the so-called ‘mul-
tiplicative’ fading models, have also been developed
recently [15]. In short-term, mixed, and multiplicative
fading models, the Nakagami-m distribution is an accu-
rate versatile PDF. Therefore, we use Nakagami or m-
distribution to describe the fading envelope in multipath
environments. It has the following PDF:

fR (ro) = 2
� (m)

(m
�

)m
ro2m−1 exp

(
−mro2

�

)
, ro � 0,

(13)

where �(·) is the gamma function, � = E{R2} is the
scale parameter, and the shape parameter is expressed as
follows:

m = {E[R2] }2
Var[R2]

= �2

E[ (R2 − �)2]
, (14)

with the constraint m � 0.5. The corresponding cumu-
lative distribution function (CDF) can be expressed as:

FR (ro) = P
(
mro2

�
,m

)
, (15)

where P(·, ·) is the incomplete gamma function. Nakagami
is a general fading distribution that reduces to the Rayleigh
for m = 1 and to the one-sided normal distribution for
m = 0.5. It also approximates the Rician and lognormal
distributions.
The scale parameter � is defined as the second-order

moment of the Nakagami-m fading envelope and is cal-
culated straightforward. Thus, we focus on estimating the
primary parameter, i.e., the shape parameterm.
On the other hand, when the envelope R(t) has Nak-

agami distribution, we can assume that the phase 
(t) is
uniformly distributed over [ 0, 2π) [16].
In order to start the formulation of our problem, firstly,

let us suppose that s(t) in (8) is received without any addi-
tive noise. So, the received signal is s(t), and the PDF of
s(t) is needed. Based on (10), we find the PDF of the prod-
uct of two random variables (RVs) at time t, i.e., R(t) and
A cos(ωct + 
(t)).
Assume that Z1 and Z2 are two RVs. If Z = Z1Z2, then

the PDF of the RV Z is:

fz(z) =
∫ ∞

−∞
1
|η| fz1z2(η, z/η) dη, (16)

where η is an auxiliary variable. The signal s(t) in (10) is
considered as the product of the two following signals:

s1 (t) 	=R (t) ,

s2 (t) 	=A cos (ωct + 
 (t)) .
(17)
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The PDF of s1(t) is the Nakagami distribution presented
in (13) and the signal s2(t) has the following PDF:

fs2 (s2) = 1

π

√
A2 − s22

, |s2| < A. (18)

Since the envelope R(t) and phase 
(t) are independent
processes [16], hence, s1(t) and s2(t) are also indepen-
dent. So, by using (16), the PDF of s(t) is determined
analytically:

fs (s) = 2
π � (m)

(m
�

)m ∞∫
s/A

η2m−1√
A2η2 − s2

exp
(

−mη2

�

)
dη

= 2
(m

�

)m
π A2m� (m)

exp
(−ms2

�A2

)

×
∫ ∞

0

(
κ2 + s2

)m−1 exp
(

−mκ2

�A2

)
dκ ,

(19)

where κ is an auxiliary variable. A detailed proof for (18)
and (19) is provided in Appendix 1. By using binomial
expansion of (κ2 + s2)m−1, (19) is expressed for integerm
as:

fs (s) =
m−1∑
k=0

(
m − 1

k

)
�

(
k + 1/2

)
π � (m)

( m
�A2

)m−k− 1/2

× s2(m−1−k) exp
(−ms2

�A2

)
.

(20)

In (19) and (20), we obtained an expression for the PDF
of the received signal s(t) in a noiseless scenario. Next,
we intend to derive an expression if a noise term is also
present along with s(t).
There are signal-dependent noise (SDN) channels in

which the noise characteristics depend highly on the
transmitted signal [8]. The application for such depen-
dency is also in radar and sonar systems [17]. In this
paper, we introduce a compound channel that models
both fading effects and signal-dependent noise behavior.
The cascaded channel modeling is used which was pre-
sented in [15]. There are several sub-channels in [15]
that are all representative of Nakagami fading. Two cas-
caded Nakagami fading sub-channels were a special case
expressed mathematically in [15]. We also introduce a
channel constructed from two sub-channels, the first one
being a Nakagami fading channel similar to [15] and its
output being the faded signal expressed in (10). However,
unlike the proposedmethod in [15], we assume the second
sub-channel as an SDN channel. This assumption stems
from the fact that the statistical model for a cascaded
channel is not unique. A general relationship between the

input and output of an SDN channel is given by [18]:

So (t) = Si (t) + f (Si (t))Nu (t) , (21)

where Si (·) and So (·) are the input and output of the SDN
channel, respectively, f (·) is an arbitrary nonlinear func-
tion, and Nu(t) is a normal random process with zero
mean and unit variance. Regardless of the kind of function
f (·), our proposedmethod would be applicable, if the PDF
of function f (·) is computable. In this paper, for simplicity,
we define:

f (Si (t)) � |Si (t)|γ , (22)

where the parameter γ is between 0 and 1. It is well
known that the model defined in (22) mimics many types
of random variates [18,19]. This second sub-channel sig-
nifies the statistical importance of signal characteristics
which could be modified by a random medium denoted
byNu(t).
There is also an additive independent noise ν(t) that

complements our new modeling. It is a new model that
simultaneously covers fading and noise dependency. This
channel is shown in Figure 1. The signal sc in Figure 1 is
the main transmitted signal in (7). Let us define:

n (t) 	= |s (t)|γ Nu (t) + ν (t) , (23)

where ν(t) is an independent zero-mean normally dis-
tributed random process whose variance is a random
variate, and s (t) is the faded signal in (10). n (t) changes
the received signal from faded signal in (10) to r(t) in the
following form:

r (t) = R (t) A cos (ωct + 
 (t)) + n(t). (24)

The dependency between the faded signal and noise helps
to have a more actual model for the received signal.
The samples of signal ν (t) can be at hand, for exam-

ple, by using an out-of-band measurement of the noise. In
this way, the data transmission is not interrupted and the
samples of ν (t) can be measured as accurately as needed.
In other words, in (23), during the times that out-of-band
measurements are performed, the presence of the signal is
contemplated as s(t) = 0; therefore, this allows us to esti-
mate the parameters of ν(t). Alternatively, the samples can
also be obtained by sending a ‘zero’ signal and sampling
the output of the receiver.

Figure 1 The proposed channel model. The output of SDN channel
is sout = s (t) + |s (t)|γ Nu (t).
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Now, since we have the samples of the noise ν (t), it is
possible to estimate its variance given the samples. It is
proven in Appendix 2 that if the variance of the normally
distributed noise ν (t) becomes a random variate, the
resulted noise process ν (t) will have the K-distribution
that is presented in the following:

fν(ν) = 1

b
√

π�
(
N1
2

) ( |ν|
2b

)N1−1
2

× KN1−1
2

( |ν|
b

)
, −∞ < ν < ∞,

(25)

for b > 0 and N1 > 1, where K is a modified Bessel
function of the second kind. The K-distribution is a useful
PDF for modeling reverberation in sonar [20] and clutter
in radar [21]. Its characteristic function is [20]:

ψν (ω) = 1(
1 + b2ω2)N1

2
. (26)

The power of signal ν (t) is:

σ 2
ν = E

[
ν2

] = E [τ ]E
[
N2] = N1b2. (27)

The new presentedmodel helps to ensure that final results
are reliable even in an actual non-Gaussian environment.
The PDF of the dependent noise n (t) is obtained analyt-

ically using (23). Since the signals s (t),Nu(t), and ν (t) are
independent, the PDF of n (t) is calculated in the following
form:

fn(n) = 1
γ
√
2π

∫ ∞

−∞

∫ ∞

−∞

(
fs

(
η

1
γ

)
+ fs

(
−η

1
γ

))

× fν (ν) exp
(

−1
2

(
n − ν

η

)2
) ∣∣∣η 1

γ
−2

∣∣∣ dηdν,

(28)

where fs (s) and fν (ν) are obtained from (19) and (25),
respectively, and η is an auxiliary variable.
Up to now, both PDF of the faded signal and the depen-

dent noise were estimated analytically. In the next section,
we determine the total PDF of the received signal.

4 Parameter estimation
Our final priority is to compute the conglomerate PDF of
the faded signal and noise. The received signal in (24) can
be expressed as:

r(t) = s(t) + n(t). (29)

In order to compute the PDF for r(t), it is often sup-
posed that the signals s(t) and n(t) are independent, so
the PDF of r(t) is simply obtained using the convolution
of the PDFs fs(s) and fn(n). However, in the actual noisy
background, it is more realistic to assume that there is a
dependency between the faded signal and the noise. Now
is the time that the copula theory can be used and it

presents an effective role on the final estimated PDF. The
PDF of r(t) is presented as:

fr (r) =
∫ ∞

−∞
fsn (r − n, n) dn. (30)

So, the joint PDF fsn should be estimated. If we appeal to
the copula theory for determining the joint PDF, the PDFs
of the signals s(t) and n(t) should be considered as the
marginal density functions in the copula discussion. From
(3), the joint PDF is exhibited as:

fsn(s, n) = fs(s) fn(n) c(Fs(s), Fn(n); θc), (31)

where Fs(s) and Fn(n) are the marginal CDFs of the faded
signal and noise, and θc is the dependence parameter in
the copula density function. Therefore, the joint PDF is
equal to the product of the marginal PDFs and the copula
density function, i.e., the term c(Fs(s), Fn(n); θc).
As mentioned, two copula functions are used. The nor-

mal copula is selected among the elliptical group, and the
Clayton copula is also employed from another family, i.e.,
Archimedean. Using the copula functions presented in
(5) and (6), the related copula density functions can be
extracted [22]:

cρ(Fs(s), Fn(n); ρ) = 1√
1 − ρ2

exp
{

− s2 − 2ρ sn + n2

2
(
1 − ρ2)

}

× exp
(
s2

2

)
exp

(
n2

2

)
(32)

and

cα(Fs(s), Fn(n);α) = (1 + α) (Fs(s)Fn(n))−α−1

×[−1 + Fs(s)−α + Fn(n)−α
]−2−11/α ,

× α > 0.
(33)

The parameters ρ and α are the same dependence param-
eter, θc, in the normal and Clayton copula density func-
tions, respectively. We use Pearson’s correlation ρp as a
measure of dependency in this paper. It is also called linear
correlation. The normal copula parameter ρ is the same
as the linear correlation ρp, but the relationship between
Clayton copula parameter α and linear correlation ρp is
given by:

α = 4 sin−1(ρp)

π − 2 sin−1(ρp)
. (34)

Until now, we have determined the PDF of the received
signal analytically. However, it is necessary to validate
the estimated PDF. The possible discrepancy between the
hypothesized PDF model and the observed data is mea-
sured by the so-called goodness of fit statistics. In order
to decide whether the observed discrepancy is substantial,
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performing a statistical test is required. Bootstrapping is
an ideal procedure to estimate the accuracy of a param-
eter estimator [13]. This method calculates confidence
intervals for parameters. To assess a parameter estimator
using the bootstrap method, we examine whether the esti-
mated parameter is in a corresponding confidence interval
or not. The bootstrap method, and also the confidence
interval that the bootstrap method presents for the fading
parameter in our work, is described in Appendix 3. The
results in Appendix 3 about using the bootstrap method
for calculating the 95% confidence interval of the fading
parameter are satisfactory.
After being sure about the reliability of the received sig-

nal PDF, the fading parameter is estimated by using the
analytic PDF. This estimation is performed by using the
NMMSE estimator principle. Utilizing the NMMSE esti-
mator, a value of the fading parameterm is found such that
it minimizes the difference between the obtained analytic
PDF in (30) and the statistical one that is calculated based
on the samples of the received signal in the sequel:

f̂r (r) = 1
Nh

N−1∑
i=0

�

(
r − ri
h

)
, (35)

where � is the kernel function that must integrate to 1.
The parameter h is called the window width or bandwidth
of the kernel.N is the number of the received samples, and
ri is the value of the ith sample. So, the fading parameter
is obtained by using the NMMSE estimator as follows:

m̂ = argmin
m

∣∣∣fr(r) − f̂r(r)
∣∣∣2 . (36)

In the next section, some simulations approve the
obtained results.

5 Simulation and results
The efficiency of the proposed method for fading param-
eter estimation based on the estimated analytic PDF is
evaluated using some simulations. It is essential that the
proposed method be compared with other prominent
conventional methods. Themoment-based estimation [2],
enhanced moment-based method [3], ML-based estima-
tion [5], and GMM procedure [4] are known as the
conventional methods. The mentioned methods are com-
pared with the two proposed copula-based estimators.
The difference between the two copula-based methods is
due to the type of copula being used.
Figure 2 depicts the discrepancy between the perfor-

mance of different methods in determining the fading
parameter for the linear correlation ρp = 0.1. Since corre-
lation refers to any of a broad class of statistical relation-
ships involving dependence, we use the linear correlation
in the simulation to create dependency between the faded
signal and noise. The actual value of m in Figure 2 is 2.5,
and the examination is done for the sample size N =

10, 000 and signal-to-noise ratio (SNR) values from −10
to +10 dB. The index of performance is presented by
mean square error (MSE). In all simulations, the noise
power consists of 50% dependent and 50% independent
noise power. In Figure 2, besides conventional methods,
two copula estimators, normal and Clayton, are also com-
pared. As shown, both copula estimators outperform the
conventional approaches. In addition, the normal copula
yields slightly better results than the Clayton estimator,
because the construction of the Clayton copula is sim-
ple, and the PDFs of our signals have more consistency
with the normal copula. However, when less complexity
is preferable even with a little more error, the Clayton
copula is a plausible option. Figure 2 also depicts the cor-
responding Cramér-Rao lower bound (CRLB), computed
numerically, to benchmark the MSE of the estimators.
Both proposed copula-based estimators have small devia-
tions from the CRLB. The deviations are even reduced by
increasing the SNR.
In Figure 3, the simulation is repeated for ρp = 0.9.

As expected, greater dependency causes almost incor-
rect results in the conventional methods, especially in low
SNRs. Nevertheless, the proposed copula-based methods
are powerful even in low SNRs and highly dependent
noise scenario. In Figure 3, all methods are also compared
against CRLB.
Note that since the results of the two moment-based [2]

and enhanced moment-based methods [3], in Figures 2
and 3, are not reliable for SNR values from −10 to 0 dB,
we depict them only for SNR values from 0 to +10 dB.
Another comparison is presented in Figures 4 and 5, in

which the estimation of different values of m from 0.5 to
10 is examined for a constant SNR = +5 dB and two val-
ues of correlation, i.e., ρp = 0.1 and ρp = 0.9. Again, the
sample size N is 10, 000, and the index of performance
is presented by MSE. Figures 4 and 5 also approve that
the two copula-based methods have convincing results for
various values of fading parameterm.
In addition to simulation, the statistical accuracy of

the proposed copula-based estimator is examined by the
bootstrap method which is introduced in Appendix 3.

6 Conclusion
In this work, we propose a new estimation method
based on the PDF and copula function to estimate the
Nakagami-m fading parameter in wireless communica-
tions. The copula concept, which was originally proposed
in econometrics literature, provides an analytic approach
for finding the PDF of the received signal. It models the
dependency between the faded signal and noise, and facil-
itates the separation of dependent noise from the desired
part of the received signal. Therefore, in this paper, a
novel approach is employed to estimate the Nakagami-m
parameter that analyzes the noise behavior much better
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than other conventional procedures. Moreover, a compre-
hensive model is also suggested for the noise behavior
that is a suitable representation for the actual noisy envi-
ronment. The presented copula-basedmethod has precise
results in low SNRs, while no other conventional meth-
ods can be reliable in such SNRs even in independent
noise background. The parametric bootstrapping method
is used to test the accuracy of the estimations. In addition
to goodness of fit tests, simulation results also show the
validity of the estimations.

Appendices
Appendix 1: the proof for (18) and (19)
Firstly, we show how (18) is derived. Then, the proof of
(19) is presented.

The proof for (18)
It is provable that if a random variable 
 has the PDF
f
(
), the PDF of s2 � g(
) is determined by [23]:

fs2 (s2) = f
(
1)

|g′(
1)| + . . . + f
(
n)

|g′(
n)| + . . . , (37)

where 
is are the real roots of the equation s2 = g(
),
and g′(
) is the derivative of g(
).
Suppose that g(
) � A cos (ωct + 
). Thus,

s2 = A cos (ωct + 
) . (38)

We should get the PDF fs2 (s2) based on (37). If |s2| > A,
then (38) has no solutions; hence, fs2 (s2) = 0. If |s2| < A,
then it has infinitely many solutions:


n = cos−1(
s2
A

) − ωct n = . . . ,−1, 0, 1, . . . .

(39)

Since g′(
n) = −A sin (ωct + 
) = −
√
A2 − s22, (37)

yields:

fs2 (s2) = 1√
A2 − s22

∞∑
n=−∞

f
(
n), |s2| < A.

(40)

In this paper, 
 is uniformly distributed over [ 0, 2π).
Thus, only two solutions, which are in the interval [ 0, 2π),
are acceptable. The function f
(
) equals 1

2π for these
two values, and it equals 0 for any 
n outside the interval
[ 0, 2π). Therefore, the proof of (18) is concluded.

The proof for (19)
To prove (19), we substitute both PDFs fs1 (s1) and fs2 (s2)
in (16):

fs(s) =
∫ ∞

−∞
1
|η| fs1s2(η, s/η) dη. (41)

Since s1(t) and s2(t) are independent, we have:

fs(s) =
∫ ∞

−∞
1
|η| fs1(η)fs2(s/η) dη. (42)

By using (13) and (18), the PDF fs(s) is obtained as:

fs(s) =
∫ ∞

−∞
1
|η|

2
� (m)

(m
�

)m
η2m−1

× exp
(

−mη2

�

)
1

π

√
A2 − s2

η2

dη, η � 0, | s
η

| < A

= 2
π� (m)

(m
�

)m ∫ ∞

−∞
|η|η2m−1

|η|√A2η2 − s2
exp

(
−mη2

�

)
dη,

× η >
s
A

= 2
π� (m)

(m
�

)m ∫ ∞
s/A

η2m−1√
A2η2 − s2

exp
(

−mη2

�

)
dη.

(43)

Thus, the first equality of (19) is proven. The latter
equation of (19) is obtained by setting κ2 � A2η2− s2, and
the proof of (19) is concluded.

Appendix 2: K-distribution
In this section, it is proven that if the variance of the
normally distributed noise ν (t) becomes a random vari-
ate, the noise ν (t) will have the K-distribution instead of
normal distribution.
As mentioned, the variance of noise ν (t) is estimated

given samples of ν (t). The samples can be broken up into
small segments of length N1 such that the samples in each
segment have almost identical variance.
Thus, the estimate of variance based on these N1 nor-

mally distributed samples is:

σ̂ 2
ν = 1

N1

N1∑
i=1

ν2i , (44)

which has chi-squared behavior with N1 degrees of free-
dom.
With this estimation, ν(t) is now considered as the prod-

uct of two random variates. The first variate has a normal
distribution but with a constant variance. The other one is
seen as the randomnature of variance and has chi-squared
behavior. The two distributions can construct the PDF of
ν based on the following form:

ν = √
τN , (45)

where τ has chi-squared distribution with N1 degrees of
freedom, and N is normally distributed with mean zero
and standard deviation b.
Since the gamma distribution, �(k,β), has the following

PDF:

fμ(μ) =
{

βk

�(k)μ
k−1 exp (−βμ) , μ > 0

0, μ � 0
, (46)
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for k,β > 0, the N1 chi-squared distribution could be a
gamma distribution with the shape parameter k = N1

2 and
the scale parameter β = 1

2 . Thus, the PDF of �
	= √

τ is
determined in the following form:

f� (λ) = 1

2
N1
2 −1�

(
N1
2

)λN1−1 exp
(

−λ2

2

)
, λ � 0,

(47)

where � (·) is the gamma function.
Since ν is the product ofN and�, using (16) and noting

that N and � are independent, the PDF of ν is expressed
as follows:

fν (ν) =
∫ ∞

−∞
1
|η| f� (η)fN

(
ν

η

)
dη, (48)

where η is an auxiliary variable. According to (48), since
fν (−ν) = fν (ν), fν is an even function. Therefore, it
is sufficient that the PDF of ν is calculated for ν > 0.
Substituting the PDF ofN and � in (48), we have:

fν (ν) = 2− N1−1
2

�
(
N1
2

)√
πb

∫ ∞

0
ηN1−2 exp

(
−1
2

(
η2 + ν2

b2η2

))
dη.

(49)

On the other hand, for real number a and complex
number z, we have (see p. 21 in [24]):

πH(1)
k (az) = − i exp

(
−iπk/2

)
ak

×
∫ ∞

0
exp

(
i
1
2
z
(

ζ + a2

ζ

))
ζ−k−1dζ ,

(50)

where Im(z) > 0, Im(a2z) > 0, H(1)
k (·) is the Hankel

function of the first kind, i is the imaginary unit, and ζ is
an auxiliary variable. Suppose that a = ν

b > 0, z = +i,
ζ = η2, and k = −N1−1

2 . Comparing (49) and (50) results
to:

fν(ν) = 1

b
√

π�
(
N1
2

) ( ν

2b

)N1−1
2 iπ

2
exp

(
− iπ

2
N1 − 1

2

)

× H(1)
−N1−1

2

(ν

b
i
)
, 0 < ν < ∞.

(51)

Based on the following two relationships (see pp. 358 and
375 in [25]):

H(1)
−ε (�) = eεπ iH(1)

ε (�) ,

Kε (�) = π

2
iε+1H(1)

ε (i�) ,
(52)

Table 1 95% Confidence interval for fading parameterm
in normal copula-based estimator for ρp = 0.9 (B = 100)

SNR Estimatedm 95% Confidence interval

−10 2.8269 (2.3207,3.1723)

−5 2.4841 (2.4646,2.5612)

0 2.4935 (2.4732,2.5017)

+5 2.4988 (2.4899,2.5101)

+10 2.5010 (2.4987,2.5029)

where ε and � are two arbitrary parameters, (51) turns to:

fν(ν) = 1

b
√

π�
(
N1
2

) ( ν

2b

)N1−1
2

× KN1−1
2

(ν

b

)
, 0 < ν < ∞.

(53)

Since the function fν(ν) is even, the calculation of fν(ν) for
negative values of ν is a straightforward matter. Therefore,
the proof is concluded.

Appendix 3: bootstrapping
Let us consider r = (r1, r2, . . . , rN ) as a random sample
of the received signal r(t) with the PDF fr(r) in (30). The
sample is used to estimate the certain fading parameter,m,
associated with the PDF fr(r). A statistic, T = T(r) , might
be used to estimate m from the data. In this paper, the
mentioned statistic is introduced in (36). The bootstrap
method determines a measure of the statistical accuracy
of the estimator T(r) in estimating the parameter m. The
method can statistically quantify the error betweenm and
the statistic T.
In bootstrapping, B resamples r∗(1), . . . , r∗(B) are pro-

duced with replacement from r. Then, the statistics
T∗(1), . . . ,T∗(B), obtained from the resamples, are used to
calculate the confidence interval for the fading parameter.
More detailed information can be seen in [13]. To assess
the parameter estimator T using the bootstrap method,
we examine whether the estimated parameterm is in cor-
responding confidence interval or not. Tables 1 and 2
show the results of using the bootstrap method to calcu-
late the 95% confidence interval for the fading parameter
in both normal and Clayton copula-based estimators in

Table 2 95% Confidence interval for fading parameterm
in Clayton copula-based estimator for ρp = 0.9 (B = 100)

SNR Estimatedm 95% Confidence interval

−10 2.0476 (1.9835,2.8142)

−5 2.5349 (2.4271,2.5410)

0 2.4947 (2.4878,2.5193)

+5 2.5015 (2.5010,2.5097)

+10 2.5011 (2.5000,2.5017)
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ρp = 0.9. A normal or a Clayton copula-based estimator
refers to the estimator in (36), in which the function fr(r) is
calculated by using the normal or Clayton copula, respec-
tively. In the tables, the results are given for several SNRs.
The number of resamples is B = 100, and the actual value
of fading parameter is m = 2.5. The tables also provide
the estimated value of m besides the confidence interval
in each SNR.
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