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Abstract

In this paper, we address the issue of collaborative information processing for diffusive source localization and
tracking using wireless sensor networks capable of sensing in dispersive medium/environment. We first determine
the space-time concentration distribution of the dispersion from physical modeling and mathematical formulations of
an underwater oil spill scenario, considering the effect of laminar water velocity as an external force. For static diffusive
source localization, we propose two parametric estimation techniques based on maximum-likelihood (ML) and best
linear unbiased estimator for the special case of our physical dispersion model. We prove the consistency and
asymptotic normality of the obtained ML solution when the number of sensor nodes and samples approach infinity,
and derive the Cramér-Rao lower bound on its performance. We also propose a particle filter-based target tracking
scheme for moving diffusive source and derive the posterior Cramér-Rao lower bound for the moving source state
estimates as a theoretical performance bound. The performance of the proposed schemes are shown through
numerical simulations and compared with the derived theoretical bounds.

Keywords: Wireless sensor network; Diffusion; Source localization; Tracking; Parameter estimation;
Maximum-likelihood; Best linear unbiased estimator; Particle filter

1 Introduction
The release of liquid petroleum hydrocarbon into the
ocean or coastal water due to human activity has attracted
tremendous attention because of its environmental, bio-
logical, and economical impact. Recent BP oil disaster
in the Gulf of Mexico is a perfect example of how spill
stemmed from a sea-floor oil gusher can severely dam-
age the marine and wildlife habitats as well as the Gulf ’s
fishing and tourism industries. Research in modeling and
predicting the extent of such oil spill can assist in plan-
ning and emergency decision-making, thereby reducing
the threats and hazardous effects on the environment as
well as the economic cost. Considering the fact that this is
a diffusive source estimation and tracking problem, such
research can in general be applicable inmany other similar
contexts such as homeland security, environmental and
industrial monitoring, pollution control, servers, and data
center temperature monitoring as well [1-8]. For example,
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the spread of chemical and biological agents as homeland
security problems are discussed in [5,9-11].
Recent advances in sensor technology, such as

smart/intelligent nodes with cognitive abilities, on-board
sensors, and wireless networking capabilities have trig-
gered the use of wireless sensor networks (WSNs) in
monitoring various physical phenomena [12-14]. Though
sensor nodes are capable of a limited amount of local
processing and wireless communication, when a large
number of sensors communicate and share informa-
tion among themselves, they can measure a desired
phenomenon-of-interest in great detail. Also with the
developments of unmanned autonomous vehicles, WSNs
are gaining popularity due to their potential to be useful
for a wide range of applications including environmental
monitoring, intrusion detection, and various military and
civilian applications [12,15,16]. Due to advanced micro-
electromechanical systems, many of the state-of-the-art
sensors are now more accurate, robust against noise, and
energy efficient [17,18]. These new cutting-edge sensors
can withstand severe unfavorable conditions in hazardous
areas where human deployment is impossible. All these
useful and exciting features in recently developed sensors
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make them suitable candidates for the set of applications
involving monitoring of diffusion phenomena that we are
interested in.
Source or target localization using distributed sensor

arrays is an area of active research interest for a consid-
erable period of time [19,20]. In the past, detection and
localization problems of diffusive sources in WSN have
been a topic of interest, specially in the case of chemi-
cal/biological threat detection. Interesting research in this
context can be found in [3,4,9,10], where biochemical con-
centration distribution in space and time for different
types of diffusive sources, diffusion models, and/or sensor
networks is estimated. For instance, remotely localizing a
gas or odor source using mobile robot was proposed in
[3] by fitting the gas distribution model to the gas sen-
sor response at the sensor locations. However, the mobile
sensor dynamics model therein was obtained empirically,
which does not allow for dynamic environment and mov-
ing diffusive source. In [4], a maximum-likelihood (ML)
estimator was developed for localizing vapor-emitting
sources, and its asymptotic normality of the obtained
ML estimator was proved when the signal-to-noise-ratio
(SNR) approaches infinity. Many other estimation tech-
niques have also been used in diffusive source parameters
estimation literature [9,10,21-23]. In particular, Bayesian
estimation has been applied in [9,21] in a sequential man-
ner, which is not suitable in many practical scenarios
where faster estimation and immediate actions based on
the estimation are top priorities. A real-time maximum-
likelihood estimation method was proposed in [23] for
estimating diffusive source parameters, where consistency
and asymptotic efficiency of the obtained estimator were
proved when the density of sensors becomes infinite. In
[24], the problem of impulsive diffusive source localiza-
tion was solved assuming the spatial sensormeasurements
at any sensor location as a scaled and shifted version
of a common prototype function, leading to solving a
set of linear equations. However, the physical diffusion
models used in [23,24] are oversimplified with the diffu-
sive sources assumed to be impulsive or instantaneous in
nature.
Although research has been done in tracking and/or

estimating time-varying parameter estimation in gen-
eral [25-28], to the best of our knowledge, very few
attempts have been made in time-varying diffusive source
parameter estimation. Some of these methods cannot be
applied directly into our time-varying parameter estima-
tion model since, e.g., for a moving source, the concen-
tration at the current time is affected by all past values
of source position. Therefore, time-cumulation effects
on the concentrations (i.e., observations) must be taken
into account to estimate time-varying parameters. Among
previous works, a parametric moving path model for a
diffusive moving source was discussed in [10], where

the moving source path was approximated using finite
number basis functions. Tracking performance in this
case depends on the smoothness of the source trajectory,
prior information about the moving source trajectory, and
choosing a suitable finite set of basis functions. In [29], a
novel recursive algorithmwas proposed to track the inten-
sity of a diffusive point source, but the source location was
considered as an unknown static value.
The aforementioned limitations may be overcome by

developing or exploiting state-of-the-art Bayesian-based
location tracking methods suitable for handling highly
nonlinear diffusion processes. In the Bayesian approach,
the key is to construct the posterior probability density
function (PDF) of the underlying state vector based on
all available information. For linear and Gaussian state
dynamics and observation models, the optimal minimum
mean squared error (MMSE) solution is tractable and is
given by the well-known Kalman filter [30]. However, for
most of the real-world scenarios, dynamic state estimation
problems are nonlinear and non-Gaussian, and obtaining
optimal closed-form solution is not tractable under the
Bayesian approach. In these cases, suboptimal approaches
such as extended Kalman filter and Gaussian-sum filter
[31] are used with certain approximations. These sub-
optimal algorithms become inefficient for highly nonlin-
ear and non-Gaussian systems. In these cases, numerical
techniques based on sequential Monte Carlo methods are
used to achieve better performance for highly nonlinear
systems. To that end, the idea of particle filtering was
introduced in [32] as an effective method of representing
PDF in terms of a set of random sampling.
In this paper, our main objectives are to efficiently esti-

mate and track diffusive source location using a wireless
network of chemical sensor capable of sensing in diffu-
sive environment. To cater to the objectives, we formulate
and derive a physical model for the space-time substance
dispersion mechanism of an underwater diffusive source.
The modeling and the proposed solution methods can
also be extended to other important diffusion phenom-
ena involving biochemical contaminant materials as well.
We propose and implement ML and best linear unbiased
estimator (BLUE)-based parameter estimation techniques
for a static diffusive source which is continuously emitting
substance [33]. In the previous literature, such as in [4],
the asymptotic normality of the obtained ML estimator
was proved when the SNR approaches infinity. We prove
both the consistency and asymptotical normality of our
obtained ML-based solution when the number of sensor
nodes and time samples go to infinity, thus allowing for
the option of tweaking these two parameters. We derive
the Cramér-Rao lower bound (CRLB) as a theoretical per-
formance bound for a special case of our obtained physical
dispersion model. We also propose a particle filter (PF)-
based target tracking method for moving diffusive source.
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To the best of our knowledge, moving diffusive source
tracking using particle filtering approach has not been
attempted before. The posterior Cramér-Rao lower bound
(PCRLB) for the moving source state estimates is also
derived as a theoretical performance bound [34].
The remainder of this paper is organized as follows:

Sections 2 and 3 discuss, respectively, modeling of an
underwater oil spill scenario and measurement model
for static diffusive source localization using sensor net-
work. The proposed statistical methods for static diffusive
source localization and corresponding theoretical per-
formance bound are discussed in Section 4. Section 5
presents the proposed particle filter-based method for
moving diffusive source tracking with theoretical per-
formance bound analysis in detail. Section 6 shows the
validity and effectiveness of our proposed methods for
diffusive source localization and tracking through numer-
ical simulations. Finally, Section 7 concludes the paper by
summarizing our results.

2 Physical model for dispersion
We first derive the physical models for the space-time sub-
stance dispersion mechanisms from a diffusive source and
then transform the obtained dispersion model to a statis-
tical measurement model. The transport model of a sub-
stance from a diffusive source can be obtained by solving
the corresponding diffusion equation. Diffusion equation
describes the dispersion of particles from a region of high
concentration to regions of lower concentration due to
random molecular motion. Let us denote the concentra-
tion of the diffused substance at a position r = [x, y, z]T
and at time t as c(r, t). Ignoring the effects of external
forces for a source-free volume and for space-invariant
diffusivity constant κ , the concentration of a dispersed
substance follows the following diffusion equation [35]:

∂c(r, t)
∂t

= κ

(
∂2c(r, t)

∂x2
+ ∂2c(r, t)

∂y2
+ ∂2c(r, t)

∂z2

)
.

To solve the above differential equation, appropriate
boundary and initial conditions are required. We first
compute the concentration for a stationary impulse point
source of unit mass to obtain Green’s function. The
obtained result is then extended for a continuous source
by integrating the source-release rate with the Green’s
function. Denoting the Green’s function of the impulse
source as cG(r, t), the concentration of a continuous point
source with mass release rate μ(t) and initial release time
tI can then be given by the following integral:

c(r, t) =
∫ t

tI
μ(τ)cG(r, t − τ)dτ . (1)

For parametric estimation case, it is to be noted that
from the concentration measurements taken by the sen-
sors, we can first estimate the source parameters of inter-
est and then predict its cloud evolution in space and time
by inserting the estimated parameters into (1).
Although the main focus of this paper are diffusive

source localization and tracking, we introduce a special
diffusion phenomenon, i.e., an underwater oil spill, to
demonstrate how to model and solve for a practical dif-
fusion phenomenon and also to motivate the practical
importance of the problem we are discussing. As shown
in Figure 1, we model an underwater oil spill as a diffu-
sion occurring in a two-layer semi-infinite medium (i.e.,
water and air). We assume that the oil spilling source
is located at the bottom (i.e., river/sea bed) at a loca-
tion r0 = [x0, y0, z0]T . The depth of water level is 0 ≤
z ≤ L with diffusivity κw and concentration cw. The same
quantities for air (z > L) are denoted as κa and ca respec-
tively. Along the z-axis, we need to solve the following
differential equations:

∂cw
∂t

= κw
∂2cw
∂z2

, for 0 < z < L,

∂ca
∂t

= κa
∂2ca
∂z2

, for z > L.

Considering only point impulse source located at z = z0,
where 0 ≤ z0 ≤ L and impermeable boundary at z = 0,
we have the following initial condition:

cw(z, t) = δ(z − z0), at t = tI

and boundary conditions

cw = ca, at z = L, (2)

κw
∂cw
∂z

= κa
∂ca
∂z

, at z = L, (3)

∂cw
∂z

= 0, at z = 0. (4)

Boundary condition (2) implies the continuity of con-
centration at the interface z = L. Condition (3) repre-
sents the fact that there is no accumulation of diffusing
substance at z = L. Finally, the third boundary con-
dition in (4) reflects the assumption that the medium
at z = 0 is impermeable. By applying the concept of
Laplace transform on the above system of partial differ-
ential equations, we can obtain the solution to the spatio-



Hakim and Jayaweera EURASIP Journal on Advances in Signal Processing 2013, 2013:147 Page 4 of 19
http://asp.eurasipjournals.com/content/2013/1/147

Figure 1 An underwater oil spill scenario.

temporal concentration distribution (omitting the details
in [10,35,36]):

cw(z, t)= 1
2
√

πκw(t − tI)

∞∑
n=0

ρn
[
exp

{
− (z − z0 − 2nL)2

4κw(t − tI)

}

+ exp
{
− (z + z0 + 2nL)2

4κw(t − tI)

}]

+ 1
2
√

πκw(t − tI)

∞∑
n=0

ρ(n+1)

×
[
exp

{
− (z − z0 − 2(n + 1)L)2

4κw(t − tI)

}

+ exp
{
− (z + z0 + 2(n + 1)L)2

4κw(t − tI)

}]
,

where ρ =
√

κw−√
κa√

κw+√
κa
. As can be seen, the concentration

curve can be considered to be the superimposed curve
resulting from each successive reflection (from the sur-
face layer) being superimposed on the original curve. In
practice, if κw � κa, then ρ → 1. Therefore we have,

cw(z, t) = 1
2
√

πκw(t − tI)

[
exp

{
− (z − z0)2

4κw(t − tI)

}

+ exp
{
− (z + z0)2

4κw(t − tI)

}]

+ 1√
πκw(t − tI)

∞∑
n=1

[
exp

{
− (z − z0 − 2nL)2

4κw(t − tI)

}

+ exp
{
− (z + z0 + 2nL)2

4κw(t − tI)

}]
.

(5)

Considering the laminar water velocity working along
the X-Y -plane as an external force, we have v =
[vx, vy, 0]T . The diffusion equations along the x and y axes
will include additional advection term [35]:

∂cw
∂t

= κw
∂2cw
∂x2

− vx
∂cw
∂x

,

∂cw
∂t

= κw
∂2cw
∂y2

− vx
∂cw
∂y

.

For X-Y -plane, there is no boundary condition and the
initial condition is given as

c(x, y, t) = δ(x − x0, y − y0), at t = tI.

Using the concept of Fourier transform for solving par-
tial differential equations, we can solve for the following
concentration distribution along x and y axes [37]:

cw(x, t) =
exp

[
−{x−x0−vx(t−tI)}2

4κw(t−tI)

]
2
√

πκw(t − tI)
and (6)

cw(y, t) =
exp

[
−{y−y0−vy(t−tI)}2

4κw(t−tI)

]
2
√

πκw(t − tI)
. (7)

Based on our assumptions on initial and boundary
conditions and for rectangular parallelepiped space, the
Green’s function solution for 3-spatial-variable case is the
product of the solutions of the three single spatial-variable
cases with stationary impulse point source [10,35]. There-
fore, the Green’s function cG(r, t) for the space-time
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concentration distribution can be obtained as the product
of the solutions in (5), (6), and (7):

cG(r, t) = 1
8{πκw(t − tI)}3/2

[
exp

{
−|r − v(t − tI) − r0|2

4κw(t − tI)

}

+ exp
{
−|r − v(t − tI) − r′|2

4κw(t − tI)

}]

+ 1
4{πκw(t − tI)}3/2 exp

[
−{x − x0 − vx(t − tI)}2

4κw(t − tI)

−{y − y0 − vy(t − tI)}2
4κw(t − tI)

]

×
∞∑
n=1

[
exp

{
−{z − z0 − 2nL}2

4κw(t − tI)

}

+ exp
{
−{z + z0 + 2nL}2

4κw(t − tI)

}]
, (8)

where r0 = [x0, y0, z0]T and r′ = [x0, y0,−z0]T . Consi-
dering the source mass release rate to be constant μ(t) =
μ, the final solution for concentration of oil diffusion in
water for stationary continuous source with mass rate of
μ(t) can be obtained from (1):

c(r, t) = μ

∫ t

tI
cG(r, t − τ)dτ

= c1(r, t) + c2(r, t) + c3(r, t) + c4(r, t),
(9)

where

c1(r, t) = μ

8πκw|r − r0| exp
{

(r − r0) · v
2κw

}[
exp

{ |r − r0||v|
2κw

}

× erfc
{ |r − r0|
2
√

κw(t − tI)
+ |v|

√
t − tI
4κw

}

+ exp
{
−|r − r0||v|

2κw

}

× erfc
{ |r − r0|
2
√

κw(t − tI)
− |v|

√
t − tI
4κw

}]
,

c2(r, t) = μ

8πκw|r − r′| exp
{

(r − r′) · v
2κw

}[
exp

{ |r − r′||v|
2κw

}

× erfc
{ |r − r′|
2
√

κw(t − tI)
+ |v|

√
t − tI
4κw

}

+ exp
{
−|r − r′||v|

2κw

}

× erfc
{ |r − r′|
2
√

κw(t − tI)
− |v|

√
t − tI
4κw

}]
,

c3(r, t) = μ

4(πκw)3/2

∞∑
n=1

∫ t−tI

0
τ−3/2 exp

{

− (x−x0−vxτ)2+(y−y0−vyτ)2+(z−z0− 2nL)2

4κwτ

}
dτ,

c4(r, t) = μ

4(πκw)3/2

∞∑
n=1

∫ t−tI

0
τ−3/2 exp

{

− (x−x0− vxτ)2+(y−y0− vyτ)2+(z+z0+2nL)2

4κwτ

}
dτ.

Derivation to (9) is given in Appendix 1. For the sake of
simplicity from here on, we denote the diffusivity constant
κw = κ .

2.1 Moving diffusive source
For a moving diffusive source-emitting substance con-
tinuously in a semi-infinite medium similar to our case,
space-time concentration distribution can be obtained
using the concept of convolution integral from the Green’s
function solution corresponding to stationary impulsive
source. In this case, substance concentration at any time
instant is affected by all the past values of source posi-
tion and release rate. Therefore, time-cumulation effect
on the concentrations has to be considered to obtain
complete physical model. For a moving diffusive source
continuously releasing substance at a mass rate μ(t), the
space-time concentration distribution in a semi-infinite
medium can be obtained for a given Green’s function
cG(r, t) using the following integral:

c(r, t) =
∫ t

tI
μ(τ)cG (r − r0(τ ), t − τ) dτ , (10)

where r0(t) = [x0(t), y0(t), z0(t)]T represents the source
moving path. The advantage of solving the physical dif-
fusion model corresponding to a moving diffusive source
using (10) is that the initial, boundary, and other neces-
sary conditions can be taken into account to solve for the
stationary case in the first step before extending it to the
moving source case.

3 Measurement and systemmodels for static
diffusive source localization

We consider aWSN consisting of a fusion center (FC) and
N spatially distributed biochemical static sensor nodes
capable of sensing in dispersive environment. For prac-
tical consideration, we assume that the N distributed
sensors are located in a rectangular volume in space such
that rj = [xj, yj, zj]T ∈ �,∀j ∈ {1, 2, . . . ,N}, where � =
[a1, a2]× [b1, b2]× [c1, c2] ⊆ R

3. It is also assumed that
the source-to-sensor distances are much higher than the
source and sensor dimensions. Each sensor node takes
measurements at times tk ;∀k ∈ {1, 2, . . . ,T}, where T
is the total number of time samples. Assuming that the
physical model discussed before is the underlying disper-
sion mechanism, we may obtain a measurement model
for a sensor at a position rj and at time tk as y(rj, tk) =
c(rj, tk) + e(rj, tk) + b, where c(rj, tk) is the concentration
of interest, b is a bias term, and e(rj, tk) ∼ N (0, σ 2) is the
sensor noise assumed to be independent in both time and
space. For the sake of brevity, it can be rewritten in the
simplified form as

yj,k = cj,k(θ) + ej,k + b, (11)
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where yj,k = y(rj, tk), ej,k = e(rj, tk), cj,k(θ) = c(rj, tk),
θ ∈ R

n×1 is the unknown source and medium parameter
vector that we are interested to estimate, and b is the bias
or clutter term representing the sensor’s response to for-
eign substances that may be present in a diffusive field of
interest. The bias term is assumed to be space and time-
invariant such that the foreign substances interfering with
the actual measurements are in steady state. If we want
to localize a static diffusive source, then only [x0, y0, z0]
are the parameters of interest. It is to be noted that some
of the parameters, such as the diffusivity constant κ , bias
term b, and noise variance σ 2, can be measured at the cal-
ibration stage, thereby reducing the cost of computation
during the detection/estimation phase.
We assume that the sensor nodes are in sleepmode until

they are activated by some central control (i.e., FC) due to
a possible release of a substance from a diffusive source.
The activated sensor nodes takemeasurements of the sub-
stance’s concentration at time instants tks and then return
to sleep mode. For N number of nodes in a WSN and
with each node taking T number of time samples of the
substance concentrations at their respective locations, let
y ∈ R

NT×1 be the measurement vector received at the FC.

4 Static diffusive source localization
In this section, we use the maximum-likelihood estima-
tor (MLE) and the BLUE to estimate the location of an
underwater diffusive source diffusing oil into water. For
simplicity of exposition, we consider a special case of our
obtained physical model when an oil spill occurs in an
infinite (L → ∞) underwater medium. In this case, the
concentration at any position rj at time tk is reduced to the
following expression [4,35]:

cj,k(θ) = μ

4πκ|rj − r0|erfc
( |rj − r0|
2
√

κ(tk − tI)

)
. (12)

where erfc(.) is the complementary error function.

4.1 Maximum-likelihood-based source localization
From the measurement model discussed in Section 3, the
conditional PDF of the measurements taken by the jth
node at time tk is p(yj,k|θ) ∼ N (cj,k(θ)+b, σ 2). Hence, the
log-likelihood function formed at the FC can be written as

L = −NT
2

log(2πσ 2)− 1
2σ 2

N∑
j=1

T∑
k=1

(
yj,k − cj,k(θ) − b

)2 .
(13)

The log-likelihood equations are obtained by ∂ci,j(θ)

∂(θ)
:

N∑
j=1

T∑
k=1

(
yj,k − cj,k(θ) − b

) [∂cj,k(θ)

∂θu

]∣∣∣∣∣∣
θ=θ̂

= 0, (14)

for u = 1, 2, 3, where θu is the uth element of θ , and

∂cj,k(θ)

∂θu
= μ

[
rj(u) − r0(u)

]
4πκ|rj − r0|2

⎡
⎣erfc

( |rj−r0|
2
√

κ(tk−tI)

)
|rj − r0|

+
exp

{
− |rj−r0|2

4κ(tk−tI)

}
√

πκ(tk − tI)

⎤
⎥⎦ . (15)

Since the system of equations in (14) is nonlinear, there
is no closed-form solution to it. We can obtain anML esti-
mation of the source location using any suitable nonlinear
optimization technique. In this case, (14) is solved using
simplex search algorithm [38].
The CRLB provides a lower limit on the mean squared

estimation error of an unbiased estimator of nonrandom
parameter [30]. CRLB in this case can be obtained as
CRLB ≥ I−1

θ , where Iθ ∈ R
3×3 is the Fisher information

matrix (FIM) formed at the FC. The u-vth element of the
FIM can be found as

[Iθ ]u,v = E

[{
∂

∂θu
log p(y|θ)

}{
∂

∂θv
log p(y|θ)

}]
,

= 1
σ 2

N∑
j=1

T∑
k=1

{
∂cj,k(θ)

∂θu

}{
∂cj,k(θ)

∂θv

}
, (16)

where (16) was obtained using the independence assump-
tion of observations in space and in time.
A sequence of estimators θ̂n to an unknown parameter

vector θ is said to be consistent if the sequence converges
in probability to θ , i.e., limn→∞ θ̂n = θ , where n is the
sample size [30]. It is desirable to have a consistent MLE
as consistency ensures that for large data sets, the MLE
will converge to the true parameter. The obtained MLE to
our source localization problem is consistent when the
number of sensor nodes in any non-negligible open sub-
set of � = [a1, a2]×[b1, b2]×[c1, c2] ⊆ R

3 and time
samples go to infinity.

Theorem 1. If the number of sensors N increases
in such a way that for any open subset � =
[a1, a2]×[b1, b2]×[c1, c2] ⊆ R

3 having positive area, the
number of sensors N and/or the number of time samples T
tend to infinity, the obtained ML estimator is consistent.

Proof. See Appendix 2.
Once consistency for the obtained MLE is established,

the next important thing is to check the asymptotic nor-
mality. An asymptotically normal estimator is a consistent
estimator whose distribution around the true parameter
θ approaches a normal distribution with standard devia-
tion shrinking in proportion to 1/

√
n as the sample size n

grows, i.e.,
√
nIθ
(
θ̂n − θ

)
−→ N

(
0, I−1), where Iθ and I
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are the Fisher information and identity matrices, respec-
tively [30]. It ensures that the estimator not only converges
to the unknown parameter, but it converges fast enough
at a rate 1/

√
n. We address this issue with the following

theorem on asymptotic normality.

Theorem 2. If the number of sensors N and time samples
T increase as in Theorem 1, then for a true parameter vec-
tor θ0 ∈ ◦

�, where
◦
� ⊂ � is an open subset of �, the

following is true:
√
NT

(
θ̂ML

(
y
)− θ0

)
−→ N

(
0,
(
Īθ0
)−1) ,

in distribution where the (u, v)th element of the matrix Īθ
is given by

[
Īθ
]
u,v = lim

N ,T→∞
1

σ 2NT

N∑
j=1

T∑
k=1

{
∂cj,k(θ)

∂θu

}{
∂cj,k(θ)

∂θv

}
.

Proof. See Appendix 3.

4.2 Best linear unbiased estimator-based source
localization

The advantages of using the BLUE for static diffusive
source localization are that there are no constraints on the
PDF and also knowing only the mean and covariance of
the measurements is enough. However, observations have
to be linear for the BLUE algorithm. In this subsection,
we assume that the distributed sensing nodes are capable
of estimating their respective distances from the source
using BLUE.
Since the complementary error function can be approx-

imated as erfc(z) ≈ 1 − 2√
π
z, our observation model for

jth node at the kth time instant can be linearized in terms
of the inverse of the source-to-node distances from (11)
and (12):

yj,k ≈ μ|rj − r0|−1

4πκ
+
[
b − μ

4
√

π3κ3(tk − tI)

]
+ ej,k

= hdinvj + ak + ej,k ,
(17)

where h = μ
4πκ

, dinvj = ∣∣rj − r0
∣∣−1 and ak = b −

μ

4
√

π3κ3(tk−tI)
. Since all the parameters are known except

for the diffusive source location, we can write ỹj,k = yj,k −
ak = hdinvj +ej,k . Therefore, the observation vector formed
at the jth node can be written as

ỹj =

⎛
⎜⎜⎜⎝

yi1 − a1
yi2 − a2

...
yiT − aT

⎞
⎟⎟⎟⎠ = hdinvj + ej, (18)

where h is a column vector of all hs and ej =
[ei1, ei2, . . . , eiT ]T . Since ej,k ∼ N

(
0, σ 2) for ∀j, k and

measurement noise is assumed to be independent and
identically distributed across space and time, the covari-
ance matrix of ỹj is �̃j = diag

(
σ 2, σ 2, . . . , σ 2) ∈

R
T×T . The optimal BLUE estimator formed at jth node is

given by

d̂invj = hT �̃−1
j ỹj

hT �̃−1
j h

, (19)

with estimator variance Vj =
(
hT �̃−1

j h
)−1

.
After the distributed nodes estimate their respective

distances d̂j = |rj − r0| from the source using BLUE, all
nodes send d̂js to the FC for further processing. It is to
be noted that the source-to-node distance estimation can
also be performed at the FC. The signal received at the FC
from the jth node can be expressed as fj = d̂j + wj, where
wj is normally distributed with mean 0 and variance σ 2

m.
ForN number of nodes, the data vector available at the FC
can be written as

F = [ f1, f2, . . . , fN ]T = D̂ + w,

where D̂=
[
d̂1, d̂2, . . . , d̂N

]T, dj =
√

(xj−x0)2+(yj−y0)2+(zj−z0)2, and
w = [w1,w2, . . . ,wN ]T . The data vector F formed at the
FC can be used to estimate the diffusive source location
using the nonlinear least-square approach:

r̂0 = arg min
r0=[x0,y0,z0]

∣∣∣∣∣∣F − D̂
∣∣∣∣∣∣2
2
. (20)

To solve for the source location from (20), simplex search
algorithm [38] has been used.

5 Moving diffusive source tracking
5.1 State dynamics model
For the simplicity of exposition and computation, we con-
sider the problem of tracking a diffusive source moving in
a 2D X-Y -plane. The assumption can be easily extended
to the 3D case without any loss of generality. Let us denote
by sk = [

xs,k ys,k ẋs,k ẏs,k
]T , the state vector associated

with the moving source at time tk , where the first two ele-
ments represent the source position in 2D and the next
two elements represent the speed of the moving source,
respectively. We assume linear dynamic model for the
source state vector:

sk = Fsk−1 + uk , (21)
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for k = 1, 2, . . ., with the initial known distribution p(s0)
for sk , where F is a 4 × 4 matrix that models the state
kinematics [39]:

F =

⎛
⎜⎜⎝

1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (22)

where Ts is the time difference between two consecutive
measurements. The noise vector uk is assumed to be 0
mean Gaussian with covariance matrixQ [39]:

Q = σ 2
u

⎛
⎜⎜⎜⎜⎝

T3
s
3 0 T2

s
2 0

0 T3
s
3 0 T2

s
2

T2
s
2 0 Ts 0
0 T2

s
2 0 Ts

⎞
⎟⎟⎟⎟⎠ , (23)

which models the acceleration terms in the spatial direc-
tions, and σ 2

u is the variance of the process noise.

5.2 Observation model
In case of a moving diffusive source continuously emitting
diffusing substance in 2D, we may obtain a measurement
model for a sensor at a position rj,k and at time tk as

zj,k = c(rj,k , tk) + ν(rj,k , tk) + b, for j ∈ N
= cj,k + νj,k + b, (24)

where zj,k is the jth node’s observation at time tk ; cj,k �
c(rj,k , tk) = ∫ tk

tI μ(τ)cG
(
rj,k − rs(τ ), t − τ

)
is the sub-

stance concentration at jth node location at time tk ; mov-
ing diffusive source location at time tk is rs,k = s̃k =[
xs,k , ys,k

]T ; location of jth node at time tk is rj,k =[
xj,k , yj,k

]T ; and νj,k ∼ N
(
0, σ 2

ν

)
is the sensor measure-

ment noise assumed to be independent in both time and
space. Note that for static sensor node locations, we use
rj,k = rj = [

xj, yj
]T by dropping the time index, since

node locations do not change over time. By assuming the
additive white Gaussian noise channel for the sake of sim-
plicity, the received signal at the FC from the jth node at
time tk can be written as

yj,k = zj,k + εj,k , for j ∈ N
= cj,k + b + εj,k + νj,k = cj,k + b + ej,k ,

where εj,k is the received noise which is assumed to be
Gaussian with mean 0, variance σ 2

ε and ej,k = εj,k + νj,k
and σ 2 = σ 2

ν + σ 2
ε . We denote yj,1:k as the measure-

ment vector from jth node up to the time tk , and yc,1:k �
{y1,1:k , y2,1:k , . . . , yN ,1:k}T as the collection of all measure-
ments at the FC from N-distributed sensor nodes.

In a realistic moving source scenario, the instantaneous
velocity is restricted by some practical upper limit. Hence,
for lower sampling time Ts, we can assume that the mov-
ing diffusive source moves in a linear fashion between
two observations with an average velocity determined
by the source locations rs,k and rs,k+1. For 2D moving
diffusive source tracking with no external force in action,
the Green’s function can be obtained from (6) and (7) as

cG
(
rj, tk

) = 1
4πκ(tk − tI)

exp
[
−
∣∣∣∣rj − r0(tk)

∣∣∣∣2
4κ(tk − tI)

]
.

Therefore, for a continuous moving diffusive source
with constant mass rate μ(t) = μ, observations taken by
the jth node at kth time instant can be written as

yj,k = cj,k−1 + ζj,k + b + ej,k , (25)
where

ζj,k = μ

∫ tk

tk−1

cG
(
rj − rs(τ ), tk − τ

)
dτ ,

= μ

4πκ

∫ tk

tk−1

(
1

tk − τ

)

× exp

⎡
⎢⎣−
∣∣∣∣∣∣rj − {rs,k−1+

(
rs,k−rs,k−1

Ts

)
(τ − tk−1)

}∣∣∣∣∣∣2
4κ(tk − τ)

⎤
⎥⎦dτ.

(26)

5.3 Target tracking using particle filters
In Bayesian belief update, to estimate state vector sk at
time instant k, we need to construct posterior distribu-
tion p

(
sk|yc,1:k

)
with initial PDF p(s0). The Bayesian belief

update is done in two stages: prediction and update.
Prediction. Considering that p

(
sk−1|yc,1:k−1

)
is available

at time k, the PDF p
(
sk|yc,1:k−1

)
can be obtained as [40]

p
(
sk|yc,1:k−1

) =
∫

p
(
sk|sk−1

)
p
(
sk−1|yc,1:k−1

)
dsk−1.

Update. If observations yc,1:k are available at time instant
k, the posterior distribution to estimate the state vector sk
is given by [40]

p
(
sk|yc,1:k

) = p
(
yc,k|sk

)
p
(
sk|yc,1:k−1

)
p
(
yc,k|yc,1:k−1

) . (27)

Since the observation model is highly nonlinear, the ana-
lytical solution for the optimal estimator is not tractable in
our case. Hence, we use sequential Monte Carlo method
to approximate the posterior PDF (27) with particle filters
[32].
Let us denote Xk = {

sik ,w
i
k
}P
i=1 to be the random

measure that characterizes the posterior PDF p
(
sk|yc,1:k

)
,

where P is the number of particles. Then p
(
sk|yc,1:k

) ≈∑P
i=1 wi

kδ
(
sk − sik

)
, where δ(.) is the Dirac delta function.

The state vector estimate at time tk can be obtained as
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ŝk|k ≈ ∑P
i=1 wi

ks
i
k , and the covariance matrix Uk|k of the

estimate is Uk|k ≈ ∑P
i=1 wi

k
(
sik − ŝk|k

) (
sik − ŝk|k

)T . The
predicted state ŝk+1|k and the corresponding covariance
matrix Uk+1|k can be obtained from the state dynamics in
(21) as ŝk+1|k = Fŝk|k and Uk+1|k = FUk|kFT + Q.

5.4 Posterior Cramer-Rao lower bound analysis
Analogous to the CRLB, the PCRLB provides a lower
bound for the mean squared error of random parameter
estimation [34]. Let us define the joint probability distri-
bution of Sk and yc,1:k for an arbitrary k is p

(
Sk , yc,1:k

) =
pk , where yc,1:k is the observation vector formed at the
FC at kth time instant and Sk = (s0, s1, . . . , sk). Following
(26), the concentration at any time k+1 for any node j can
be written as

c(rj, tk+1) � cj,k+1 = ζj,0:1+ζj,1:2+. . .+ζj,k−1:k+ζj,k:k+1.

Based on the assumed observation model in (25), the
log-likelihood function Lk+1 = log p

(
yc,k+1|sk+1, Sk

)
at

(k + 1)th time instant formed at the FC is given by

Lk+1 = − N
2
log(2πσ 2)

−
N∑
j=1

1
2σ 2

(
yj,k+1 − c

(
rj, tk

)− ζj,k+1 − b
)2 .

Let I(Sk) ∈ R4k×4k be the information matrix derived
from the joint distribution pk . We wish to solve for the
information submatrix for estimating sk , denoted by Ik .
The following theorem gives a two-step recipe for com-
puting Ik .

Theorem 3. The sequence {Ik+1} of the posterior informa-
tion submatrices for estimating state vectors sk+1 can be
computed as follows:

Ik+1 = Dk+1 − [Lk+1 − Q−1F + Mk+1
] [
I(Sk) + Rk+1

]−1

×
[

LTk+1
−FTQ−1 + MT

k+1

]
, (28)

where Mk+1 = −E
{
�

sk
sk+1Lk+1

}, Dk+1 = −E

{
�

sk+1
sk+1 log pk+1

}
, Lk+1 =[

−E
{
�

s0
sk+1Lk+1

}− E
{
�

s1
sk+1Lk+1

}
. . . − E

{
�

sk−1
sk+1Lk+1

}]
,

and ��
� = ∇�∇T

� with ∇ being the Laplacian operator.

Proof. See Appendix 4.
Note that the information submatrix computation in

(28) involves computation of the inverse of a matrix of size
4k×4k. This is because of the output yj,k+1 at the jth node
at (k+1)th time instant being a function of all the previous
states Sk+1.

6 Simulation results
In the following, we show the performances of our
proposed models and schemes through numerical
simulations.

6.1 Simulations for the physical model in Section 2
We show the space-time concentration distribution of a
static continuous point source (oil spill source) located at
the bottom of a sea at r0 based on the physical diffusion
model formulated in Section 2. The parameters used for
this simulation are oil release rateμ = 103 kg/s, diffusivity
constant of oil in saline water κ = 25 m2/s, initial release
time tI = 0 s and laminar water velocity v = [50, 50, 0]
m/s. The oil spill source is assumed to be located at r0 =
[0, 0, 0]T and the depth of water is taken to be L = 100 m
from the sea bed. Figure 2 shows the spatial concentration
distribution for two different time instants t = 1 and t =
100 s. It can be seen from Figure 2 that as the oil source
is located at the origin, the concentration is high near the
origin at t = 1 s. By the time it is 100 s, oil has diffused
over larger distance from the source. It is interesting to see
that since laminar water flow is assumed to be only active
in the positive x and y directions, concentration increases
more along the positive X-Y -plane with the increase in
time.

6.2 Static diffusive source localization
Here, we show the simulation results in estimating the
location of a static diffusive source using the proposed
MLE and BLUE-based methods from the concentration
observations taken by the sensing nodes. For the sake
of simplicity, we consider a 2D diffusive field volume
of � = [−50, 50]×[−50, 50] m2. We assume that the
sensors are placed in a uniform 2D grid such that the
distance between adjacent sensors along the same ordi-
nate is approximately 14.3 m. Parameters used for sim-
ulations are number of nodes N = 64, r0 = [0, 0]T ,
μ = 1, 000 kg/s, b = 10−4 kg/m2, tI = 0 s, and

Rk+1 =

⎡
⎢⎢⎢⎣

−E
{
�

s0
s0Lk+1

} −E
{
�

s1
s0Lk+1

}
. . . −E

{
�

sk
s0Lk+1

}
−E

{
�

s0
s1Lk+1

} −E
{
�

s1
s1Lk+1

}
. . . −E

{
�

sk
s1Lk+1

}
...

...
. . .

...
−E

{
�

s0
skLk+1

} −E
{
�

s1
skLk+1

}
. . . −E

{
�

sk
skLk+1

}+ FTQ−1F

⎤
⎥⎥⎥⎦ , (29)
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Figure 2 Spatio-temporal concentration distribution. Concentration distribution in space (x-y-z coordinates) at times (A) t = 1 s and
(B) t = 100 s with velocity vector v =[50, 50, 0] m/s (magnitude of concentration is proportional to the darkness).

κ = 25 m2/s. The observation noise is assumed to have
Gaussian distribution with mean 0 and variance σ 2 =
1 × 10−4 kg/m2. The total number of random realiza-
tions used for simulations is 100. The measurements are
taken at every 0.5 s time-step starting from 0.5 s end-
ing at 30 s. In the case of BLUE estimator, the received
noise variance at the fusion center is assumed to be
σ 2
m = 0.01, 10 m2.
Figure 3 shows the normalized mean squared error

(MSE) and CRLB (in dB) with the increase in the number
of nodes and samples. The normalized MSE and CRLB
are obtained by dividing each with the diffusive field vol-
ume. As one would expect, the estimation error decreases
as more distributed nodes and samples are considered for
estimation purpose. Since it is a 2D location estimation

problem, we need at least three nodes to determine the
source location correctly. It is interesting to note that the
estimation performance is slightly better than the CRLB
in some cases. This is due to the fact that the ML esti-
mator in this case is biased (suggested from simulation),
and thus can outperform the CRLB by trading variance
for bias. In this particular case, the continuous diffusive
source can be localized with a resolution of less than
12 cm.
The estimated source location using the BLUE estima-

tor is shown in Figure 4 as a function of the number of
nodes and time samples for different values of σ 2

ms. As one
would expect, the overall performance obtained from the
BLUE estimator is not as good as that from the MLE due
to the linear approximation applied on the observation
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Figure 3 Performance of MLE. Normalized MSE and CRLB of the MLE as function of (A) number of nodes, and (B) time samples.
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Figure 4 Performance of BLUE. Normalized MSE of the BLUE as function of (A) number of nodes and (B) time samples.
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model in (17). However, the performance of the BLUE
estimator-based localization improves as the number of
nodes and/or time samples increases. This is because for
N ,T → ∞, the complementary error function in (12)
tends to be equal to 1, causing the linearization to have
almost no effect on the approximation.

6.3 Moving diffusive source tracking
In this subsection, we analyze the performance of our pro-
posed moving diffusive source tracking scheme. We use
the same sensor network setup as described in Section 6.2.
The initial source state vector is assumed to be Gaussian
with mean μ = [0, 0, 0, 0]T and covariance matrix �0 =
diag

(
[0.01, 0.01, 0.01, 0.01]T

)
. The intensity of the state

process noise is σ 2
u = 0.1. The sampling time is assumed

to be Ts = 0.5 s, and the total number of random realiza-
tions used for simulations is 50. The tracking is performed
for 30 s and the number of particles in the PF is Np =
1, 000. The rest of the parameters is same as in Section 6.2.
The performance measure is taken as the root mean
squared error (RMSE) of the moving source position esti-
mate given by RMSEk =

√(
xs,k − x̂s,k

)2 + (ys,k − ŷs,k
)2.

The RMSE is compared with the square root of the
PCRLB components of the position error, PCRLBk ≈√[

I−1
k

]
11

+
[
I−1
k

]
22
.

Figures 5 and 6 show the tracking performances of the
proposed tracking scheme using particle filter for grid-
based and random node deployment strategies, respec-
tively. It can be seen that the target trajectory can be
tracked with better accuracy in Figure 6 compared to
that in Figure 5. Figures 5B and 6B show the RMSEs on
the tracking performances for the aforementioned two
node deployment strategies respectively. The obtained
RMSE with the random node deployment case is bet-
ter and closer to the derived PCRLB than those of the
grid-based node deployment case. This is because for a
fixed node density, the expected nearest neighbor node
distance (from the source) in case of random node deploy-
ment is less than the inter-node spacing in grid-based
node deployment, which in our case is 14.3 m. The ran-
dom node deployment is specially suitable when there
is no pre-designed infrastructure for sensor network and
also when the diffusive field is hazardous for human
deployment.
It is of interest also to investigate the performance of

the proposed target tracking method when the sampling
time Ts is varying. Figure 7 shows the effect of sampling
time Ts on the tracking performances of the proposed
moving diffusive source tracking scheme using grid-based
node deployment strategy, keeping all the other param-
eters same as mentioned before. As one would expect,

−14 −12 −10 −8 −6 −4 −2 0
−2

0

2

4

6

x−pos

y−
po

s

 

 
Actual
Estimated

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

time (sec)

R
M

S
E

 (
dB

)

 

 

RMSE
PCRLB

A

B

Start
End

Figure 5 Performance of the proposed tracking method with grid-based sensor node deployment. (A) Actual and estimated trajectories of
the moving diffusive source and (B) RMSE (dB) for grid-based sensor node deployment.
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−14 −12 −10 −8 −6 −4 −2 0
−2

0

2

4

6

x−pos

y−
po

s

 

 

Actual trajectory
Estimated trajectory with T

s
=0.5s

Estimated trajectory with T
s
=1s

0 5 10 15 20 25 30

−25

−20

−15

−10

−5

0

time (sec)

R
M

S
E

 (
dB

)

 

 

RMSE with T
s
=0.5s

PCRLB with T
s
=0.5s

RMSE with T
s
=1s

PCRLB with T
s
=1s

Start

End

A

B

Figure 7 Effect of sampling time on tracking performance. (A) Actual and estimated trajectories of the moving diffusive source and
(B) RMSE (dB) for different values of sampling time Ts.



Hakim and Jayaweera EURASIP Journal on Advances in Signal Processing 2013, 2013:147 Page 14 of 19
http://asp.eurasipjournals.com/content/2013/1/147

the tracking performance decreases with the increase of
sampling time Ts. This is because for higher values of Ts,
the process noise will increase according to (23). Since
we are also assuming that the movement of the diffu-
sive source is almost linear between two successive time
instants, the lower Ts will result in better accuracy of the
proposed tracking scheme.

7 Conclusion
In this paper, we obtained spatio-temporal distribution
of the substance concentration by solving physical dif-
fusion model for an underwater oil spill scenario which
considers laminar water velocity as an external force.
The obtained mathematical model was found to be
capable of modeling satisfactorily the underlying physi-
cal diffusion phenomenon. We proposed two paramet-
ric estimation methods based on MLE and BLUE for
determining static diffusive source location using wire-
less sensor network. We also obtained the CRLB as
theoretical performance bound for source localization.
It was observed that though the MLE performs bet-
ter than the BLUE-based diffusive source localization
method, the latter shows satisfactory performance trend
for large number of sensing nodes and time samples.
We also proposed a particle filter-based target track-
ing method for moving diffusive source-emitting sub-
stance continuously into the dispersive medium. PCRLB
corresponding to the moving diffusive source track-
ing was obtained as a theoretical performance mea-
sure and was compared with the simulation results.
The effect of sampling time on the moving source
tracking was also investigated. The performance of the
proposed estimation and tracking methods are shown
to be excellent using numerical simulations. In future
research, we plan to combine our obtained analytical
results with non-model-based numerical techniques to
make them applicable for more realistic and complex
scenarios.

Appendices
Appendix 1
Derivation of spatio-temporal concentration in (9)
To derive and verify the spatio-temporal concentration
distribution in (9), the Green’s function cG (r, t) in (8) can
be written as cG (r, t) = c′1(r, t)+c′2(r, t)+c′3(r, t)+c′4(r, t),
where

c′1(r, t) = 1
8{πκw(t − tI)}3/2 exp

{
−|r − r0 − v(t − tI)|2

4κw(t − tI)

}
,

c′2(r, t)=
1

8{πκw(t − tI)}3/2 exp
{
−|r − r′ − v(t − tI)|2

4κw(t − tI)

}
,

c′3(r, t) = 1
4{πκw(t − tI)}3/2 exp

[
−{x − x0 − vx(t − tI)}2

4κw(t − tI)

− {y − y0 − vy(t − tI)}2
4κw(t − tI)

]

×
∞∑
n=1

exp
{
− (z − z0 − 2nL)2

4κw(t − tI)

}
, and

c′4(r, t) = 1
4{πκw(t − tI)}3/2 exp

[
−{x − x0 − vx(t − tI)}2

4κw(t − tI)

− {y − y0 − vy(t − tI)}2
4κw(t − tI)

]

×
∞∑
n=1

exp
{
− (z + z0 + 2nL)2

4κw(t − tI)

}
.

Therefore, we can rewrite c1(r, t) in (9) as

c1(r, t) = μ

∫ t

tI
c′1(r, t − τ)dτ ,=

∫ t

tI

μ

8{πκw(t − τ + tI)}3/2

× exp
{
−|r − r0 − v(t − τ + tI)|2

4κw(t − τ + tI)

}
dτ ,

=
∫ t−tI

0

μ

(4πκwτ)3/2
exp

{
−|r − r0 − vτ |2

4κwτ

}
dτ ;

[performing change of variables],
(30)

To prove that (30) indeed translates into the expression
given in (9), we will use the concept of first fundamen-
tal theorem of calculus [41]. Since c′1(r, t) is a continuous
real-valued function within the limits of the integral, the
derivate of the expression given in (9) will be taken to
obtain (30). Replacing γ = t − tI and assuming F(r, t) =
c1(r, t) in (9), we have

F(r, γ ) = μ

8πκw|r − r0| exp
{

(r − r0) · v
2κw

}[
exp

{ |r − r0||v|
2κw

}

× erfc
{ |r − r0|
2√κwγ

+ |v|
√

γ

4κw

}

+ exp
{
−|r − r0||v|

2κw

}

× erfc
{ |r − r0|
2√κwγ

− |v|
√

γ

4κw

}]
.

Since d
dzerfc(z) = − 2√

π
exp(−z2), we can obtain the

following:
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∂F(r, γ )

∂γ
= μ

4π3/2κw|r − r0| exp
{

(r − r0) · v
2κw

}

×
[
exp

{ |r − r0||v|
2κw

}{ |r − r0|
4√κwγ 3/2 − |v|

4√γ κw

}

× exp
{
−|r − r0|2

4κwγ
− |v|2γ

4κw
− |r − r0||v|

2κw

}

+ exp
{
−|r−r0||v|

2κw

}{ |r − r0|
4√κwγ 3/2 + |v|

4√γ κw

}

× exp
{
−|r − r0|2

4κwγ
− |v|2γ

4κw
+ |r − r0||v|

2κw

}]
,

= μ

4π3/2κw|r − r0| exp
{

(r − r0) · v
2κw

}

×
[{ |r − r0|

4√κwγ 3/2 − |v|
4√γ κw

}

× exp
{
−|r − r0|2

4κwγ
− |v|2γ

4κw

}

+
{ |r − r0|
4√κwγ 3/2 + |v|

4√γ κw

}

× exp
{
−|r − r0|2

4κwγ
− |v|2γ

4κw

}]
,

= μ

(4πκwγ )3/2
exp

{
(r − r0) · v

2κw

}

× exp
{
−|r − r0|2

4κwγ
− |v|2γ

4κw

}
,

= μ

(4πκwγ )3/2

× exp
{
−|r − r0|2 − 2γ (r − r0) · v + |v|2γ 2

4κwγ

}
,

∴ ∂F(r, γ )

∂γ
= μ

(4πκwγ )3/2
exp

{
−|r − r0 − vγ |2

4κwγ

}
.

(31)

Hence, the resulting expression for c1(r, t) in (9) is valid.
The expression for c3(r, t) can be obtained as follows:

c3(r, t) = μ

∫ t

tI
c′3(r, t − τ)dτ ,=

∫ t

tI

μ

4{πκw(t−τ +tI)}3/2

× exp
[
−{x − x0 − vx(t − τ + tI)}2

4κw(t − τ + tI)

− {y − y0 − vy(t − τ + tI)}2
4κw(t − τ + tI)

]

×
∞∑
n=1

exp
{
− (z − z0 − 2nL)2

4κw(t − τ + tI)

}
dτ ,

= μ

4(πκw)3/2

∞∑
n=1

∫ t−tI

0
τ−3/2

× exp
{
− (x−x0−vxτ)2+(y−y0−vyτ)2+(z−z0−2nL)2

4κwτ

}
dτ,

Similarly, we can also verify the expressions for c2(r, t)
and c4(r, t). Therefore, the spatio-temporal concentration
distribution c(r, t) given in (9) is valid. �

Appendix 2
Proof of Theorem 1
We first show the proof for the x coordinate θ0(1) = x0
and it can be easily followed to prove the consistency for
the y and z coordinates without any loss of generality.
Based on the technique in [30], we have to prove that

lim
N ,T→∞

1
dN ,T

N∑
j=1

T∑
k=1

KN ,T (x0; x′
0) exists and (32)

lim
N ,T→∞

1
d2N ,T

N∑
j=1

T∑
k=1

[
∂cj,k(θ)

∂x0

]2
= 0, (33)

for some sequence
{
dN ,T > 0

}∞
N ,T=1, where ∂cj,k(θ)

∂x0
is defined by (15), and KNT (x0; x′

0) �
∑N

j=1
∑T

k=1
∂cj,k(θ ′)

∂x′
0

[
cj,k(θ) − cj,k

(
θ ′)] with x0 �= x′

0 ⇒ r0 �= r′0 and

θ �= θ ′. Since both cj,k(θ) and ∂cj,k(θ)

∂x0 are continuous func-
tions of x0, by using Cauchy-Schwarz inequality, we can
obtain

KN ,T (x0; x′
0) ≤

⎛
⎝ N∑

j=1

T∑
k=1

μ|xj − x′
0|

4πκ|rj − r′0|2
+ 1√

πκ(tk − tI)

⎞
⎠

×
⎛
⎝ N∑

j=1

T∑
k=1

μ

4πκ

[
1

|rj − r0| + 1
|rj − r′0|

]⎞⎠.

Also, because tk < tI, therefore
∑T

k=1
1√
tk−tI

≤ TS with
S being some positive real value. For practical considera-
tion, assuming 0 ≤ |xj−x′

0|
|rj−r′0|2 ≤ P, 0 < 1

|rj−r0| ≤ M1, and
0 < 1

|rj−r′0| ≤ M2, KN ,T
(
x0; x′

0
)
can be written as

KN ,T
(
x0; x′

0
) ≤

(
μP
4πκ

+ S√
πκ

)(
μ(M1 + M2)N2T2

4πκ

)
.
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If dN ,T = N3T3 > 0 for N ≥ 1,T ≥ 1, then we can claim
that limN ,T→∞ 1

dN ,T

∑N
j=1
∑T

k=1 KN ,T (x0; x′
0) exists.

For the proof of (33), assuming 0 ≤ |xj−x0|2
|rj−r0|2 ≤ Q1 and∑T

k=1
1

tk−tI < TQ2 with Q1 and Q2 being some positive
real numbers, we obtain the following from (15):

N∑
j=1

T∑
k=1

[
∂cj,k(θ)

∂x0

]2
<

μ2Q1NT
16π2κ2

[
M2

1 + Q2
πκ

+ 2M1S√
πκ

]
.

Choosing dN ,T = NT > 0 for N ≥ 1,T ≥ 1,
we have limN ,T→∞ 1

d2N ,T

∑N
j=1
∑T

k=1

[
∂cj,k(θ)

∂x0

]2 = 0. Sim-
ilarly, for y0 and z0, we can also claim that the MLE
to the diffusive source localization problem is consistent
when the number of sensor nodes and time samples go to
infinity. �

Appendix 3
Proof of Theorem 2
To prove the asymptotic normality of the MLE, we
define �j,k

(
yj,k|θ

) = log p
(
yj,k|θ

)
, �̇j,k,u

(
yj,k|θ

) = ∂
∂θu{

�j,k
(
yj,k|θ

)}
, and �̈j,k,u,v

(
yj,k|θ

) = ∂2

∂θu∂θv

{
�j,k

(
yj,k|θ

)}
.

Below, we verify the necessary conditions mentioned
in [42] for our obtained MLE to be asymptotically
normal.
From practical point of view, there is no loss in gen-

erality in assuming that θ0 ∈ ◦
�, where

◦
� ⊂ � is an

open subset of �. Also because the obtained MLE to
source localization is consistent, it is also consistent even
when θ0 ∈ ◦

� ⊂ �. Thus conditions N1 and N2 are
satisfied.
From the notations defined above, since ∂cj,k(θ)

∂θu

and ∂2cj,k(θ)

∂θu∂θv
exist for u, v = 1, 2, 3, it can

be easily verified that both �̇j,k,u
(
yj,k|θ

)
and

�̈j,k,u,v
(
yj,k|θ

)
exist almost surely. Therefore N3 is

satisfied.
Since θ ∈ � and �̈j,k

(
yj,k|θ

)
is a continuous map-

ping of θ , we can claim that �̈j,k
(
yj,k|θ

)
is indeed

uniformly continuous on θ in j and k [41]. Also,
because �̈j,k

(
yj,k|θ

)
: yj,k → R is a continuous

function of yj,k with yj,k being Lebesgue measurable
function, �̈j,k

(
yj,k|θ

)
is also a measurable function

of yj,k and condition N4 is satisfied. To satisfy N5,
it is easy to verify that E

[
�̇j,k,u

(
yj,k|θ

)] = 0 for
all j, k and u. Since p(yj,k|θ) ∼ N

(
cj,k(θ) + b, σ 2)

and p(yj,k|θ) is continuous and Lebesgue measurable
in yj,k , ∂2

∂θu∂θv

∫
p(yj,k|θ)dyj,k = ∫

∂2

∂θu∂θv
p(yj,k|θ)dyj,k

is valid for all j, k,u, and v, and thus N6 is
satisfied.

From Appendix 2, it can be claimed that
∑N

j=1∑T
k=1

{
∂cj,k(θ)

∂θu

}2
and

∑N
j=1
∑T

k=1

{
∂cj,k(θ)

∂θu

} {
∂cj,k(θ)

∂θv

}
exist and are bounded for all u, v. Hence, using the
Cauchy-Schwarz inequality, all the leading principle
minors of Īθ (in Theorem 2) can be shown to be positive.
Thus, we can claim that Īθ is also positive-definite and
therefore N7 is satisfied. Because E

{∣∣ej,k∣∣} = σ

√
2
π
, we

have E

[∣∣�̇j,k,u
(
yj,k|θ

)∣∣3] ≤ E
[|yj,k−cj,k(θ)−b|3]

σ 6

∣∣∣ ∂cj,k(θ)

∂θu

∣∣∣3 ≤
2
σ 2

√
2
π

∣∣∣ ∂cj,k(θ)

∂θu

∣∣∣3 = K1, ∀j, k,u, where K1 is some real
positive finite number and N8 is satisfied.
To prove condition N9 since �̈j,k,u,v

(
yj,k|θ

)
is a uni-

formly continuous function of θ (shown in condition
N4), for any ε > 0, there exists one δ > 0 such that∣∣�̈j,k,u,v

(
yj,k|θ

)− �̈j,k,u,v
(
yj,k|θ0

)∣∣ < δ,∀ ||θ − θ0|| < ε.
Therefore, for all ||θ − θ0|| ≤ ε since ∂cj,k(θ0)

∂θu
and

∂2cj,k(θ0)
∂θu∂θv

are continuous functions of θ0 ∈ ◦
� ⊂

�,∀j, k,u and v, we have sup
{∣∣�̈j,k,u,v

(
yj,k|θ

)∣∣} ≤ δ +[∣∣ej,k∣∣K sup
j,k,u,v + Qsup

j,k,u,v

]
= Bj,k,u,v(ej,k), where K sup

j,k,u,v and
Qsup
j,k,u,v are some finite real numbers and Bj,k,u,v(ej,k)

is a random variable. Since E
{∣∣ej,k∣∣} = σ

√
2
π

and

E

{∣∣ej,k∣∣2} = σ 2, hence E
[∣∣Bj,k,u,v(ej,k)

∣∣2] ≤ K2, where K2
is a finite real number.
Therefore, the obtained MLE of the diffusive source

location is asymptotically normal when the number of
sensor nodes and time samples go to infinity.�

Appendix 4
Proof of Theorem 3
For p (s0) ∼ N (μ0,�0), the initial condition for the FIM
is I(S0) = E

{−�
s0
s0 log p (s0)

} = �−1
0 . Decomposing S1 as

S1 = [sT0 , s
T
1 ]T , I(S1) can be written as

I(S1) =
[
E
{−�

s0
s0 log p1

}
E
{−�

s1
s0 log p1

}
E
{−�

s0
s1 log p1

}
E
{−�

s1
s1 log p1

} ] ,
=
[

I(S0) + R1
[
E
{−�

s1
s0L1

}− Q−1F
]T

E
{−�

s1
s0L1

}− Q−1F E
{−�

s1
s1L1

}+ Q−1

]

�
[
A1 BT

1
B1 D1

]
.

Since error is independent across space and time, using
the concept from block matrix inversion, the information
submatrix that provides the mean square error estimate of
s1 is given by

I1 = D1 − B1A−1
1 BT

1 = D1 − B1 [I(S0) + R1]−1 BT
1 ,
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whereD1 = E
{−�

s1
s1L1

}+Q−1, R1 = E
{−�

s0
s0L1

}+FTQ−1F, and B1 = E
{−�

s0
s1L1

}−FTQ−1. Similarly, decomposing
S2 as S2 = [sT0 , s

T
1 , s

T
2 ]T , the FIM I(S2) can be written as follows:

I(S2) =
⎡
⎣ E

{−�
s0
s0 log p2

}
E
{−�

s1
s0 log p2

}
E
{−�

s2
s0 log p2

}
E
{−�

s0
s1 log p2

}
E
{−�

s1
s1 log p2

}
E
{−�

s2
s1 log p2

}
E
{−�

s0
s2 log p2

}
E
{−�

s1
s2 log p2

}
E
{−�

s2
s2 log p2

}
⎤
⎦ ,

=
⎡
⎣ A1 + E

{−�
s0
s0L2

}
BT
1 + E

{−�
s1
s0L2

}
E
{−�

s2
s0L2

}
B1 + E

{−�
s0
s1L2

}
D1 + FTQ−1F + E

{−�
s1
s1L2

} −FTQ−1 + E
{−�

s2
s1L2

}
E
{−�

s0
s2L2

} −Q−1F + E
{−�

s1
s2L2

}
Q−1 + E

{−�
s2
s2L2

}
⎤
⎦ ,

�
[
I(S1) + R2 BT

2
B2 D2

]
.

(34)

The information submatrix I2 can be found as an inverse of the right-lower 4 × 4 submatrix of [I(S2)]−1:

I2 = D2 − B2 [I(S1) + R2]−1 BT
2 ,

where D2 = Q−1 + E
{−�

s2
s2L2

}
, B2 = [E {−�

s0
s2L2

} − Q−1F + E
{−�

s1
s2L2

}]
and

R2 =
[
E
{−�

s0
s0L2

}
E
{−�

s1
s0L2

}
E
{−�

s0
s1L2

}
FTQ−1F + E

{−�
s1
s1L2

} ] .

By extending the above procedure and decomposing Sk+1 =
[
sT0 , s

T
1 , . . . , s

T
k+1

]T
, I
(
Sk+1

)
can be obtained as

I(Sk+1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−E
{
�

s0
s0 log pk+1

} −E
{
�

s1
s0 log pk+1

}
. . . −E

{
�

sk+1
s0 log pk+1

}
−E

{
�

s0
s1 log pk+1

} −E
{
�

s1
s1 log pk+1

}
. . . −E

{
�

sk+1
s1 log pk+1

}
...

...
. . .

...
−E

{
�

s0
sk+1 log pk+1

} −E
{
�

s1
sk+1 log pk+1

}
. . . −E

{
�

sk+1
sk+1 log pk+1

}

⎤
⎥⎥⎥⎥⎥⎥⎦
,

�

⎡
⎣ I(Sk) + Rk+1

[
LTk+1

−FTQ−1 + MT
k+1

]
[
Lk+1 −Q−1F + Mk+1

]
Dk+1

⎤
⎦ .

(35)

The information submatrix Ik+1 can be generalized as an inverse of the right-lower 4 × 4 submatrix of
[
I(Sk+1)

]−1

in (35), where Mk+1 = −E
{
�

sk
sk+1Lk+1

}
, Dk+1 = −E

{
�

sk+1
sk+1 log pk+1

}
= Q−1 + E

{
−�

sk+1
sk+1Lk+1

}
� Q−1 + D̃k+1,

Lk+1 =
[
−E

{
�

s0
sk+1Lk+1

} − E
{
�

s1
sk+1Lk+1

}
. . . − E

{
�

sk−1
sk+1Lk+1

}]
, and Rk+1 is defined in (29). The only non-zero

elements of D̃k+1 = E

{
−�

sk+1
sk+1Lk+1

}
∈ R

4×4 are given by

[
D̃k+1

]
11 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(1)

]2
,

[
D̃k+1

]
12 = [D̃k+1

]
21 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(1)

] [
∂ζj,k:k+1

∂sk+1(2)

]
,

[
D̃k+1

]
22 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(2)

]2
.
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Similarly the only non-zero elements ofMk+1 = −E
{
�

sk
sk+1Lk+1

} ∈ R
4×4, can be obtained as

[
Mk+1

]
11 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(1)

] [
∂ζj,k−1:k

∂sk(1)
+ ∂ζj,k:k+1

∂sk(1)

]
,

[
Mk+1

]
12 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(1)

] [
∂ζj,k−1:k

∂sk(2)
+ ∂ζj,k:k+1

∂sk(2)

]
,

[
Mk+1

]
21 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(2)

] [
∂ζj,k−1:k

∂sk(1)
+ ∂ζj,k:k+1

∂sk(1)

]
,

[
Mk+1

]
22 = 1

σ 2

N∑
j=1

[
∂ζj,k:k+1

∂sk+1(2)

] [
∂ζj,k−1:k

∂sk(2)
+ ∂ζj,k:k+1

∂sk(2)

]
,

where the partial-derivative components are defined as follows:

∂ζj,k:k+1
∂sk(1) = μ

8πTsκ2
∫ tk+1
tk

|xj−x0(τ )|
(tk+1−τ)2

exp
[
−
∣∣∣rj−{rs(tk)+( rs(tk+1)−rs(tk )

Ts

)
(τ−tk)

}∣∣∣2
4κ(tk+1−τ)

]
(tk+1 − τ)dτ ,

∂ζj,k:k+1
∂sk(2) = μ

8πTsκ2
∫ tk+1
tk

|yj−ys(τ )|
(tk+1−τ)2

exp
[
−
∣∣∣rj−{rs(tk)+( rs(tk+1)−rs(tk )

Ts

)
(τ−tk)

}∣∣∣2
4κ(tk+1−τ)

]
(tk+1 − τ)dτ ,

∂ζj,k:k+1
∂sk+1(1) = μ

8πTsκ2
∫ tk+1
tk

|xj−xs(τ )|
(tk+1−τ)2

exp
[
−
∣∣∣rj−{rs(tk)+( rs(tk+1)−rs(tk )

Ts

)
(τ−tk)

}∣∣∣2
4κ(tk+1−τ)

]
(τ − tk)dτ ,

∂ζj,k:k+1
∂sk+1(2) = μ

8πTsκ2
∫ tk+1
tk

|yj−ys(τ )|
(tk+1−τ)2

exp
[
−
∣∣∣rj−{rs(tk)+( rs(tk+1)−rs(tk )

Ts

)
(τ−tk)

}∣∣∣2
4κ(tk+1−τ)

]
(τ − tk)dτ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (36)

and

xs(τ ) =
(
tk+1 − τ

Ts

)
xs(tk) +

(
τ − tk
Ts

)
xs(tk+1),

ys(τ ) =
(
tk+1 − τ

Ts

)
ys(tk) +

(
τ − tk
Ts

)
ys(tk+1).

Following the same approach as above, the elements of the matrix Lk+1 ∈ R
4×4k can easily be obtained at each time

instant. �
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