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Abstract

In this paper, a new class of Fourier-based matrices is studied for deterministic compressed sensing. Initially, a basic
partial Fourier matrix is introduced by choosing the rows deterministically from the inverse discrete Fourier transform
(DFT) matrix. By row/column rearrangement, the matrix is represented as a concatenation of DFT-based submatrices.
Then, a full or a part of columns of the concatenated matrix is selected to build a newM × N deterministic
compressed sensing matrix, whereM = pr and N = L(M + 1) for prime p, and positive integers r and L ≤ M − 1.
Theoretically, the sensing matrix forms a tight frame with small coherence. Moreover, the matrix theoretically
guarantees unique recovery of sparse signals with uniformly distributed supports. From the structure of the sensing
matrix, the fast Fourier transform (FFT) technique can be applied for efficient signal measurement and reconstruction.
Experimental results demonstrate that the new deterministic sensing matrix shows empirically reliable recovery
performance of sparse signals by the CoSaMP algorithm.

1 Introduction
Compressed sensing (or compressive sampling) is a novel
and emerging technology with a variety of applications in
imaging, data compression, and communications. In com-
pressed sensing, one can recover sparse signals of high
dimension from incomplete measurements. Mathemati-
cally, measuring an N-dimensional signal x ∈ R

N with an
M × N measurement matrix � yields an M-dimensional
vector y = �x, where M < N . Imposing a requirement
that x is s-sparse or the number of nonzero entries in x is
at most s, one can recover x exactly with high probabil-
ity by an l1-minimization method or a greedy algorithm,
which is computationally tractable.
Many research activities have been triggered on the-

ory and practice of compressed sensing since Donoho,
Candes, Romberg, and Tao published their marvelous
theoretical works [1-3]. The efforts revealed that a mea-
surement matrix � plays a crucial role in recovery of s-
sparse signals. Although a random matrix provides many
theoretical benefits [4], it has the drawbacks [5] of high
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complexity and large storage in its practical implementa-
tion. As an alternative, we may consider a deterministic
matrix, where well-known codes and sequences have been
employed for the construction, e.g., chirp sequences [6],
Alltop sequences [7,8], Kerdock and Delsarte-Goethals
codes [9], second-order Reed-Muller codes [10], and BCH
codes [11]. Other techniques for deterministic construc-
tion, based on finite fields, representation theory, charac-
ters and algebraic curves, and multicoset codes, can be
also found in [12-18]. The deterministic matrices guaran-
tee the recovery performance that is empirically reliable,
allowing fast processing and low complexity.
In this paper, we study deterministic construction of

a new class of Fourier-based compressed sensing matri-
ces. Initially, a pr × (p2r − 1) basic partial Fourier matrix,
equivalent to the partial Fourier codebook of [19], is intro-
duced by selecting pr rows from the (p2r−1)-point inverse
discrete Fourier transform (DFT) matrix according to an
almost difference set, where p is a prime number and
r is a positive integer. By rearranging the rows and/or
columns, we show that the matrix is represented as a con-
catenation of DFT-based submatrices. Then, a full or a
part of columns of the concatenated matrix is selected
to build a new M × N sensing matrix for deterministic
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compressed sensing, where M = pr and N = L(M + 1)
for L ≤ M − 1. The concatenated structure allows the
new sensing matrix to offer the various admissible column
numbers while keeping it as an incoherent tight frame and
enables efficient processing for measurement and recon-
struction in compressed sensing. We would like to stress
that it is not a trivial task to obtain the concatenated struc-
ture from the basic partial Fourier matrix by row/column
rearrangement. With the parameters M and N, our new
deterministic matrix can achieve the various permissible
compression ratios of M

N ≈ 1
L for a positive integer L,

2 ≤ L ≤ M − 1.
Theoretically, the new sensing matrix forms a tight

frame with small coherence. Moreover, our new sens-
ing matrix theoretically guarantees unique recovery of
sparse signals with uniformly distributed supports with
high probability. From the structure of our new sensing
matrix, the fast Fourier transform (FFT) technique can
be applied for efficient signal measurement and recon-
struction. Experimental results demonstrate that the new
deterministic compressed sensing matrix, together with
the CoSaMP recovery algorithm [20], empirically guar-
antees sparse signal recovery with high reliability. We
observe that the empirical recovery performance of our
new sensing matrices is similar to those of chirp sens-
ing [6] and random partial Fourier matrices. However,
our newmatrices offer several practical benefits, requiring
less storage and complexity than random partial Fourier
matrices and providing more parameters ofM andN than
chirp sensing codes.
The rest of this paper is organized as follows. In

Section 2, we introduce basic concepts and notations
to understand this work. Section 3 modifies the struc-
ture of a basic partial Fourier matrix and presents a
new sensing matrix for deterministic construction. We
also discuss the efficient implementation and the the-
oretical recovery guarantee of the new sensing matrix.
Section 4 describes the signal measurement process and
the CoSaMP recovery algorithm by employing the FFT
technique. In Section 5, we demonstrate the empirical
recovery performance of our new sensing matrices in
noiseless and noisy settings. Finally, concluding remarks
will be given in Section 6.

2 Preliminaries
This section introduces fundamental concepts and nota-
tions for understanding this work. In subsections 2.1 and
2.2, we briefly introduce the concepts of finite fields, trace
functions and cyclotomic cosets for signal processing
researchers. For more details, see [21] and [22].

2.1 Finite fields and trace functions
Let p be prime and m > 1 a positive integer. A finite field
Fpm is generated by 0 and αi, i = 0, 1, . . . , pm − 2, i.e.,

Fpm = {0, 1,α,α2, . . . ,αpm−2}, where α is called a primi-
tive element and αpm−1 = 1. The primitive element α is a
root of a primitive polynomial f (x), i.e., f (α) = 0, where
f (x) has the highest degree m and its coefficients are the
elements of Fp = {0, 1, 2, . . . , p − 1}.
Let k be a positive integer that divides m. A trace

function is a linear mapping from Fpm onto Fpk defined by

Trmk (x) =
m/k−1∑
i=0

xp
ki
, x ∈ Fpm

where the addition is computedmodulo p. The trace func-
tion algebraically defines the well-known m-sequences or
pseudo-noise (PN) sequences, which have been widely used
in wireless communications. For instance, if p = 2 and
k = 1, then (Trm1 (1), Trm1 (α), Trm1 (α2), . . . , Trm1 (α2m−2)) is
a binarym-sequence of length 2m − 1, where each entry is
0 or 1. Them-sequence, defined by a trace function, is effi-
ciently generated by a linear feedback shift register (LFSR),
which is a common method in communication standards.

Example 1. Let p = 2 and m = 4. Then, the finite field
F24 is defined by a primitive polynomial f (x) = x4 +x+1,
where the root α is a primitive element of F24 . Thus, F24 =
{0, 1,α,α2, . . . ,α14}, where α4 + α + 1 = 0 and α15 = 1.
The trace function Tr41(x) takes on either 0 or 1, since it is
a linear mapping from F24 onto F2. For example,

Tr41(1) = 1 + 1 + 1 + 1 = 0,

Tr41(α) = α + α2 + α4 + α8 = 0,

Tr41(α
3) = α3 + α6 + α12 + α9 = 1

where the addition is computed modulo p = 2.

2.2 Cyclotomic cosets
Let Zv = {0, 1, . . . , v − 1}, where v is a positive integer.
Also, p is a prime integer which is relatively prime to v,
i.e., gcd(v, p) = 1. For a nonnegative integer s ∈ Zv, a
cyclotomic cosetmodulo v over p containing s is defined as

Cs = {s, sp, sp2, . . . , spns−1}

where ns is the smallest positive integer such that spns ≡
s (mod v). It is conventional to define the coset leader
of Cs as the smallest integer s. Then, Zv is partitioned
into cyclotomic cosets, i.e., Zv = ⋃

s∈�p(v) Cs, where �p(v)
denotes a set of coset leaders in Zv. By definition, once an
element is given, a cyclotomic coset containing it can be
easily generated by successive multiplication by p to the
element, which will be useful in generating the row index
set for our new sensing matrix.
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Example 2. Let p = 2 and v = 15. Then, the cyclotomic
cosets modulo 15 over p = 2 are

C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9},
C5 = {5, 10}, C7 = {7, 14, 13, 11}

where the coset leaders are �2(15) = {0, 1, 3, 5, 7}. With
the cyclotomic cosets,Z15 = {0, 1, . . . , 14} = ⋃

s∈�2(15) Cs.

2.3 Basic partial Fourier matrix ˜A
In this subsection, we introduce a basic framework from
which a new sensingmatrix can be developed in Section 3.
Throughout this paper, we set M = pr and N ′ =
p2r − 1 = M2 − 1 for prime p and a positive inte-
ger r. Also, we assume that each column of a sensing
matrix has unit l2-norm, where the l2-norm is denoted
as ||x|| =

√∑n−1
i=0 |xi|2 for an n-dimensional vector x =

(x0, x1, . . . , xn−1). Table 1 summarizes all the variables and
notations for the development of a new sensing matrix.
In [19], Yu, Feng, and Zhang presented a new class of

(N ′,M) near-optimal partial Fourier codebooks using an
almost difference set [23]. The codebook can be equiva-
lently translated into an M × N ′ partial Fourier matrix,
which containsM rows selected from theN ′-point inverse
DFT (IDFT) matrix according to the almost difference set.

Table 1 Variables and notations for the new sensingmatrix

Variable or notation Meaning

M M = pr for prime p and a positive integer r

N′ N′ = p2r − 1 = M2 − 1

L positive integer, 2 ≤ L ≤ M − 1

N N = (M + 1)L

Fpm Fpm = {0, 1,α, . . . ,αpm−2} for the primitive
element α

Zv Zv = {0, 1, 2, . . . , v− 1} for a positive integer
v

Cs cyclotomic coset with the coset leader s

�p(v) set of coset leaders of cyclotomic cosets
modulo v over p

D row index set, D = {d0, d1, . . . , dM−1} ≡
{M,M − 1, . . . , 1} (mod M + 1)

Ã M × N′ partial Fourier matrix

A′ M × N′ matrix after row/column rearrange-
ment of Ã

σ (l) M × (M + 1) submatrix of A′ , 0 ≤ l ≤ L − 1

γ
(l)
k γ

(l)
k = exp

(
j πdk lM−1

)
× exp

(
−j πdk lM+1

)
, 0 ≤

k ≤ M − 1

�(l) M×M diagonal matrix with diagonal entries
of γ (l)

k

F′
M+1 M× (M+ 1) DFT matrix without the first row

A M × N new sensing matrix, A =[ σ (0) | · · · |
σ (L−1)]

From the results of [19], Proposition 1 describes the
basic partial Fourier matrix and its geometric properties
with the notations of this paper.

Proposition 1. For prime p and a positive integer r,
let M = pr and N ′ = p2r − 1 = M2 − 1. Let D =
{d0, d1, . . . , dM−1} be an index set defined in Lemma 2 of
[19], which will be given below in Remark 1. Choosing M
rows from the N ′-point IDFT matrix according to D, we
construct anM×N ′ matrix Ã, where each entry is given by

ãk,n = 1√
M

exp
(
j
2πdkn
N ′

)
, j = √−1

for 0 ≤ k ≤ M−1 and 0 ≤ n ≤ N ′−1. Then, the coherence
[24] of Ã is given by

μ = max
0≤n1 �=n2≤N ′−1

∣∣̃aHn1 ãn2 ∣∣ = 1√
M

where ãn1 is a column vector of Ã and ãHn1 denotes the
transpose of its complex conjugate. The coherence nearly
achieves the Welch bound equality [25] of

√
N ′−M

M(N ′−1) ≈
1√
M+1 for sufficiently large M. Moreover, Ã forms a tight

frame [26] as each row is mutually orthogonal.

The coherence and the tightness of Ã do not change if
we select the rows from the DFT matrix, instead of the
IDFT matrix. In this paper, we decide to use the IDFT
matrix.

Remark 1. With the notations of this paper, the row
index set D is defined by [19]

D = {(M + 1)ev − v | v ∈ I} where

I =
{
ZM+1 \ {0}, if p = 2

ZM+1 \ {M+1
2 }, if p > 2

(1)

where all the operations in D are computed moduloN ′. In
Equation 1, D is an almost difference set, and ev is a non-
negative integer satisfying α(pr+1)ev = Tr2rr (αv) for v ∈ I
[19], where α is a primitive element in Fp2r . To determine
the index set D, one needs to compute ev using a trace
function, which might be difficult for signal processing
researchers. In Section 3, we will present an alternative
method to generate the indices of D by successive multi-
plication to predetermined values, which does not require
the computation of ev. Therefore, it suffices to assume that
ev is simply an integer in this paper.

3 Construction of new Fourier-based sensing
matrices

To build a new M × N sensing matrix, we begin with the
M × N ′ basic partial Fourier matrix Ã, and then choose
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the N columns after a row/column rearrangement. Our
approach is different from a conventional one of random
or deterministic selection of M rows out of an N × N
Fourier matrix, but we will show that it ultimately presents
reliable recovery performance and practical benefits in
implementation.
In deterministic compressed sensing, it is desired that

a sensing matrix should be able to support a variety of
admissible column numbers to sense a signal of various
lengths. For this purpose, one needs to consider how to
select the columns from Ã for a newM×N sensingmatrix
with N < N ′. In this section, we apply a row/column
permutation to the partial Fourier matrix Ã to obtain its
variant M × N ′ matrix A′. Then, we choose a full or a
part of columns of A′ to construct a new M × N sensing
matrix A, where N = (M + 1)L for a positive integer L,
2 ≤ L ≤ M − 1. The row/column rearrangement offers
the following benefits for our new sensing matrix A in
compressed sensing, which is the motivation:

1. If one selects the columns arbitrarily from Ã, the
resulting sensing matrix may not be a tight frame in
general. In fact, one needs to be careful in selecting
the columns of Ã, to achieve the tightness of the
resulting matrix. Through the row/column
rearrangement, we will show that the new sensing
matrix A has a concatenated structure of (M + 1)-
point DFT-based submatrices. With the structure, A
can be still a tight frame by choosing N as a multiple
ofM + 1, which will be shown in Lemma 2.

2. The concatenated structure of A also allows efficient
(M + 1)-point FFT processing for measurement and
recovery of sparse signals in compressed sensing.
Note that if one selects the columns arbitrarily from
the original Ã, the resulting matrix generally requires
the N ′-point FFT processing, which has more
computational complexity. Moreover, one may enjoy
fast processing via parallel FFT computations using
the concatenated structure, which will be discussed
in Section 4.

3.1 Structure
Recall the partial Fourier matrix Ã in Proposition 1. If
p = 2, we use the original index set D in Equation 1, i.e.,

D = {(M + 1)ev − v | v ∈ ZM+1 \ {0}} . (2)

On the other hand, if p > 2, we redefine the index set D
by adding M+1

2 to each original index in Equation 1, i.e.,

D =
{
(M + 1)ev − v + M + 1

2
| v ∈ ZM+1 \

{
M + 1

2

}}
.

(3)

The above modification for p > 2 ensures that each entry
of D is nonzero when computed modulo M + 1, which

also holds for p = 2. See the proof of Lemma 1 for the
implication.
Now, we suggest a column rearrangement of the original

Ã. For given l, 0 ≤ l ≤ M − 2, let us take the M + 1
column vectors of indices n = (M− 1)t+ l from Ã, where
0 ≤ t ≤ M. With the column vectors, we then obtain an
M× (M+ 1) submatrix σ (l) = {σ (l)

k,t | 0 ≤ k ≤ M− 1, 0 ≤
t ≤ M}, where each entry is given by

σ
(l)
k,t = 1√

M
exp

(
j
2πdk((M − 1)t + l)

N ′

)
= 1√

M
exp

(
j
2πdkt
M + 1

)
× exp

(
j
2πdkl
N ′

)
= 1√

M
exp

(
j
2πdkt
M + 1

)
× γ

(l)
k .

(4)

In Equation 4, γ (l)
k is defined as

γ
(l)
k =exp

(
j
2πdkl
N ′

)
=exp

(
j2πdkl× 1

2

(
1

M − 1
− 1
M + 1

))
= exp

(
j

πdkl
M − 1

)
× exp

(
−j

πdkl
M + 1

)
.

for each k, 0 ≤ k ≤ M − 1.
Next, we show that the submatrix σ (l) has a DFT-based

structure if the row indices of D are arranged in appropri-
ate order. In Lemma 1, we denote F′

M+1 as theM×(M+1)
DFT matrix without the first row, where each entry is
F ′
k,t = exp

(
−j 2π(k+1)t

M+1

)
for 0 ≤ k ≤ M−1 and 0 ≤ t ≤ M.

Lemma 1. In the index set of Equation 2 for p = 2 or
Equation 3 for p > 2, the entries of D = {d0, d1, . . . , dM−1}
can be arranged such that dk ≡ −(k+1) (mod M+1) for
0 ≤ k ≤ M − 1. With such D, let us define �(l) = {�(l)

k,t |
0 ≤ k, t ≤ M − 1} as an M × M diagonal matrix where
each entry is

�
(l)
k,t =

{
γ

(l)
k , if k = t,

0, if k �= t

for each l, 0 ≤ l ≤ L− 1. Then, each submatrix σ (l) can be
expressed by

σ (l) = 1√
M

�(l)F′
M+1, (5)

which clearly shows the DFT-based structure of σ (l).

Proof. We investigate how exp
(
j 2πdktM+1

)
of Equation 4 is

changed for p = 2 and p > 2, respectively.
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Case. p = 2: In this case, each element of D in
Equation 2 is represented as

dk = (M + 1)ek+1 − (k + 1) ≡ −(k + 1) (mod M + 1)
(6)

for 0 ≤ k ≤ M−1. Thus, exp
(
j 2πdktM+1

)
= exp

(
−j 2π(k+1)t

M+1

)
in Equation 4. Consequently, each entry of Equation 4
forms an M × (M + 1) submatrix σ (l) where each row is
from the (M+ 1)-point DFT matrix excluding all one row
and thenmasked by γ

(l)
k . Then, the structure of Equation 5

is straightforward.

Case. p>2: In this case, each index ofD in Equation 3 is

d′
k =

{
(M + 1)ek − k + M+1

2 , 0 ≤ k < M+1
2

(M + 1)ek+1 − (k + 1) + M+1
2 , M+1

2 ≤ k ≤ M−1

≡
{−k − M+1

2 (mod M + 1), 0 ≤ k < M+1
2

−(k + 1) + M+1
2 (mod M + 1), M+1

2 ≤k≤M−1

where −M+1
2 ≡ M+1

2 (mod M + 1). Reordering the
indices, we get

dk =
⎧⎨⎩ d′

k+M+1
2
, 0 ≤ k < M−1

2

d′
k−M−1

2
, M−1

2 ≤ k ≤ M − 1

≡ −(k + 1) (mod M + 1)

(7)

for 0 ≤ k ≤ M−1. Then, Equation 7 yields exp
(
j 2πdktM+1

)
=

exp
(
−j 2π(k+1)t

M+1

)
in Equation 4. It is now clear why we

introduced the modified index set D of Equation 3 for
p > 2. By ensuring dk �≡ 0 (mod M + 1) for any k,
the modification guarantees that we can achieve the same
DFT-based submatrix structure as that of p = 2. Finally,
each entry of Equation 4 also forms anM × (M + 1) sub-
matrix σ (l) where each row is from F′

M+1 and thenmasked
by γ

(l)
k , which yields Equation 5.

Remark 2. In both cases of p, one needs to ensure that
the entries of the index set D = {d0, d1, . . . , dM−1} should
satisfy dk ≡ −(k + 1) ≡ M − k (mod M + 1), to
achieve the DFT-based submatrix structure in Lemma 1.
If p = 2, the original entries of Equation 2 meet the con-
dition from Equation 6. On the other hand, if p > 2,
Equation 7 shows that we have to rearrange the entries
of Equation 3 by circularly shifting the order by M+1

2 .
If the entries of D are generated by a different method,
which will be introduced in Procedure 1, the index set

D should be sorted for both p such that the entries are
in decreasing order when computed modulo M + 1, i.e.,
D (mod M + 1) ≡ {M,M − 1, . . . , 1}, to satisfy the
condition.

Finally, if l runs through {0, 1, . . . ,M − 2}, we obtain
the M − 1 submatrices σ (l), and construct a variant
A′ =[ σ (0) | σ (1) | · · · | σ (M−2)] by concatenating them.
Clearly, theM × N ′ matrix A′ is equivalent to the original
matrix Ã under the row/column rearrangement. In what
follows, Construction 1 presents a formal expression of
the new sensing matrix A.

Construction 1. Let M = pr for prime p and a positive
integer r. Let D = {d0, d1, . . . , dM−1} be the row index set
which satisfies dk ≡ −(k + 1) (mod M + 1) for 0 ≤ k ≤
M−1. Let L be a positive integer and N = (M+1)L, where
2 ≤ L ≤ M − 1. For a given integer l, 0 ≤ l ≤ L − 1,
define an M × (M + 1) submatrix σ (l) = {σ (l)

k,t | 0 ≤ k ≤
M − 1, 0 ≤ t ≤ M} where

σ
(l)
k,t = 1√

M
exp

(
−j

2π(k + 1)t
M + 1

)
× γ

(l)
k

and γ
(l)
k = exp

(
j πdkl
M−1

)
× exp

(
−j πdkl

M+1

)
. An M × N sens-

ing matrix A is a concatenation of the L submatrices i.e.,
A = [

σ (0) | σ (1) | · · · | σ (L−1)]. In particular, if L = M−1,
then A = A′ = [

σ (0) | σ (1) | · · · | σ (M−2)].
Figure 1 illustrates the structure of our new sensing

matrix A in Construction 1.

3.2 Implementation
In Construction 1, generating the row index set D effi-
ciently is a key issue in implementing the determinis-
tic sensing matrix A. In D, as α(pr+1)ev = Tr2rr (αv) is
an element of a pr-ary m-sequence of period p2r − 1
[21], we can compute it by a 2-stage LFSR. Therefore,
each element of D in Equation 1 can be generated by
LFSR, log operation and other basic arithmetics over finite
fields.
As the computation over finite fields is not trivial, we

introduce an alternative method to generate the indices
of D more efficiently. In the method, we use cyclo-
tomic cosets modulo pr + 1 and p2r − 1 over p, respec-
tively, which are always valid for any prime p, since
gcd(p, pr + 1) = gcd(p, p2r − 1) = 1. In what follows, we
describe the procedure, where the proof will be given in
the Appendix.

Procedure 1.
1. Generate all cyclotomic cosets modulo pr + 1 over p.

When p = 2, identify a set of nonzero coset leaders
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Figure 1 Concatenated structure of new sensingmatrixA. It illustrates the concatenated structure of the new sensingmatrixA in Construction 1.

by �2(2r + 1) \ {0} = {u1, . . . ,uδ}. If p > 2, on the
other hand, identify a set of coset leaders without
pr+1
2 by �p(pr + 1) \ { pr+1

2 } = {u1, . . . ,uδ}. Note that
u1 = 0 if p > 2.

2. For each ui, 1 ≤ i ≤ δ, compute a positive integer
zi ∈ Zp2r−1 such that

αzi = 1 + α(pr−1)ui (8)

where α is a primitive element in Fp2r .
3. For each zi, 1 ≤ i ≤ δ, generate a cyclotomic coset

modulo p2r − 1 over p containing zi by
Csi = {zi, zip, . . . , zipnsi−1}, where nsi is the smallest
positive integer such that zi ≡ zipnsi (mod p2r − 1).
Note that the coset leader si is not necessarily equal
to zi.

4. If p = 2,

D =
⋃

1≤i≤δ

Csi ,

and if p > 2,

D =
⋃

1≤i≤δ

Csi + M + 1
2

where the addition is performed to each element of⋃
1≤i≤δ Csi , and computed modulo p2r − 1. From

Remark 2, the index set D should be sorted such that
the entries are in decreasing order when computed

moduloM + 1, i.e., D
(mod M + 1) ≡ {M,M − 1, . . . , 1}.

Example 3. Let p = 2 and r = 3. Also, let α be a prim-
itive element in F26 satisfying α6 + α + 1 = 0. Then,
Procedure 1 generates M = pr = 8 indices of D for our
new sensing matrix:

1. From all cyclotomic cosets modulo 9 over p = 2, we
identify nonzero coset leaders �2(9) \ {0} = {1, 3},
where the cosets are C′

1 = {1, 2, 4, 8, 7, 5} and
C′
3 = {3, 6}, respectively.

2. From u1 = 1, Equation 8 yields αz1 = 1 + α7 = α26,
where z1 = 26. Also, from u2 = 3, we have
αz2 = 1 + α21 = α42 and z2 = 42.

3. By successively multiplying z1 = 26 by 2, we obtain
its cyclotomic coset C13 = {26, 52, 41, 19, 38, 13},
where the coset leader is s1 = 13. Note that the
multiplication is computed modulo p2r − 1 = 63.
Similarly, we have C21 = {42, 21} from z2 = 42,
where s2 = 21.

4. Finally, the index set D is given by

D = {d0, d1, . . . , d7} = C13
⋃

C21

= {26, 52, 42, 41, 13, 21, 38, 19}

where we have sorted the indices such that they are
in decreasing order when computed modulo 9, i.e., D
(mod 9) ≡ {8, 7, 6, 5, 4, 3, 2, 1}.

Example 4. With the index set D of Example 3, we can
construct an 8×18matrixA =[ σ (0) | σ (1)], whereM = 8,
N = 18 and L = 2. Denote ω = exp

(−j 2π9
)
. Then,
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σ (0) = 1√
8
�(0)F′

9 = 1√
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ω ω2 ω3 ω4 ω5 ω6 ω7 ω8

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14 ω16

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21 ω24

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28 ω32

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35 ω40

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42 ω48

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49 ω56

1 ω8 ω16 ω24 ω32 ω40 ω48 ω56 ω64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where �(0) is the 8 × 8 identity matrix. Also,

σ (1) = 1√
8
�(1)F′

9

= 1√
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ
(1)
0 0 0 0 0 0 0 0

0 γ
(1)
1 0 0 0 0 0 0

0 0 γ
(1)
2 0 0 0 0 0

0 0 0 γ
(1)
3 0 0 0 0

0 0 0 0 γ
(1)
4 0 0 0

0 0 0 0 0 γ
(1)
5 0 0

0 0 0 0 0 0 γ
(1)
6 0

0 0 0 0 0 0 0 γ
(1)
7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× F′
9

= 1√
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ
(1)
0 γ

(1)
0 ω γ

(1)
0 ω2 γ

(1)
0 ω3 γ

(1)
0 ω4 γ

(1)
0 ω5 γ

(1)
0 ω6 γ

(1)
0 ω7 γ

(1)
0 ω8

γ
(1)
1 γ

(1)
1 ω2 γ

(1)
1 ω4 γ

(1)
1 ω6 γ

(1)
1 ω8 γ

(1)
1 ω10 γ

(1)
1 ω12 γ

(1)
1 ω14 γ

(1)
1 ω16

γ
(1)
2 γ

(1)
2 ω3 γ

(1)
2 ω6 γ

(1)
2 ω9 γ

(1)
2 ω12 γ

(1)
2 ω15 γ

(1)
2 ω18 γ

(1)
2 ω21 γ

(1)
2 ω24

γ
(1)
3 γ

(1)
3 ω4 γ

(1)
3 ω8 γ

(1)
3 ω12 γ

(1)
3 ω16 γ

(1)
3 ω20 γ

(1)
3 ω24 γ

(1)
3 ω28 γ

(1)
3 ω32

γ
(1)
4 γ

(1)
4 ω5 γ

(1)
4 ω10 γ

(1)
4 ω15 γ

(1)
4 ω20 γ

(1)
4 ω25 γ

(1)
4 ω30 γ

(1)
4 ω35 γ

(1)
4 ω40

γ
(1)
5 γ

(1)
5 ω6 γ

(1)
5 ω12 γ

(1)
5 ω18 γ

(1)
5 ω24 γ

(1)
5 ω30 γ

(1)
5 ω36 γ

(1)
5 ω42 γ

(1)
5 ω48

γ
(1)
6 γ

(1)
6 ω7 γ

(1)
6 ω14 γ

(1)
6 ω21 γ

(1)
6 ω28 γ

(1)
6 ω35 γ

(1)
6 ω42 γ

(1)
6 ω49 γ

(1)
6 ω56

γ
(1)
7 γ

(1)
7 ω8 γ

(1)
7 ω16 γ

(1)
7 ω24 γ

(1)
7 ω32 γ

(1)
7 ω40 γ

(1)
7 ω48 γ

(1)
7 ω56 γ

(1)
7 ω64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

γ
(1)
0 = exp

(
j
26π
7

)
× exp

(
−j

26π
9

)
, γ

(1)
1 = exp

(
j
52π
7

)
× exp

(
−j

52π
9

)
,

γ
(1)
2 = exp

(
j
42π
7

)
× exp

(
−j

42π
9

)
, γ

(1)
3 = exp

(
j
41π
7

)
× exp

(
−j

41π
9

)
,

γ
(1)
4 = exp

(
j
13π
7

)
× exp

(
−j

13π
9

)
, γ

(1)
5 = exp

(
j
21π
7

)
× exp

(
−j

21π
9

)
,

γ
(1)
6 = exp

(
j
38π
7

)
× exp

(
−j

38π
9

)
, γ

(1)
7 = exp

(
j
19π
7

)
× exp

(
−j

19π
9

)
.

We can further concatenate σ (2), σ (3), . . . , σ (L−1) for L ≤ 7 so that A can take various column number N = 9L.
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In practice, we can precompute z1, z2, . . . , zδ at items 1
and 2 of Procedure 1 and save them in memory to avoid
the algebraic computation of Equation 8 in the hardware.
Then, M = pr indices can be generated by items 3 and 4
of Procedure 1. In Example 3, for instance, z1 = 26 and
z2 = 42 can be precomputed. Then, only the two ele-
ments need to be stored in the memory to generate eight
row indices. Table 2 presents δ or the number of z′is to be
stored in thememory for variousM = pr .While a random
partial Fourier matrix needs to save M indices, a storage
space for δ (	 M) elements is sufficient for our new sens-
ing matrix. In conclusion, constructing our new sensing
matrix requires a storage for δ elements and an additional
circuit for successive multiplication, addition and sorting,
which may present a practical benefit over random partial
Fourier matrices.

3.3 Theoretical recovery performance
In this subsection, we discuss the geometric properties
and the theoretical recovery guarantee of our new sensing
matrix A.

Lemma 2. The M × N sensing matrix A in Construc-
tion 1 has the following properties.

1. The coherence is upper bounded by 1/
√
M.

2. A forms a tight frame.
3. All the row sums are equal to zero.

Proof. Recall that A′ is obtained by row/column rear-
rangement of Ã. Since the coherence of a matrix does not
change by row/column permutation, the coherence of A′
is also 1/

√
M from Proposition 1. Note that when p > 2,

we have added the constant M+1
2 to each entry of the orig-

inalD in Equation 1, which does not change the coherence
[19] either. As A is a set of selected columns of A′, the
coherence of A is at most 1/

√
M from which item 1 is

true. Moreover, σ (l)σ (l)H = (M+1)
M IM from Equation 5,

where IM is the M × M identity matrix. Then, we have

Table 2 The number of elements z′
is to be stored in

memory for variousM = pr

p r M δ p r M δ

2 6 64 6 5 3 125 23

7 128 10 4 625 79

8 256 16 5 3, 125 315

9 512 30 7 3 343 60

10 1, 024 52 4 2, 401 301

3 4 81 11 11 2 121 31

5 243 26 3 1, 331 226

6 729 63 13 2 169 43

7 2, 187 158 3 2, 197 371

AAH = (M+1)L
M IM = N

M IM by concatenating the L subma-
trices, which shows that item 2 is true. Finally, Equation 5
ensures that no submatrix σ (l) has all one row masked by
a constant factor, which concludes that all the row sums
of each submatrix are equal to zero, due to the DFT-
based structure. Consequently, item 3 is true from the
concatenation.

The geometric properties of Lemma 2 meet the suf-
ficient conditions for the new matrix A to achieve
the uniqueness-guaranteed statistical restricted isometry
property (UStRIP) [5]. See [27] for the proof of the UStRIP
of A.
With a deterministic sensing matrix of coherence μ,

one can successfully recover every s-sparse signal from its
measurement as long as s = O(μ−1) [24], which guaran-
tees unique recovery of sparse signals with sparsity up to
O(

√
M) by our new sensing matrix A. In an attempt to

overcome the theoretical bottleneck, the authors of [28]
discussed the average performance of compressed sens-
ing under a generic s-sparse model, where the positions of
nonzero entries of an s-sparse signal are distributed uni-
formly at random and their signs are independent and
equally likely to be −1 or +1. In what follows, the average
recovery performance of s-sparse signals with the generic
s-sparse model is theoretically guaranteed by the sensing
matrix A.

Theorem 1. Consider the M × N sensing matrix A in
Construction 1. Let x ∈ R

N be an s-sparse signal with
the generic s-sparse model. Then, if s = O

(
M

logN

)
, it is

possible to recover x with probability 1 − N−1 from the
measurement Ax.

Proof. From Lemma 2, A is a tight frame with coher-
ence μ = O

(
1√
M

)
. For such a matrix, Theorem 2.2 of

[29] presents the average recovery performance that if
s = O

(
min

{
μ−2

logN , M
logN

})
= O

(
M

logN

)
, it is possible

to recover x with probability 1 − N−1 from Ax, which
completes the proof.

4 FFT-based signal measurement and recovery
This section describes measurement and recovery pro-
cesses with the deterministic compressed sensing matrix
A in Construction 1. With the DFT-based submatrix
structure, we can make use of the FFT technique in the
processes.

4.1 Measurement
The measurement process of compressed sensing is
accomplished by y = Ax, where x = (x0, x1, . . . , xN−1)T

and y = (y0, y1, . . . , yM−1)T . Let b = M + 1 and xl =
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(xbl, xbl+1 . . . , xbl+b−1)
T be a segment of x of length b,

where 0 ≤ l ≤ L − 1. From Equation 5, σ (l)xl =
1√
M�(l)F′

bxl for each l, which implies that the matrix-
vector multiplication σ (l)xl includes to perform the b-
point DFT of each segment xl and then to multiply each
DFT output by γ

(l)
k . Let x̃(l)

k be the b-point DFT of xl, i.e.,

x̃(l)
k =

b−1∑
t=0

xbl+te−j 2π tkb , 0 ≤ k ≤ b − 1

and X(l)
k = x̃(l)

k+1, 0 ≤ k ≤ M − 1 for each l. As Ax =
σ (0)x0 + · · · + σ (L−1)xL−1, the measurement from Ax is
equivalent to adding up each DFT output X(l)

k weighted by
γ

(l)
k for 0 ≤ l ≤ L − 1. In other words,

yk = 1√
M

L−1∑
l=0

X(l)
k γ

(l)
k , 0 ≤ k ≤ M − 1.

For fast implementation, the FFT algorithm can be applied
to the L distinct segments of x simultaneously in a parallel
fashion.

4.2 Reconstruction
For s-sparse signal recovery, we consider the CoSaMP
algorithm presented in Algorithm 2.1 of [20], which is
described in Algorithm 1 of this paper. At each iteration,
it forms a signal proxy f and identifies a potential can-
didate 
 of the signal support by locating the largest 2s
components of the proxy. The algorithm then merges the
candidate 
 with the one from the previous iteration, to
create a new support set T. To estimate the target sig-
nal x̂i, it solves a least-squares problem and takes only the
largest s entries from the signal approximation z. Finally,
it updates the current sample v for the next iteration.

Algorithm 1: CoSaMP recovery algorithm [20]
x̂0 ← 0, v ← u, z ← 0, i ← 0 Initialize

repeat
i ← i + 1
f ← AHv Form signal proxy

 ← supp(f2s) Identify large components
T ← 
 ∪ supp(̂xi−1) Merge supports
z|T ← A†

Tu Estimate signal by least-squares
x̂i ← zs Take the largest s entries
v ← u − Âxi Update current samples

until a halting criterion is true

In Algorithm 1, the signal proxy is f = AHv = (f0, f1, . . . ,
fN−1)T , where v = (v0, v1, . . . , vM−1)T and AH denotes

the conjugate transpose of A. Initially, v is a (noisy) mea-
surement vector u. At each iteration, it will be updated
by v = u − Âxi. Considering the submatrix structure of
σ (l), the matrix-vector multiplication AHv is performed
by the reverse operation of the measurement process, i.e.,
extracting the weight γ

(l)
k from each measurement and

then applying the b-point IDFT. For each l, 0 ≤ l ≤ L − 1,
we create a demasked version of v of length b = M + 1,
i.e., ṽ(l) = (̃v(l)

0 , ṽ(l)
1 , . . . , ṽ(l)

M )T where ṽ(l)
0 = 0 and

ṽ(l)
k+1 = vkγ (l)

k
∗
, 0 ≤ k ≤ M − 1

where ‘∗’ denotes the complex conjugate. Applying the
b-point IDFT to ṽ(l) with normalization then yields a seg-
ment of f of length b, i.e., fl = (fbl, fbl+1, . . . , fbl+b−1)

T ,
where

fbl+t = 1√
M

b−1∑
k=0

ṽ(l)
k ej

2π tk
b , 0 ≤ t ≤ b − 1.

For fast implementation, the FFT algorithm can be applied
to the L distinct demasked versions of v simultaneously
in a parallel fashion. Finally, concatenating the L segments
forms f = (fT0 | · · · | fTL−1)

T .
While updating current samples at each iteration, the

matrix-vector multiplication Âxi is also performed by the
FFT algorithm in a similar manner to the measurement
process. One may stop the iterations of the CoSaMP algo-
rithm if the norm of updated samples is sufficiently small
or the iteration counter reaches a predetermined value.
Table one of [20] claimed that forming a signal proxy

dominates the algorithm complexity by the cost of matrix-
vector multiplication. Thus, each iteration of the FFT-
based CoSaMP recovery algorithm has the complexity of
O(L×b log b) ≈ O(N logM), which is smaller than that of
random partial Fourier matrices.

5 Empirical recovery performance
In this section, we compare our new sensing matrices to
chirp sensing [6] and random partial Fourier matrices in
terms of empirical recovery performance in noiseless and
noisy scenarios. For comparison, we assume that a ran-
dom partial Fourier matrix has the same parameters M
and N = (M + 1)L as those of our new sensing matrix.
To obtain it, we made ten trials to select M rows ran-
domly from the N-point IDFT matrix, where the coher-
ence was checked at each trial. Then, we chose the one
with the smallest coherence for our experiments. For a
chirp sensing matrix, on the other hand, M is set to a
prime number closest to the parameter used in our new
sensing matrix, and N = ML. Each submatrix of the par-
tial chirp sensing matrix has an alternating polarity as
in [30].
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Through experiments, we measured an s-sparse sig-
nal x, where the s nonzero entries are either +1 or −1,
and their positions and signs are chosen uniformly
at random. For signal reconstruction, the FFT-based
CoSaMP algorithm was applied to a total of 2, 000
sample vectors measured by the three sensing matri-
ces. In Algorithm 1, the iterations are stopped if either
||v|| < 10−4 or the iteration counter reaches the sparsity
level s.
Figure 2 displays successful recovery rates of the three

sensing matrices from noiseless measurements at vari-
ous compression ratios, where the sparsity level is s =
64. In the figure, for 5 ≤ L ≤ 30, M = 256 and
N = (M + 1)L for our new sensing and random par-
tial Fourier matrices, while M = 257 and N = ML for
chirp sensing matrices. With the parameters, each sens-
ing matrix achieves the compression ratios of 0.0333 ≤
M
N ≈ 1

L ≤ 0.2. A success is declared in reconstruction if
||x − x̂|| < 10−6 for the estimate x̂. The figure shows that
our new sensing matrices have slightly higher recovery
rates than the random partial Fourier matrices but have
almost the same recovery rates as those of chirp sensing
codes.
In noisy compressed sensing, a measured signal is cor-

rupted by additive noise, i.e., u = y + n = Ax + n,
where n is the additive white Gaussian noise of zero mean
and variance σ 2. Then, the input signal-to-noise ratio
(SNR) is defined as SNRinput(dB) = 10 log10

||y||2
σ 2 . Also,

we define the reconstruction SNR as SNRreconst(dB) =
10 log10

||x||2
||x−x̂||2 , to measure the recovery performance in

noisy compressed sensing. In the experiments, we fixed
L = 8, where M = 256 and N = L(M + 1) = 2, 056
for our new sensing and random partial Fourier matrices,
while M = 257 and N = ML = 2, 056 for chirp sens-
ing matrices. Figure 3 shows an example of original and
reconstructed signals for our new sensing matrix in noisy
compressed sensing, where the sparsity level is s = 15 and
the input SNR is 15 dB.
Figure 4 sketches the reconstruction SNR of the three

sensing matrices from noisy measurements. In the figure,
the input SNR is 15 dB. The figure reveals that our new
sensing matrix outperforms the random partial Fourier
and the chirp sensing matrices at high sparsity levels,
but the differences are negligible. Figure 5 demonstrates
reconstruction SNR versus input SNR of the three matri-
ces in noisy compressed sensing, where the sparsity level
of an original signal is 70. At the sparsity level, we
observed that the relationship between reconstruction
and input SNR is linear for medium and high input
SNR. Our new sensing matrix slightly outperforms the
random partial Fourier matrix for high input SNR but
shows almost the same trend with the chirp sensing
code.
In addition to the above experiments, we attempted

an elementary image reconstruction employing the Haar
wavelet transform. An original sparsified image was
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Figure 2 Successful recovery rates of the three sensing matrices from noiseless measurements. The figure displays successful recovery rates
of our new class (asterisks), random partial Fourier (white circle), and chirp sensing (white triangle) matrices from noiseless measurements at various
compression ratios of M

N , where the sparsity level is s = 64,M = 256 for our new sensing and random partial Fourier matrices, andM = 257 for chirp
sensing codes.
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Figure 3 An example of original and reconstructed signals for our new sensing matrix in noisy compressed sensing. The figure shows an
example of original (white circle) and reconstructed (asterisks) signals of length N = 2, 056 from its noisy measurement of lengthM = 256 for our
new sensing matrix, where s = 15 and SNRinput = 15 dB.

measured by the three sensing matrices and then recon-
structed by the CoSaMP algorithm. We observed that
the successfully reconstructed images from three differ-
ent matrices are hard to distinguish, and show almost the
same reconstruction SNR.

In conclusion, our new sensing matrix showed empiri-
cally reliable recovery performance by the CoSaMP algo-
rithm in both noiseless and noisy scenarios, which is
comparable to those of chirp sensing and random partial
Fourier matrices.
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Figure 4 Reconstruction SNR of the three sensing matrices in noisy compressed sensing. The figure sketches the reconstruction SNR of our
new class (asterisks), random partial Fourier (white circle), and chirp sensing (white triangle) matrices from noisy measurements with SNRinput = 15
dB, whereM = 256 and N = 2, 056 for our new sensing and random partial Fourier matrices, whileM = 257 and N = 2, 056 for chirp sensing codes.
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Figure 5 Reconstruction SNR versus input SNR in noisy compressed sensing for 70-sparse input signals. The figure displays reconstruction
SNR versus input SNR of our new class (asterisks), random partial Fourier (white circle), and chirp sensing (white triangle) matrices in noisy
compressed sensing for 70-sparse input signals, whereM = 256 and N = 2, 056 for our new sensing and random partial Fourier matrices, while
M = 257 and N = 2, 056 for chirp sensing codes.

6 Conclusions
This paper has constructed a new class of Fourier-based
compressed sensing matrices using an almost difference
set. We showed that a basic partial Fourier matrix, equiv-
alent to the near-optimal partial Fourier codebook pre-
sented in [19], could be represented as a concatenation
of DFT-based submatrices under row/column rearrange-
ment. Choosing a full or a part of columns of the con-
catenated matrix, we then constructed a new sensing
matrix which turns out to be an incoherent tight frame.
The new sensing matrix guarantees unique sparse recon-
struction with high probability for sparse signals with
uniformly distributed supports. Moreover, experimen-
tal results revealed that our deterministic compressed
sensing guarantees the empirically reliable recovery
performance.
In conclusion, compared to existing chirp sensing and

random partial Fourier matrices, our new sensing matri-
ces have the benefits summarized:

1. Our new deterministic sensing matrices support
various parameters ofM = pr and N = (M + 1)L for
any prime p and positive integers r and L,
2 ≤ L ≤ M − 1. They are incoherent tight frames for
any such M and N. Compared to chirp sensing codes
where M is generally restricted to a prime number,
the new matrices therefore provide more options for
the parameters M and N, permitting various

compression ratios of M
N ≈ 1

L . A large number of new
sensing matrices with a variety of admissible
parameters may have many potential applications in
compressed sensing.

2. The deterministic row index structure requires much
less storage space than random partial Fourier
matrices. Moreover, while the N-point FFT is
required for random partial Fourier matrices, the
DFT-based submatrix structure of our new sensing
matrices allows the (M + 1)-point FFT processing,
which enables efficient signal measurement and
reconstruction with low complexity and fast
processing. The benefits in implementation indicate
the potential of our new sensing matrices in practical
compressed sensing.

Appendix
Proof of procedure 1
First of all, Lemma 3 shows that the indices of D in
Equation 1 are equivalently generated by cyclotomic
cosets. In the proof, we use the well-known property that
(x + y)pk = xpk + ypk for x, y ∈ Fpm and any integersm, k.

Lemma 3. Consider all cyclotomic cosets modulo pr + 1
over p. From Procedure 1, recall that if p = 2, �2(2r +
1) \ {0} = {u1, . . . ,uδ}, and if p > 2, �p(pr + 1) \
{ pr+1

2 } = {u1, . . . ,uδ}, respectively. For each ui, let C′
ui be
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the cyclotomic coset having the coset leader ui. Also, let
zi ∈ Zp2r−1 be an integer satisfying Equation 8 for each ui.
Assume zi ∈ Csi , where Csi is a cyclotomic coset modulo
p2r − 1 over p containing a coset leader si. Then,

1. In Equation 1 of Remark 1, I = ⋃
1≤i≤δ C′

ui .
2. zi = zj if and only if ui = uj for 1 ≤ i, j ≤ δ.
3. |Csi | = |C′

ui | for each i, 1 ≤ i ≤ δ.
4. Finally, the index set D of Equation 1 is given by

D =
⋃

1≤i≤δ

Csi . (9)

Proof.
1. If p = 2, then

⋃
1≤i≤δ C′

ui = Zpr+1 \ {0} = I is
obvious. If p > 2, on the other hand,
p(pr+1)

2 − pr+1
2 = (pr + 1) × (p−1)

2 ≡ 0 (mod pr + 1)
for odd p. Then, we have p(pr+1)

2 ≡ pr+1
2

(mod pr + 1), which means that pr+1
2 is the only

element of the cyclotomic coset containing it.
Therefore,

⋃
1≤i≤δ C′

ui = Zpr+1 \ { pr+1
2 } = I is also

clear.
2. For given ui, the solution zi ∈ Zp2r−1 of Equation 8 is

unique from the structure of the finite field Fp2r .
From the uniqueness, zi = zj if and only if ui = uj for
1 ≤ i, j ≤ δ.

3. For each i, let |C′
ui | = nui , where

ui ≡ uipnui (mod pr + 1). (10)

Also, let |Csi | = nsi . For zi ∈ Csi ,

zi ≡ zipnsi (mod p2r − 1). (11)

Then,
1 + α(pr−1)uipnui = (

1 + α(pr−1)ui
)pnui = αzipnui ,

where α is a primitive element in Fp2r . Since
1 + α(pr−1)uipnui = 1 + α(pr−1)ui = αzi , we have
αzipnui = αzi , which implies

zi ≡ zipnui (mod p2r − 1). (12)

From Equations 11 and 12, nsi divides nui since nsi is
the smallest positive integer satisfying Equation 11.
Similarly, 1 + α(pr−1)uipnsi = (

1 + α(pr−1)ui
)pnsi =

αzipnsi = αzi = 1 + α(pr−1)ui . Then,

ui ≡ uipnsi (mod pr + 1). (13)

From Equations 10 and 13, nui divides nsi since nui is
the smallest positive integer satisfying Equation 10.
As nsi and nui divide each other, it means nui = nsi ,
or equivalently |C′

ui | = |Csi | for each i, 1 ≤ i ≤ δ.
4. With zi ∈ Csi and ui ∈ C′

ui satisfying Equation 8, let
us say that Csi is associated with C′

ui . Recall that
α(pr+1)ev = Tr2rr (αv) in Remark 1. For each index of

D in Equation 1,

αdk = α(pr+1)ev−v = α−v × Tr2rr (αv)

= α−v × (αv + αvpr ) = 1 + α(pr−1)v
(14)

where v ∈ I in Equation 1. In Equation 14, if v = ui,
then dk = zi from Equation 8. Moreover,

αzipt =
(
1 + α(pr−1)ui

)pt = 1 + α(pr−1)uipt (15)

for 1 ≤ t ≤ nui = nsi . Then, Equation 15 implies that
each element of C′

ui = {ui,uip, . . . ,uipnui−1} induces
each element of Csi = {zi, zip, . . . , zipnsi−1} as a
solution of Equation 15. For each element
v ∈ I = ⋃

1≤i≤δ C′
ui , therefore, we conclude that the

corresponding solution dk of Equation 14 constitutes
δ cyclotomic cosets of Cs1 , . . . ,Csδ each of which is
associated with C′

u1 , . . . ,C
′
uδ
, respectively, which

yields Equation 9. From item 2, Cs1 , . . . ,Csδ are
disjoint, and the set D of Equation 9 has pr distinct
elements since
|D| = ∑δ

i=1 |Csi | = ∑δ
i=1 |C′

ui | = |I| = pr .

From Lemma 3, if p = 2, Equation 9 directly presents
the indices of D in Equation 2. If p > 2, on the other hand,
we can simply add M+1

2 to each element of Equation 9, to
obtain the indices of D in Equation 3. This verifies that
Procedure 1 equivalently generates the row index set for
our new sensing matrix.
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