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Abstract

In multi-task compressive sensing (MCS), the original signals of multiple compressive sensing (CS) tasks are assumed
to be correlated. This is explored to recover signals in a joint manner to improve signal reconstruction performance. In
this paper, we first develop an improved version of MCS that imposes sparseness over the original signals using
Laplace priors. The newly proposed technique, termed as the Laplace prior-based MCS (LMCS), adopts a hierarchical
prior model, and the MCS is shown analytically to be a special case of LMCS. This paper next considers the scenario
where the CS tasks belong to different groups. In this case, the original signals from different task groups are not well
correlated, which would degrade the signal recovery performance of both MCS and LMCS. We propose the use of the
minimum description length (MDL) principle to enhance the MCS and LMCS techniques. New algorithms, referred to
as MDL-MCS and MDL-LMCS, are developed. They first classify tasks into different groups and then reconstruct signals
from each cluster jointly. Simulations demonstrate that the proposed algorithms have better performance over
several state-of-art benchmark techniques.
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1 Introduction
If a signal is compressible in the sense that its representa-
tion in a certain linear canonical basis is sparse, it can then
be recovered from measurements obtained at a rate much
lower than the Nyquist frequency using the technique of
compressive sensing (CS) [1-3]. Mathematically, in CS, the
signal is measured via

y = �0�θ + n = �θ + n (1)

where θ is the N × 1 original signal vector, �0 denotes
the M × N measurement matrix, � denotes the N × N
linear basis, � = �0� , y is the M × 1 compressive mea-
surement vector, and n is the additive noise. SinceM is far
smaller than N, the original signal is now compressively
represented, but the inverse problem, namely recovering
θ from y, is in general ill-posed. If θ is sparse (i.e., most of
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its elements are zero), the signal reconstruction problem
could become feasible. An approximation to the original
signal in this case can be obtained through the technique
of basis pursuit that solves

θ̂ = argmin
θ

‖θ‖1 , s.t.
∥∥y − �θ

∥∥
2 ≤ ε (2)

where ‖·‖2 and ‖·‖1 denote the l2-norm and the l1-
norm, respectively, and the scalar ε is a small constant.
Equation 2 has been the starting point for the develop-
ment of many signal recovery methods in the literature.
Among them, the recovery algorithms under the Bayesian
framework provide some advantages over other formula-
tions. These include providing probabilistic predictions,
automatic estimation of model parameters, and the eval-
uation of the uncertainty of reconstruction. The existing
Bayesian approaches include the Bayesian compressive
sensing (BCS) [4] that stems from the relevance vector
machine [5] and the Laplace prior-based BCS [6].
In [7], multi-task compressive sensing (MCS) was intro-

duced within the Bayesian framework. In this work, a
CS task refers to the union of an original signal vector,
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the measurement matrix, and the associated compressive
measurement vector obtained using Equation 1. In con-
trast to the CS aim of recovering a single signal from its
compressive measurements, MCS exploits the statistical
correlation among the original signals of multiple CS tasks
and recovers them jointly to improve the signal recon-
struction performance. It has been shown in [7] that MCS
allows recovering in a robust manner the signals whose
compressive measurements are insufficient when they are
reconstructed separately. The MCS technique has been
investigated extensively in machine learning literature,
where it was referred to as simultaneous sparse approx-
imation (SSA) [8-12] as well as distributed compressed
sensing [13]. In [14], an empirical Bayesian strategy for
SSA was developed.
The contribution of this paper is twofold. We shall first

extend the work of [6] on the Laplace prior-based BCS to
theMCS scenario. A newMCS algorithm for signal recov-
ery, termed as the Laplace prior-based MCS (LMCS), is
developed. We impose Laplace priors on the original sig-
nals in a hierarchical manner and show that the MCS
is indeed a special case of LMCS. The incorporation of
Laplace priors enforces signal sparsity to a higher extent
[15] and offers posterior distributions rather than point
estimates as in MCS. Another advantage comes from the
log-concavity of the Laplace distribution, which leads to
unimodal posterior distribution and eliminates the pres-
ence of local minima as a result.
The second part of this work comes from the following

observation. Specifically, in order to provide satisfactory
signal reconstruction performance, the MCS technique
from [7], together with the newly proposed LMCS
method, requires that the original signals of the multiple
CS tasks are well correlated statistically. This assumption
may not be fulfilled in many practical applications. For
instance, some original signals may be realizations of dif-
ferent signal templates that differ in their supports. In
other words, they could belong to different signal groups,
and the statistical correlation among them is weak, which
would degrade the signal recovery performance. A possi-
ble approach to address this problem is to group the CS
tasks before the signal reconstruction stage, as in theMCS
with Dirichlet process priors (DP-MCS) [16].
The second contribution of this paper is the use of the

minimum description length (MDL) principle to augment
the MCS and LMCS methods. The obtained techniques
are referred to as the MDL-MCS and MDL-LMCS algo-
rithms. The MDL principle has been adopted to solve the
model selection problem [17-19] and can also be used in
other aspects, such as sparse coding and dictionary learn-
ing [20] and radar emitter classification [21-23]. In MDL,
the best model for a given data y is the solution to the
minimization problem ω̂ = argmin

ω∈�
DL
(
y,ω

)
. Here, �

represents the set of possible models and DL
(
y,ω

)
is a

codelength assignment function which defines the theo-
retical codelength required to describe y uniquely, which
is the key component in any MDL-based classification
technique. Common practice in MDL uses the ideal Shan-
non codelength assignment [24] to define DL

(
y,ω

)
in

terms of a probability assignment p
(
y,ω

)
as DL

(
y,ω

) =
− log2 p

(
y,ω

)
. Applying p

(
y,ω

) = p
(
y |ω ) p (ω), we

have ω̂ = argmin
ω∈�

− log2 p
(
y |ω ) − log2 p (ω), where

− log2 p (ω) represents the model complexity. Note that
the MCS and the new LMCS methods are both under
the Bayesian framework, which enables their integration
with the statistical MDL technique. Compared with the
DP-MCS technique that utilizes variational Bayes (VB)
inference and could suffer from local convergence, the
newly proposed MDL-MCS and MDL-LMCS methods
offer improved correct signal classification rate and better
signal reconstruction performance. This is also illustrated
via computer simulations in Section 5.
The remainder of this paper is structured as follows. In

Section 2, we review the prior sharing concept inMCS and
present the prior sharing framework in LMCS. Section 3
develops the proposed LMCS algorithm. We describe in
Section 4 the MDL-based MCS and LMCS techniques,
namely, theMDL-MCS andMDL-LMCS algorithms. Sim-
ulations are given in Section 5 to illustrate the perfor-
mance of the proposed algorithms. Section 6 concludes
the paper.

2 Prior sharing in MCS and LMCS
In the area of machine learning, information sharing
among tasks is a well-known technique [25]. Typical
approaches, to name a few, include sharing hidden nodes
in neural networks [26,27], assigning a common prior in
hierarchical Bayesian models [28-30], placing a common
structure on the predictor space [31], and the structured
regularization in kernel methods [32]. Among them, the
use of hierarchical Bayesian models with shared priors is
one of the most important methods for multi-task learn-
ing [33-37], which is also essential for the development
of MCS in [7] and the LMCS algorithm in this paper. For
the sake of clarity, in the rest of this section, we shall first
review the prior sharing in the MCS algorithm and then
proceed to present the hierarchical Bayesian framework of
LMCS.
To facilitate the presentation, suppose there are L CS

tasks

yi = �iθ i + ni (3)

where i = 1, 2, . . . , L, yi is the Mi × 1 compressive mea-
surement vector and �i is the Mi × N matrix (Mi � N)
whose columns are �i,j, j = 1, 2, . . . ,N such that �i =
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[
�i,1, . . . ,�i,N

]
. Here, θ i = [

θi,1, . . . , θi,N
]T is the orig-

inal signal for task i and the measurement noise ni is
assumed to follow an i.i.d. Gaussian distribution with zero
mean vector and covariance matrix β−1I. The conditional
likelihood function of yi is

p
(
yi|θ i,β

) = N
(
yi|�iθ i,β−1I

)
(4)

where N
(
yi|�iθ i,β−1I

)
represents a Gaussian distribu-

tion with mean vector �iθ i and covariance matrix β−1I.
The noise precision β follows a Gamma distribution

p (β|a, b) = Ga (β|a, b) = ba

� (a)
βa−1 exp (−bβ) (5)

where a and b are the shape and scale parameters of the
Gamma distribution and � (a) is the Gamma function.

2.1 Prior sharing in MCS
In MCS [7], the elements in θ i are statistically inde-
pendent, and they follow a joint Gaussian distribution:

p (θ i|α) =
N∏
j=1

N
(
θi,j|0,α−1

j

)
. (6)

Here, α = [α1,α2, . . . ,αN ]T is the information vector
shared by the original signals θ i of all the L tasks. Its
distribution function is given by

p (α|c, d) =
N∏
j=1

Ga
(
αj|c, d

)
. (7)

In [7], the general strategy of setting the hyper-parameters
a, c to ones and b, d to zeros in Equations 5 and 7 was
adopted so that the prior of α and β are both uniformly
distributed. As a result, they can be found via maximizing
the following likelihood function:

L∏
i=1

p
(
yi|α,β

) =
L∏

i=1

∫
p
(
yi|θ i,β

)
p (θ i|α)dθ i. (8)

This is equivalent to maximizing the posterior distribu-
tion of α and β . The original signals θ i are then recon-
structed using the estimated values of α and β .

2.2 Prior sharing in LMCS
Within the LMCS framework, the original signals are
assigned Laplace priors. A possible approach to achieve
this is to impose Laplace priors directly on the original sig-
nal, or mathematically, let p (θ i|λ) = λ

2 exp
(−λ

2 ‖θ i‖1
)
as

in [6]. However, this formulation is not conjugate to the
conditional distribution in Equation 4, which would ren-
der the Bayesian analysis intractable. Therefore, we adopt
the hierarchical prior given by

p (θ i|γ ) =
N∏
j=1

N
(
θi,j|0, γj

)
(9)

p
(
γj|λ

) = Ga
(
γj|1, λ/2

)
= λ

2
exp

(
−λγj

2

)
, γj ≥ 0, λ ≥ 0

(10)

p (λ|ν) = Ga (λ|ν/2, ν/2) (11)

where γ = [γ1, . . . , γN ]T , p
(
γj|λ

)
, and p (λ|ν) are the prior

distributions of γj and λ, respectively. Compared with the
MCS model given in Equation 6, Equation 7 reveals that
in LMCS, information sharing is realized via the vector
γ and the hyper-parameter λ. We have from Equations 9
to 11

p (θ i|λ) =
∫

p (θ i|γ ) p (γ |λ)dγ

=
N∏
j=1

∫
p
(
θi,j|γj

)
p
(
γj|λ

)
dγj

= λN/2

2N
exp

⎛⎝−√
λ

N∑
j=1

|θi,j|
⎞⎠ .

(12)

This verifies that the used hierarchical prior model results
in Laplace priors for the original signals θ i.
As inMCS, LMCS recovers the original signals in a two-

step manner. In particular, it first estimates γ , λ, β , and ν

via maximizing the posterior distribution

L∏
i=1

p
(
θ i, γ , λ,β , ν|yi

)
=

L∏
i=1

p
(
θ i|γ , λ,β , yi

)
p
(
γ , λ,β , ν|yi

)
.

(13)

Taking the logarithm on both sides of the above equation
yields

L∑
i=1

ln p
(
θ i, γ , λ,β , ν|yi

)
=

L∑
i=1

ln p
(
θ i|γ , λ,β , yi

)+
L∑

i=1
ln p

(
γ , λ,β , ν|yi

)
.

(14)
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It is straightforward to verify that p
(
θ i|γ , λ,β , yi

) =
p(yi|θ i,β)p(θ i|γ )p(γ |λ)∫
p(yi|θ i,β)p(θ i|γ )p(γ |λ)dθ i

= p(yi|θ i,β)p(θ i|γ )∫
p(yi|θ i,β)p(θ i|γ )dθ i

. Further-
more, from Equations 4 and 9, we have that it also has a
Gaussian distribution N

(
θ i|μ′

i,�′
i
)
with the mean vector

and covariance matrix equal to

μ′
i = β�′

i�
T
i yi (15)

�′
i =

[
β�T

i �i + �0
]−1

(16)

where �0 = diag (1/γ1, . . . , 1/γN ).
With the estimated γ , λ, and ν, LMCS then proceeds to

reconstruct the original signals from all the L CS tasks.
We illustrate the hierarchical prior model adopted in

LMCS in Figure 1. It can be observed that, as in MCS,
the distribution of the measurement noise ni is dependent
on the noise precision β while the prior distribution func-
tions of the original signals θ i depend on the information
sharing vector γ . The difference here is that LMCS has
one more layer of prior information, which is embedded
in λ. The introduction of λ makes the prior distribution
of the original signal Laplace, which is already shown in
Equation 12. As a result, the proposed LMCS would pro-
mote the sparsity of the recovered signal, as pointed out
in [15].

3 Multi-task compressive sensing using Laplace
priors

We shall present the proposed LMCS algorithm in this
section. The LMCS method differs from the MCS tech-
nique only in the step of identifying the information shar-
ing vector γ and the parameters λ and ν while their signal
recovery steps are the same. As a result, we shall focus
on the estimation of γ , λ, and ν. Interested readers are
directed to [7] for details on the signal recovery process.

As shown in previous works [7,38,39], the signal recon-
struction performance would be degraded if the noise
precision β is not properly initialized. Therefore, in this
work, we consider β as a nuisance parameter and integrate
it out to reduce the number of unknowns and improve the
robustness of the algorithm. For this purpose, the prior
distributions of the original signals θ i are rewritten as
in [7]:

p (θ i|γ ,β) =
N∏
j=1

N
(
θi,j|0, γjβ−1) (17)

where β has a Gamma prior distribution

p (β|a, b) = Ga (β|a, b) . (18)

Note that in this case, p
(
θ i|γ , λ,β , yi

)
given above

Equation 15 is still Gaussian with the mean vector and
the covariance matrix given in Equation 15 and 16. After
taking integration with respect to β , we have

p
(
θ i|γ , λ, yi

)
=
∫

p
(
θ i|γ , λ,β , yi

)
p (β|a, b) dβ

=
� (a + N/2)

[
1 + 1

2b
(
θ i − μi

)T
�−1

i
(
θ i − μi

)]−(a+N/2)

� (a) (2πb)N/2 (det (�i))
1/2

(19)

where det (·) is the determinant operator and

μi = �i�
T
i yi (20)

�i =
[
�T

i �i + �0
]−1

. (21)
Note that p

(
θ i|γ , λ, yi

)
has the functional form of a Stu-

dent’s t distribution, which is heavy tailed and as a result
makes the LMCS algorithm more robust to the presence
of outliers in themeasurement noise in yi if any, as pointed
out in [40].

1

i

L Ly

iy

1y

Ln

in

1n

a

b

Task 1

Task i

Task L

Figure 1 Hierarchical prior model of LMCS.
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Taking integration with respect to β on both
sides of Equation 13, using Equation 19, and apply-
ing the logarithm yields the posterior distribution

function
L∑

i=1
ln p

(
θ i, γ , λ, ν|yi

) =
L∑

i=1
ln p

(
θ i|γ , λ, yi

) +
L∑

i=1
ln p

(
γ , λ, ν|yi

)
. We shall maximize it to estimate the

information sharing vector γ and the parameter λ. We
begin with integrating θ i out and applying the relation-
ship p

(
γ , λ, ν|yi

) = p
(
yi, γ , λ, ν

)
/p
(
yi
)
∝ p

(
yi, γ , λ, ν

)
to

obtain

L (γ , λ, ν)

�
L∑

i=1
ln p

(
yi, γ , λ, ν

)
=

L∑
i=1

ln
∫ ∫

p
(
yi|θ i,β

)
p (θ i|γ ) p (γ |λ) p (λ) p (β)dθ idβ

= − 1
2

L∑
i=1

[
(Mi + 2a) ln

(
yTi B

−1
i yi + 2b

)
+ ln (det (Bi))

− 2N ln
λ

2
+ λ

N∑
j=1

γj − ν ln
ν

2
+ 2 ln� (ν/2)

− (ν − 2) ln λ + νλ

]
+ 1

2

L∑
i=1

[
2 ln

2ba� (Mi/2 + a)
� (a)

−Mi ln 2π
]

(22)

where Bi = I + �i�
−1
0 �T

i , B
−1
i =

(
I + �i�

−1
0 �T

i

)−1 =
I − �i�i�

T
i , det (Bi) = (det (�0))

−1 (det (�i))
−1. The

matrices �0 and �i are defined under Equation 16 and in
Equation 21, respectively.
In the rest of this section, we shall present two meth-

ods for identifying γ and λ. The first technique, described
in Section 3.1 iteratively maximizes L (γ , λ, ν) to find the
accurate solution. It has high computational complex-
ity, which motivates the development of an alternative
method with much lower complexity in Section 3.2.

3.1 Iterative solution
Differentiating L (γ , λ, ν) with respect to γj, j = 1, 2,
. . . ,N and setting the result to zero yield

dL (γ , λ, ν)

dγj
= 1

2

[
1
γ 2
j

L∑
i=1

(
Mi + 2a

yTi B
−1
i yi + 2b

μ2
i,j + �i,jj

)

− L
γj

− Lλ

]
= 0.

(23)

After some straightforward manipulations, we obtain

γ −1
j =

L +
√
L2 + 4Lλ

L∑
i=1

(
Mi+2a

yTi B
−1
i yi+2b

μ2
i,j + �i,jj

)
2

L∑
i=1

(
Mi+2a

yTi B
−1
i yi+2b

μ2
i,j + �i,jj

)
(24)

where μi,j is the jth element of μi and �i,jj is the jth diago-
nal element of �i. Following a similar approach, λ can be
found to be

λ = N − 1 + ν/2
N∑
j=1

γj/2 + ν/2
. (25)

As in [6], we evaluate ν by solving

ln
ν

2
+ 1 − ψ

(ν

2

)
+ ln λ − λ = 0 (26)

where ψ (ν/2) denotes the derivative of ln� (ν/2) with
respect to ν/2.
The iterative algorithm starts with an initial solution

guess on γ , λ and ν. We next update the estimates of γi
using Equation 24 first, then proceed to evaluate λ and
ν using Equations 25 and 26. The above process would
be repeated until convergence. The iterative algorithm is
based on alternating optimization and is computationally
intensive. One of the computational burdens lies in the
evaluation of Equations 20 and 21 required in the eval-
uation of Equation 24, where inverting matrices of size
N × N is needed. This motivates the development of the
following alternative algorithm.

3.2 Fast alternative solution
We start with decomposing Bi defined under Equation 22

asBi = I+
N∑

k=1( 	=j)
γk�i,k�

T
i,k+γj�i,j�

T
i,j = Bi,−j+γj�i,j�

T
i,j,

where Bi,−j is Bi with the contribution of the column �i,j
in the matrix �i removed such that we have det (Bi) =
det

(
Bi,−j

)
det

(
1 + γk�

T
i,jB

−1
i,−j�i,j

)
. It can be verified via

applying the matrix inversion lemma that the inverse of Bi

is equal to B−1
i = B−1

i,−j − γj
B−1
i,−j�i,j�T

i,jB
−1
i,−j

1+γj�T
i,jB

−1
i,−j�i,j

. With the above

notations, we are able to introduceL0 (γ ) that collects the
terms relating to γ in L (γ , λ, ν) in Equation 22, which is
defined as
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L0 (γ )

� −1
2

L∑
i=1

⎡⎣ (Mi + 2a) ln
(
yTi B

−1
i yi + 2b

)

+ ln (det (Bi)) + λ

N∑
j=1

γj

⎤⎦
= −1

2

L∑
i=1

⎡⎣ (Mi + 2a) ln
(
yTi B

−1
i,−jyi + 2b

)

+ ln
(
det

(
Bi,−j

))+ λ

N∑
k=1(	=j)

γk

⎤⎦
− 1

2

L∑
i=1

[
(Mi + 2a) ln

(
1 − γjq2i,j/gi,j

1 + γjsi,j

)

+ ln
(
1 + γjsi,j

)+ λγj

]
= L0

(
γ−j
)+ l0

(
γj
)
.

(27)

Here, γ −j is γ with γj removed, si,j � �T
i,jB

−1
i,−j�i,j, qi,j �

�T
i,jB

−1
i,−jyi, and gi,j � yTi B

−1
i,−jyi + 2b.

Differentiating L0 (γ ) with respect to γj and setting the
result to zero, we obtain

dL0 (γ )

drj

= dl0
(
γj
)

drj

= −1
2

L∑
i=1

⎡⎢⎢⎣ si,j + λ − (Mi + 2a)
q2i.j
gi,j[

1 + γj
(
si,j − q2i.j/gi,j

)] (
1 + γjsi,j

)

+
γ 2
j λsi,j

(
si,j − q2i.j

gi,j

)
+ γj

[
λsi,j +

(
si,j + λ

) (
si,j − q2i.j

gi,j

)]
[
1 + γj

(
si,j − q2i.j/gi,j

)] (
1 + γjsi,j

)
⎤⎥⎥⎦

= 0.
(28)

Dividing both sides with γ 2
i , we can transform Equation 28

into

Applying the approximation si,j 
 1/γj, which is
generally valid numerically (e.g., typically we have
si,j > 20/γj [7]), simplifies the denominator of
Equation 29 into

(
si,j − q2i.j/gi,j

)
si,j. Meanwhile, let A0 �

L∑
i=1

si,j+λ−(Mi+2a)q2i.j/gi,j(
si,j−q2i.j/gi,j

)
si,j

, B0 �
L∑

i=1

λsi,j+(si,j+λ)
(
si,j−q2i.j/gi,j

)
(
si,j−q2i.j/gi,j

)
si,j

,

and C0 � Lλ, and as a result, Equation 29 becomes

−1/2
(
γ −2
j A0 + γ −1

j B0 + C0
)

= 0. (30)

The approximate solution of γ −1
i from Equation 30 has

the form

γ −1
j ≈ −B0 ± √

�0
2A0

(31)

where �0 = B2
0 − 4A0C0 and C0 ≥ 0.

As shown in Appendix 1, on the basis of the fact that
γi ≥ 0, the estimate from Equation 31 can only take two
possible values, i.e.,

γ −1
j ≈ −B0 − √

�0
2A0

, A0 < 0 (32)

γ −1
j = ∞, otherwise. (33)

When γ −1
j = ∞, it is equivalent to setting θ i,j to zero

(see Equation 17). This indicates that �i,j can be deleted
from the matrix �i. As a result, in contrast to the itera-
tive approach for estimating γi and λ (see Section 3.1), the
alternative algorithm would have a complexity depend-
ing on the number of retained columns in the matrix �i.
Moreover, the evaluation of Equations 32 and 33 is rela-
tively easy since computing si,j and qi,j required in A0 and
B0 can be achieved via [7]:

si,j = Si,j
1 − γjSi,j

, qi,j = Qi,j

1 − γjSi,j
,

gi,j = Gi +
γjQ2

i,j

1 − γjSi,j

(34)

− 1
2

L∑
i=1

⎡⎢⎢⎣ λsi,j
(
si,j − q2i.j

gi,j

)
(
γ −1
j + si,j − q2i.j/gi,j

) (
αj + si,j

)

+
γ −2
j

[
si,j + λ − (Mi + 2a)

q2i.j
gi,j

]
+ γ −1

j

[
λsi,j +

(
si,j + λ

) (
si,j − q2i.j

gi,j

)]
(
γ −1
j + si,j − q2i.j/gi,j

) (
γ −1
j + si,j

)
⎤⎥⎥⎦

= 0.

(29)
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where

Si,j = �T
i,j�i,j−�T

i,j�i�i�
T
i �i,j (35)

Qi,j = �T
i,jyi−�T

i,j�i�i�
T
i yi (36)

Gi = yTi yi−yTi �i�i�
T
i yi + 2b. (37)

We summarize the procedure of the fast algorithm in
Algorithm 1. The convergence criterion there is∣∣�L0

(
γ k)− �L0

(
γ k−1)∣∣∣∣max (�L0 (γ )) − �L0
(
γ k)∣∣ < thresh (38)

where �L0
(
γ k) is the increment of L0 (γ ) in the kth

iteration and thresh denotes a pre-specified threshold
value. To improve the convergence speed, in step 5 of
Algorithm 1, we select the γ k

j that leads to the largest
increase in L0 (γ ). Other steps in the algorithm, includ-
ing updating μi, �i, si,j, qi,j, and gi,j in steps 10 to 11 and
changing themodel as in steps 6 to 8, are the same as those
detailed in 6 of [7].

Algorithm 1 FAST LMCS
1 Inputs: � = [�1, . . . ,�L], Y = [y1, . . . , yL], thresh
2 Outputs: γ = [γ1, . . . , γN ]T , λ
3 Initialize γj = 0, j = 1, . . . ,N , and λ = 0. Set k = 0
4 while convergence criterion (38) not met Do

5 Select a particular γ k
j out of γ k =

[
γ k
1 , γ

k
2 , . . . , γ

k
N

]T
6 if A0 < 0 and γ k

j = 0, then add γj to the model
7 else if A0 < 0 and γ k

j > 0, then find γ k+1
j using (32)

8 else if A0 > 0, then prune γj and set γ k+1
j = 0

9 end if
10 Update μi and �i
11 Update si,j, qi,j and gi,j
12 Update λ and ν using (25) and (26)
13 k = k + 1
14 end while

Before the end of this section, we shall illustrate the
relationship between the MCS algorithm and the newly
proposed LMCS technique, in order to gainmore insights.
Within the MCS framework, the elements γj in the infor-
mation sharing vector γ are found via [7]:

γMCS
j = argmax

γj

{
−1
2

L∑
i=1

[
ln
(
1 + γjsi,j

)
+ (Mi + 2a) × ln

(
1 − γjq2i,j/gi,j

1 + γjsi,j

)]}
.

(39)

On the other hand, from Equation 27, we have LMCS that
obtains the estimate of γj through

γ LMCS
j = argmax

γj

{
−1
2

L∑
i=1

[
ln
(
1 + γjsi,j

)
+ (Mi + 2a) × ln

(
1 − γjq2i,j/gi,j

1 + γjsi,j

)
+ λγj

]}
.

(40)

Clearly, LMCS would reduce to MCS if λ = 0. This is
somewhat expected from the comparison presented at the
end of Section 2, where we show that, compared with
MCS, LMCS introduces another layer of prior informa-
tion embedded in the parameter λ. When λ = 0, we can

verify that A0 =
L∑

i=1

si,j−(Mi+2a)q2i.j/gi,j(
si,j−q2i.j/gi,j

)
si,j

, B0 = L, and C0 = 0.

As a result, Equations 32 and 33 would become

γ −1
j ≈ L

L∑
i=1

(Mi+2a)q2i.j/gi,j−si,j(
si,j−q2i.j/gi,j

)
si,j

,

if
L∑

i=1

(Mi + 2a) q2i.j/gi,j − si,j(
si,j − q2i.j/gi,j

)
si,j

> 0

(41)

γ −1
j = ∞, otherwise (42)

which are identical to the approximate solutions to
Equation 39 established in [7] (see Equations 39 and 40
in [7]). This corroborates the validity of the Bayesian
derivations that lead to LMCS.

4 MDL-based task classification and signal
reconstruction

The MCS algorithm and the newly proposed LMCS
method both assume that the original signals of the L CS
tasks are statistically correlated. In other words, the orig-
inal signals belong to the same cluster or group, from
the viewpoint of signal classification. When the above
assumption is not fulfilled, the signal reconstruction per-
formance of MCS and LMCS would be degraded. We
shall develop in this section novel signal classification
and recovery algorithms on the basis of the MDL prin-
ciple. The new methods are referred to as MDL-MCS or
MDL-LMCS so as to reflect the fact that we augment
the MCS and LMCS techniques with MDL. We start this
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section with the theoretical derivation of the MDL-based
classification for MCS and LMCS.

4.1 MDL-based classification
This subsection presents the basic MDL-based task clas-
sification framework. With MDL, the best model out of
a family of competing statistical models for a given data
is the one that yields the minimum description length for
the data. LetY= {y1, . . . , yL} be the set collecting the com-
pressive measurements of the L CS tasks in consideration
and ι = [ι1, . . . , ιL] be the partition of Y into K clusters,
where ιi = k means that yi belongs to the kth cluster,
i = 1, . . . , L, and k = 1, . . . ,K . Assuming statistical inde-
pendence among signals from two different clusters, we
can express the likelihood function of Y as

p (Y |D , ι) =
K∏

k=1
pk (Yk |dk ) (43)

where D = {d1, . . . ,dK } is the set of model parameters,
dk is the model parameter vector of the model for the
kth cluster, Yk contains the compressive measurements of
the CS tasks in the kth cluster, and pk (Yk |dk ) represents
the likelihood function of Yk . The description length of Y
under the model set D is then

DL (Y,K) = DL (Y |D, ι ) + DL (D, ι) (44)

where DL (Y |D , ι) = − log2 p ([Y |D , ι]δ) measures the
goodness of fit between the data and the model. Under
the assumption that the model parameter set D and the
CS task partition ι are statistically independent, we have
DL (D, ι) = − log2 p ([D]δ) − log2 p ([ι]δ), and it acts as
a penalty function measuring the model complexity. The
notation [·]δ denotes elementwise quantization with pre-
cision δ. With sufficient quantization precision, we have
p ([Y |D , ι]δ) ≈ p (Y |D , ι) δSY , p ([D]δ) ≈ p (D) δSD , and
p ([ι]δ) ≈ p (ι) δSι [20]. Here, p (D) and p (ι) are the priors
of D and ι. SY, SD, and Sι denote the numbers of elements
in Y, D, and ι. As a result, the description length of Y can
be rewritten as

DL (Y,K) = − log2 p ([Y |D , ι]δ)
− log2 p ([D]δ) − log2 p ([ι]δ) .

(45)

We proceed to evaluate Equation 45 for the cases of
LMCS and MCS sequentially. In particular, as shown
in Appendix 2, we have that for LMCS,

− log2 p
([

Y |D LMCS , ι
]
δ

)
− log2 p

([
DLMCS

]
δ

)
≈ 1

2

K∑
k=1

Lk∑
i=1

[
log2

(
det

(
B(k)
i

))
+
(
M(k)

i + 2a
)
log2

((
y(k)
i

)T (
B(k)
i

)−1
y(k)
i + 2b

)]

− 1
2

K∑
k=1

Lk∑
i=1

⎡⎣2 log2 2ba�
(
M(k)

i /2 + a
)

� (a)
− M(k)

i log2 2π

+ 2M(k)
i log2 δ

⎤⎦− 1
2

K∑
k=1

[
2N log2

λ(k)

2

−
⎛⎝λ(k)

N∑
j=1

γ
(k)
j + ν(k)λ(k)

⎞⎠ log2 e + ν(k) log2
ν(k)

2

− 2 log2 �
(
ν(k)/2

)
+
(
ν(k) − 2

)
log2 λ(k)

]
− K (N + 1) log2 δ

(46)

where DLMCS =
{
dLMCS
k

}
, k = 1, . . . ,K , is the set of

the model parameters in LMCS, dLMCS
k = {

γ (k), λ(k)}
contains the information sharing parameters of the kth

cluster, B(k)
i = I(k)+�

(k)
i

(
�

(k)
0

)−1 (
�

(k)
i

)T
, �

(k)
0 =

diag(1/γ (k)
1 , . . . , 1/γ (k)

N ), and Lk is the number of tasks in
the kth cluster. Other variables are the same as those in
Equation 22.
For MCS, according to Equation 30 in [7], we have

− log2 p
([

Y |DMCS , ι
]
δ

)
− log2 p

([
DMCS

]
δ

)
= −

K∑
k=1

Lk∑
i=1

log2 p
([

y(k)
i

∣∣∣α(k)
]
δ

)
− log2 p

([
DMCS

]
δ

)

≈ −
K∑

k=1

Lk∑
i=1

[
log2 p

(
y(k)
i

∣∣∣α(k)
)

+ log2 δM
(k)
i
]

−
K∑

k=1

[
log2 p

(
α(k)

)
+ log2 δN

]

= 1
2

K∑
k=1

Lk∑
i=1

[
log2

(
det

(
C(k)
i

))
+ (Mi + 2a) log2

((
y(k)
i

)T (
C(k)
i

)−1 (
y(k)
i

)
+ 2b

)]

− 1
2

K∑
k=1

Lk∑
i=1

⎡⎣2 log2 2ba�
(
M(k)

i /2 + a
)

� (a)
− M(k)

i log2 2π

+ 2M(k)
i log2 δ

⎤⎦− KN log2 δ

(47)
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whereDMCS =
{
dMCS
k

}
is the set of model parameters for

MCS, dMCS
k =

{
α

(k)
MCS

}
, α(k)

MCS is the information sharing

vector of cluster k, C(k)
i = I(k)+�

(k)
i

(
A(k)
MCS

)−1 (
�

(k)
i

)T
,

and A(k)
MCS = diag

(
α

(k)
MCS

)
. In MCS, A(k)

MCS is distributed
uniformly, so − log2 p

(
DMCS) would be a constant (see

Section 2.1).
We now compute − log2 p (ι) to complete the evalua-

tion of Equation 45 for LMCS and MCS. Let n (L, ι) be
the number of different ways to partition L tasks into K

groups with each group having Lk CS tasks and
K∑

k=1
Lk =

L. It can be verified that n (L, ι) is equal to

n (L, ι) = CL1
L CL2

L−L1 · · ·CLK−1
L−L1−···−LK−2

(K − 1) !m1!m2! . . .mL!
. (48)

The numerator represents the number of different parti-
tions if we generate them by taking sequentially Lk tasks
out of the L CS tasks while the denominator removes the
partitions produced by simply swapping the tasks within a
cluster without changing the clustering structure. Assum-
ing that the ι has the prior of a uniform distribution,
we have

− log2 p ([ι]δ) ≈ − log2 p (ι) − log2 δL

= − log2
1

n (L, ι)
− L log2 δ

= log2 n (L, ι) − L log2 δ.

(49)

Putting Equation 4) together with Equation 46 or 47
back to Equation 45 completes the description length
computation for the compressive measurement set Y of
the L CS tasks under LMCS orMCS. Given a quantization
precision δ, the MDL criterion finds the optimal number
of clusters K via

K = arg min
1≤K≤L

DL (Y,K) .
(50)

4.2 MDL-LMCS andMDL-MCS
Solving Equation 50 directly may be computationally
prohibitive since it requires calculating the description
length of Y for all possible clustering structures. To

address this difficulty, we shall propose the new MDL-
LMCS and MDL-MCS algorithms for classifying the
CS tasks and recovering all original signals in a joint
and iterative manner. The algorithm flow is summa-
rized in Algorithm 2. It takes as its input the sets Y
and � that collect the compressive measurement vec-
tors and the measurement matrices in the L CS tasks,
respectively.
Since the tasks have not been classified at the beginning,

the algorithm considers that they belong to a single cluster
clust{1} = {Y,�}, and as a result, it sets K, the num-
ber of obtained clusters, to be 1, and num, the number of
unclassified tasks, to be L. The algorithm also initializes
Ŷ and �̂, the sets that collect the compressive measure-
ments and the measurement matrices of the unclassified
tasks, as Ŷ = Y and �̂ = �. Signal reconstruction via
LMCS or MCS for MDL-LMCS or MDL-MCS is then
performed using Ŷ and �̂ to obtain the reconstructed sig-
nal set 
̂1 and the sharing parameter set D̂1. We plug
D̂1 into Equation 46 or 47 to calculate the total descrip-
tion length (TDL) mdl1 for all the compressive measure-
ments in Y. This completes the initialization stage of the
algorithm.
The proposed algorithm proceeds to classify the L tasks

as follows. In the first iteration, it first applies the oper-
ation CLASSIFY(·) to form a new cluster

{
Ŷmin, �̂min

}
from the unclassified task set Ŷ. Ŷmin hasLmin tasks and
their measurement matrices are collected in �̂min. We
remove Ŷmin and �̂min from Ŷ and �̂ to update them,
while the number of remaining unclassified task becomes
num − Lmin. Now, we have K = 2 clusters, clust{1} =
{Ŷ, �̂}, and clust{2} = {Ŷmin, �̂min}a. LMCS or MCS
is then applied to both clusters to identify their original
signals and sharing parameters. The results are kept in

̂2 and D̂2, the latter of which is substituted into (46)
or (47) for MDL-LMCS or MDL-MCS to compute again
the TDL of Y, denoted by mdl2. This completes the pro-
cessing of iteration 1. We then compare mdl1 with mdl2
and if mdl2 < mdl1, the algorithm would start its sec-
ond iteration to continue the task classification, where
CLASSIFY(·) will be applied to Ŷ and yield clust{3}. The
above process is repeated until mdlK > mdlK−1 occurs,
which implies the appearance of over-fitting. The algo-
rithm finally outputs the clusters available in the (K−2)th
iteration.
The function CLASSIFY (·) runs as follows. Each time

when CLASSIFY (·) is executed, it first selects randomly
a task out of the unclassified task set Ŷ. With slight abuse
of notation, we denote it as yi. It is paired with every of
the remaining tasks in Ŷ, and this yields num−1 two-task
clusters. In the case of MDL-LMCS, we then apply LMCS
to estimate the sharing parameters

{
γ (t), λ(t), ν(t)} of the

two-task cluster t, t = 1, 2, . . . , num − 1 and compute the
corresponding description length for yi via
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DL(t)
LMCS

(
yi
)

� − log2 p
([

yi
∣∣∣γ (t), λ(t)

]
δ

)
− log2 p

([
γ (t), λ(t)

]
δ

)
≈ − log2 p

(
yi
∣∣∣γ (t), λ(t)

)
− log2 p

(
γ (t), λ(t)

)
− log2 δM

(t)
i − log2 δN − log2 δ

= − log2 p
(
yi, γ (t), λ(t)

)
−
(
M(t)

i + N + 1
)
log2 δ

= 1
2

[(
M(t)

i + 2a
)
log2

(
yTi
(
B(t)
i

)−1
yi + 2b

)
+ log2

(
det

(
B(t)
i

))
− 2N log2

λ(t)

2
− ν(t) log2

ν(t)

2

+
⎛⎝λ(t)

N∑
j=1

γ
(t)
j + ν(t)λ(t)

⎞⎠ log2 e + 2 log2 �
(
ν(t)/2

)

−
(
ν(t) − 2

)
log2 λ(t)

]
− log2

2ba�
(
M(k)

i /2 + a
)

� (a)

+ M(k)
i
2

log2 2π −
(
M(t)

i + N + 1
)
log2 δ.

(51)

We next perform a grouping operation on the obtained
num − 1 description length DL(t)

LMCS
(
yi
)
to identify those

tasks in Ŷ that are likely to correlate well with yi and
should be grouped with yi in a new cluster Ŷmin (see
Algorithm 2). Recall that each description length indeed
corresponds to a task in Ŷ other than yi. The grouping
procedure is based on the well-known K-mean tech-
nique. The difference here is that before the application

of the K-mean, we first compute the algorithmic mean
of DL(t)

LMCS
(
yi
)
and set those above the mean value to be

equal to themean. This is equivalent to excluding the tasks
that lead to large value of DL(t)

LMCS
(
yi
)
when being paired

with yi because they are unlikely to be well correlated
with yi. We next apply K-mean to the remaining descrip-
tion length to obtain two groups. The mean description
length for both groups are found. The tasks belonging to
the groupwith a smallermean description length are com-
bined with yi to produce the output of CLASSIFY(·), Ŷmin.
In the case ofMDL-MCS, CLASSIFY(·) is realized in the

same manner as described above, except that the descrip-
tion length for yi is evaluated over every two-task cluster
using

DL(t)
MCS

(
yi
)

� − log2 p
([

y(t)
i

∣∣∣α(t)
MCS

]
δ

)
− log2 p

([
α

(t)
MCS

]
δ

)
≈ − log2 p

(
y(t)
i

∣∣∣α(t)
MCS

)
− log2 p

(
α

(t)
MCS

)
− log2 δM

(t)
i − log2 δN

= − log2 p
(
y(t)
i ,α(t)

MCS

)
−
(
M(t)

i + N
)
log2 δ

= 1
2

[(
M(t)

i + 2a
)
log2

((
y(t)
i

)T (
C(t)
i

)−1
y(t)
i + 2b

)

+ log2
(
det

(
C(t)
i

))]
− log2

2ba�
(
M(k)

i /2 + a
)

� (a)

+ M(k)
i
2

log2 2π −
(
M(t)

i + N
)
log2 δ.

(52)

Algorithm 2 MDL-LMCS (or MDL-MCS)
1 Inputs: Y, �, L
2 Outputs: K , clust, ̂


3 Initialize Ŷ ← {Y}, ̂� ← {�}, num ← L, K ← 1, clust {1} ←
{
Ŷ,̂�

}
,
{
̂
1, D̂1

}
← LMCS (clust)

(or
{
̂
1, D̂1

}
← MCS (clust)),mdl1 ← TDL

(
clust, D̂1

)
,mdl = [mdl1]

4 while 1
5

{
Ŷmin,̂�min, Lmin

}
← CLASSIFY

(
̂Y, num

)
6 Ŷ ← Y − Ŷmin, ̂� ← ̂� − ̂�min, num ← num − Lmin, K ← K + 1, clust {K} ←

{
Ŷmin,̂�min

}
,

clust {1} ←
{
Ŷ,̂�

}
7

{
̂
K , D̂K

}
← LMCS (clust) (or

{
̂
K ,̂DK

}
← MCS (clust)),mdlK ← TDL

(
clust, D̂K

)
8 ifmdlK > mdlK−1, ormdlK < mdlK−1 andmdlK−1 − mdlK < ε (mdlK−2 − mdlK−1), where K > 2

and ε is a small constant, for instance, ε = 0.2, then clust {K − 1} ←
{
Ŷ + Ŷmin,̂� + ̂�min

}
,

clust {K} ← [], ̂
 ← ̂
K−1, K ← K − 1, and terminate the algorithm
9 elsemdl = [mdl,mdlK ]

10 end if
11 end while
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4.3 Implementation aspect
The development of MDL-LMCS and MDL-MCS pre-
sented in the previous subsection implicitly assumes that
the quantization precision δ is known a priori. Neverthe-
less, in an ideal case, δ should be determined jointly with
the optimal number of clusters K through minimizing the
right-hand side of Equation 50 with respect to δ and K.
We shall follow the approach similar to the one adopted

in [20] to determine the quantization precision. First, it
can be verified that the value of δ would have no impact
on locating the unclassified tasks that are correlated with
a randomly selected one if the compressive measure-
ment vectors of all the tasks have the same dimension.
This is because, in this case, the term depending on δ in
Equations 51 and 52 would be the same for any value of
t. As a result, δ will affect the task classification perfor-
mance via Equations 46 and 47 only, from which it can be
seen that a very fine quantization would lead to a smaller
number of clusters. This may degrade the signal recon-
struction performance as weakly correlated signals may be
recovered jointly. A large value of δ would not necessarily
improve performance, as in this case, the original signals
may tend to be recovered separately. Our experiments
suggest that δ be within the range of 0.01 to 0.1, depend-
ing on the type of data to be processed. Throughout the
experiments in Section 5, we shall fix δ to be 0.1, instead
of attempting to optimize it for different experiments.

5 Simulations
Monte Carlo (MC) simulations using synthetic data and
images are performed to illustrate the performance of the
LMCS algorithm developed in Section 3 and the MDL-
augmented MCS algorithms, namely, the MDL-LMCS
and MDL-MCS techniques presented in Section 4.

5.1 Synthetic signals
In each simulation of this subsection, the length of the
original signals of all the CS tasks is fixed at N = 512,
and we generate two sets of results. One set of results is
produced when the non-zero elements of the original sig-
nals take binary values ±1 in a randommanner. The other
set is generated with the non-zero elements of the original
signals being independently drawn from zero-mean Gaus-
sian distribution with unit variance. The elements of the
measurement matrix of any CS task, on the other hand,
can only be drawn from a Gaussian distribution with zero
mean and variance one. Each column of any measurement
matrix is normalized to have a unit norm.
For the purpose of comparison, we implement the BCS

and MCS techniques developed in [4] and [7]. We shall
denote them as ST-BCS and MCS in the figures. Here, ST
stands for single task, and it is introduced to highlight that
ST-BCS and MCS recover the original signals separately
and jointly. We also implement the Laplace prior-based

BCS proposed in [6] and denote it as LST-BCS. When
implementing the three benchmark algorithms (ST-BCS,
MCS, and LST-BCS) and the three proposed methods
(LMCS, MDL-LMCS, and MDL-MCS), we always initial-
ize a = 103 and b = 1 so that the noise precision β has the
same prior distribution for all the algorithms considered
(see Equation 5).
We shall follow the previous works [4,6,7] that proposed

the three benchmark methods and use the average nor-
malized signal reconstruction error as the primary per-
formancemetric. It is defined as 1

L
∑L

i=1

∥∥∥θ i − θ̂ i

∥∥∥
2
/‖θ i‖2,

where θ i and θ̂ i are the true and the estimated original
signal vectors of the ith CS task. Note that the aver-
age normalized signal reconstruction error measures the
Euclidean distance between the waveforms of the recov-
ered and the original signals. It is not very informative
regarding the quality of the recovered signal supports.
Therefore, we shall also include in some experiments per-
formance results of different algorithms in recovering the
signal supports, which are quantified by the average incor-
rect support recovery ratio 1

L
∑L

i=1 ||S(θ i) − S(θ̂ i)||0/N .
Here, || · ||0 denotes the l0-norm and S(x) sets all the
non-zero elements in x to be 1.

5.1.1 LMCS
We consider the case of L = 2 CS tasks as in [7], in order
to illustrate the performance of the proposed LMCS tech-
nique and the existing methods under a simulation setup
already used in the literature. The original signal of each
task contains 64 non-zero elements at random locations.
Zero-mean Gaussian noise with a standard deviation of
0.01 is added to the two obtained compressive measure-
ment vectorsb.
In the first simulation, we illustrate in Figure 2 the

impact of different choices of the parameters λ and ν on
the performance of LMCS. The two signals are assumed
to have 75% of their non-zero elements overlapped. We
realize LMCS with λ = 0, λ = 1, λ = 2, and λ estimated
using Equation 25. The results shown are averaged over
200 runs. In particular, Figure 2a,b plots the average sig-
nal reconstruction error as a function of the number of
compressive measurements for the two cases where the
original signals are random binary numbers ±1 and zero-
mean Gaussian random variables with unit variance. The
results show that in both cases, the reconstruction error
of LMCS gradually improves as the number of compres-
sive measurements increases, and the best performance is
obtained when λ is estimated using Equation 25. More-
over, we can see that the LMCS with ν = 0 and ν

estimated using Equation 26 yields similar signal recon-
struction performance. The underlying reason is that the
value of λ estimated jointly with ν is nearly identical to
that obtained with ν = 0. This can be better explained
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Figure 2 Performance comparison of LMCS with different choices of λ and ν. (a) Binary original signals and (b) Gaussian original signals.

as follows. The value of ν, when it is identified together
with λ, is generally non-zero but less than one in this
simulation. Careful examination of Equation 25 that gives
the estimate of λ reveals that the impact of a small non-
zero ν on λ is negligible, when the original signal length
N is large (in this section, N = 512) and the measure-
ment noise level is low, which implies a large value of
the noise precision β , and as a result, large values of
the hyper-parameters γj for original signals having a unit
variance (see Equation 17). Therefore, in the remaining
simulations, we fix ν at zero when realizing LMCS and
MDL-LMCS.
It is worthwhile to point out that rigorously, ν = 0

is a boundary value for the Gamma distribution. As ν

approaches 0, the prior distribution of λ would pro-
vide vague information on λ as p(λ) ∝ 1/λ (also see
Equation 19 in [6]). However, this would not change the
fact that Laplace prior is imposed on the original signals,
as shown in Equation 12. In other words, LMCSwould still
outperform MCS because it enhances the sparsity con-
straints on the non-zero elements of the original signals.

This is also supported by the following simulation results
(see Figures 3 and 4).
Figure 3 demonstrates the impact of the correlation

between the two original signals on the performance of
LMCS. It considers the cases when the two original signals
have binary non-zero elements, and they have 75% and
50% of their non-zero elements overlapped. Figure 3a,b
plots the average signal reconstruction error and the
incorrect support recovery ratio of LMCS as a function
of the number of compressive measurements. The results
shown are averaged over 50 runs. For comparison, we also
include in the figures the results from ST-BCS, LST-BCS,
and MCS. We can observe from Figure 3a that LMCS
and MCS outperform greatly over ST-BCS and LST-BCS
due to the utilization of the prior sharing mechanism (see
Section 2). The performance of LMCS andMCS improves
as the number of the overlapping non-zero elements in the
two original signals increases, as expected. More impor-
tantly, LMCS exhibits superior performance in terms of a
much lower signal reconstruction error over MCS for the
two cases where the two original signals have 75% and 50%
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Figure 3 Comparison of ST-BCS, LST-BCS, MCS, and LMCS in reconstructing signals with binary non-zero elements. (a) Average
reconstruction error and (b) incorrect support recovery ratio.
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Figure 4 Comparison of ST-BCS, LST-BCS, MCS, and LMCS in reconstructing signals with Gaussian non-zero elements. (a) Average
reconstruction error and (b) incorrect support recovery ratio.

of their non-zeros overlapped. The performance enhance-
ment mainly comes from the use of Laplace priors on the
original signals in LMCS. Compared with MCS, LMCS
imposes another layer of prior information on the hyper-
parameters of the original signals, which makes MCS a
special case of LMCS as shown in Equations 39 and 40 at
the end of Section 4. As a result, LMCS offers more flexi-
bility in modeling the sparsity of the original signals. This
is also corroborated by Figure 3b, where it shows that in
the case where the two original signals have 75% of their
non-zero elements colocated, LMCS can provide a lower
incorrect support recovery ratio and can better recover
the sparse signal support.
Figure 4 repeats the simulation experiment in Figure 3,

but it considers the case where the two original sig-
nals have the non-zero elements drawn from zero-mean
Gaussian distribution with unit variance. The obtained
observations are similar to those in Figure 3.

5.1.2 MDL-based task classification and signal
reconstruction

In this subsection, we present simulation results to illus-
trate the performance of MDL-MCS and MDL-LMCS
developed in Section 4. For the purpose of comparison, we
also show the results of the ST-BCS, LST-BCS, MCS, and
LMCS methods as well as the DP-MCS technique.
The simulated algorithms are used to recover the origi-

nal signals of L = 40 CS tasks that belong to eight clusters
with five tasks each. Every cluster has its own signal tem-
plate that differs in the signal supports. All the original
signals have 64 non-zero components, and their locations
are initially chosen so that the correlation between any
two original signals from different clusters is zero. Later,
we perform the following perturbation to induce slight
correlation among clusters. Specifically, in each ensem-
ble run, six non-zero elements in each signal template
are selected randomly and set to zero elements, while at

the same time, six elements that are zeros in the original
template are reset to be non-zeros. In this way, the five sig-
nals within the same cluster are highly correlated, but the
signals from different clusters have distinct sparsity struc-
tures. The simulation results are obtained via averaging
over 50 ensemble runs.
In Figure 5a,b, we plot as a function of the number

of compressive measurements the binary signal recon-
struction error and the correct task classification ratio
of the simulated seven algorithms. As we can see from
Figure 5a, pretending that the 40 CS tasks belong to
the same group and recovering the original signals using
LMCS or MCS would lead to a signal reconstruction
error even higher than reconstructing the original sig-
nals separately via LST-BCS. This clearly demonstrates
the impact of incorrect task classification on the signal
recovery performance. On the other hand, the proposed
MDL-LMCS and MDL-MCS algorithms outperform the
DP-MCS technique in terms of lower signal reconstruc-
tion error. The performance improvement can be better
explained by examining Figure 5b. We can see that the
application of the MDL principle to augment LMCS and
MCS leads to a greatly improved correct task classification
ratio, compared with the DP-MCS technique.With the CS
task correctly grouped, MDL-LMCS and MDL-MCS can
better recover the original signals of every group.
We repeat the simulation used to generate Figure 5 with

the original signals being zero-mean Gaussian random
variables with unit variance. The obtained results are sum-
marized in Figure 6. The observations obtained are similar
to those in Figure 5.

5.2 Images
In this subsection, we compare the performance of MDL-
MCS and MDL-LMCS with that of DP-MCS in recov-
ering 2-D images of random bars. In this experiment,
the elements of the measurement matrices of the three
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Figure 5 Comparison of signal reconstruction and classification performance for binary signals. (a) Binary signal reconstruction error and (b)
correct classification ratio.

algorithms in consideration are drawn from a uniform
spherical distribution.
Figure 7 summarizes the reconstruction results from a

particular run. The first three images in Figure 7a, labeled
as tasks 1 to 3, are taken from [7], and they belong to
the same cluster. The remaining six images in Figure 7a
forms another two clusters, where one cluster consists of
tasks 4 to 6 and the other is composed of tasks 7 to 9.
These six images are modified from the first three images
via permuting randomly the intensities of the rectangles
and shifting their positions by distance randomly sampled
from a uniform distribution.
All original images have the dimension of 1,024×1,024.

Here, we utilize the Haar wavelet expansion with a coars-
est scale of 3 and a finest scale of 6. Figure 7a gives the
result of the inverse wavelet transformwith 4,096 samples,
denoted as linear in the figure. This is the best perfor-
mance achievable by all the CS algorithms considered
here. The reconstruction result from DP-MCS is shown

in Figure 7b, where we adopted the hybrid CS scheme
that compresses the fine-scale coefficients only as in [7]
into Mi = 680 (i = 1, . . . , 9) measurements for each task.
Figure 7c,d gives the recovery results of MDL-MCS and
MDL-LMCS, respectively.
We fix the original images and repeat the above exper-

iment 20 times, each time with independently generated
measurement matrices for all the three algorithms. In
every run, the image reconstruction error for each task is
evaluated and averaged to obtain the normalized image
reconstruction error, which is again averaged over 20 runs
to yield the average image reconstruction error summa-
rized in Table 1. We also include in Table 1 the correct
classification ratio.
The results in Figure 7 and Table 1 show that MDL-

LMCS has the best image reconstruction and classi-
fication performance, while MDL-MCS yields a better
performance than DP-MCS. This is consistent with the
observations obtained from Figures 5 and 6.
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Figure 6 Comparison of signal reconstruction and classification performance for Gaussian signals. (a) Gaussian signal reconstruction error
and (b) Correct classification ratio.
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Figure 7 Comparison of DP-MCS, MDL-MCS, and MDL-LMCS in
image reconstruction. (a) Linear, (b) DP-MCS, (c)MDL-MCS, and (d)
MDL-LMCS.

6 Conclusions
In this paper, we first extended previous works on the
Laplace prior-based Bayesian CS to the scenario of mul-
tiple CS tasks and developed the LMCS technique. The
hierarchical prior model was adopted to impose the
Laplace priors, and it was shown that the MCS algorithm
is indeed a special case of LMCS. Next, this paper con-
sidered the scenario where the multiple CS tasks are from
different groups, under which the performance of both
MCS and LMCS would be degraded, since they attempt
to recover the uncorrelated signals jointly. We proposed
the MDL-based MCS techniques, namely, MDL-MCS

Table 1 Image reconstruction and classification
performance of DP-MCS, MDL-MCS, andMDL-LMCS

Average reconstruction Correct classification

error ratio

Linear 0.22623 -

DP-MCS 0.27647 0.35

MDL-MCS 0.24511 0.60

MDL-LMCS 0.22642 1.00

and MDL-LMCS, which first classify tasks into different
groups using the MDL principle and then reconstruct sig-
nals of every cluster. Simulations verified the enhanced
performance of MDL-MCS and MDL-LMCS in terms
of lower signal reconstruction error over the benchmark
MCS and DP-MCS techniques as well as single-task CS
algorithms.

Endnotes
a It can be easily verified that in our algorithm, K is

equal to the iteration index plus one. Besides, clust{1}
always contains all the unclassified tasks and clust{K} is
the newest cluster formed in the current iteration.

b Our choice of the noise standard deviation of 0.01 is
on the same order of the values adopted in the literature.
For example, in [6] and [7], the noise standard deviation
is set to be 0.03 and 0.005.

Appendix 1
Derivation and analysis of Equations 32 and 33
In this appendix, we shall present the derivation that
leads to Equations 32 and 33 and show that it is only a
suboptimal solution to the maximization of Equation 27.
Our derivation applies the approximation that si,j 


1/γj, which has been found to be valid numerically [7].
This results in the estimate of γj having the functional
form given in Equation 30. When A0 > 0, both solu-
tions in Equation 30 would be negative, which violates the
requirement that γj must be positive. If A0 < 0, only the
solution γ −1

j = (−B0 − √
�0
)
/(2A0) is valid. For the case

A0 = 0, from Equation 27, γj will have the accurate solu-
tion γj = 0. This completes the derivation of Equations 32
and 33.
We next show that the solution in Equation 32 and 33 is

suboptimal. For this purpose, utilizing the approximation
si,j 
 1/γj transforms Equation 28 into

dL0 (γ )

drj
= dl0

(
γj
)

drj
≈ −1

2

(
γ −2
j A0 + γ −1

j B0 + C0
)
.

(53)
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We can also obtain easily

d2L0(γ )

dr2j
≈ 1

2

(
2γ −3

j A0 + γ −2
j B0

)
= 1

2
γ −2
j

(
2γ −1

j A0 + B0
)
.

(54)

Substituting Equation 32 into Equation 54 yields

d2L0 (γ )

dr2j
≈ −1

2
γ −2
j
√

�0 < 0 (55)

This indicates that the solution in Equation 32 is
the unique maximizer of the approximated version of
Equation 27. However, solving Equation 29 accurately,
which is equal to finding all the candidate maximizers for
Equation 27, may yield two or more positive estimates
of γj. Among them, one would be relatively close to the
approximate solution in Equation 32. In other words, the
approximate solution is within the vicinity of a stationary
point of Equation 27, whichmay only correspond to a local
maxima.

Appendix 2
Derivation of Equation 46
To avoid confusion, we use superscript (k) to denote the
kth cluster in the following derivation. For mathematical
tractability, besides the independence among signals from
two different clusters, we also assume the independence
among signals within the same cluster. As a result, we have

− log2 p
([

Y |DLMCS , ι
]
δ

)
= −

K∑
k=1

Lk∑
i=1

log2 p
([

y(k)
i

∣∣∣γ (k), λ(k)
]
δ

) (56)

where Lk is the number of tasks in the kth cluster such

that
K∑

k=1
Lk = L, DLMCS=

{
dLMCS
k

}
, k = 1, . . . ,K , and

dLMCS
k = {

γ (k), λ(k)} contain the information sharing
parameters of the kth cluster. Similarly, assuming statisti-
cal independence among dLMCS

k , we obtain

− log2 p
([

DLMCS
]
δ

)
s = −

K∑
k=1

log2 p
([

γ (k), λ(k)
]
δ

)

= −
K∑

k=1

[
log2 p

([
γ (k)

∣∣∣λ(k)
]
δ

)
+ log2 p

([
λ(k)

]
δ

)]
.

(57)

Combining Equations 56 and 57 yields

− log2 p
([

Y |D LMCS , ι
]
δ

)
− log2 p

([
DLMCS

]
δ

)
≈ −

K∑
k=1

Lk∑
i=1

⎡⎣log2 p
(
y(k)
i , γ (k), λ(k)

)
p
(
γ (k), λ(k)

) + M(k)
i log2 δ

⎤⎦
−

K∑
k=1

[
log2 p

(
γ (k)

∣∣∣λ(k)
)

+ log2 p
(
λ(k)

)
+ (N + 1) log2 δ

]
.

(58)

From Equation 22, Equation 58 can be rewritten as

− log2 p
([

Y |D LMCS , ι
]
δ

)
− log2 p

([
DLMCS

]
δ

)
≈−

K∑
k=1

Lk∑
i=1

[
log2

∫ ∫
p
(
y(k)
i |θ (k)

i ,β
)
p
(
θ

(k)
i |γ (k)

)
p (β)dθ

(k)
i dβ

+ M(k)
i log2 δ

]
−

K∑
k=1

[
log2 p

(
γ (k)

∣∣∣λ(k)
)

+ log2 p
(
λ(k)

)
+ (N + 1) log2 δ

]
.

(59)

Carrying out the integration, simplifying and applying
some straightforward manipulations give Equation 46.
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