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Abstract

The successful implementation of speech processing systems in the real world depends on its ability to handle
adverse acoustic conditions with undesirable factors such as room reverberation and background noise. In this study,
an extension to the established multiple sensors degenerate unmixing estimation technique (MENUET) algorithm for
blind source separation is proposed based on the fuzzy c-means clustering to yield improvements in separation ability
for underdetermined situations using a nonlinear microphone array. However, rather than test the blind source
separation ability solely on reverberant conditions, this paper extends this to include a variety of simulated and
real-world noisy environments. Results reported encouraging separation ability and improved perceptual quality of
the separated sources for such adverse conditions. Not only does this establish this proposed methodology as a
credible improvement to the system, but also implies further applicability in areas such as noise suppression in
adverse acoustic environments.

Keywords: Blind source separation; Fuzzy c-means clustering; Time-frequency masking; Reverberation; Background
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1 Introduction
The ability of the human cognitive system to distinguish
between multiple, simultaneously active sources of sound
is a remarkable quality that is often taken for granted.
This capability has been studied extensively within the
speech processing community, and many an endeavor
at imitation has been made. However, automatic speech
processing systems are yet to perform at a level akin
to human proficiency [1] and are thus frequently faced
with the quintessential ‘cocktail party problem’: the inad-
equacy in the processing of the target speaker/s when
there are multiple speakers in the scene [2]. The imple-
mentation of a suitable source separation algorithm can
improve the performance of such systems, where source
separation is the recovery of the original sources from a
set of mixed observations. If no a priori information of
the original sources and/or mixing process is available,
it is termed blind source separation (BSS). Rather than
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rely on the availability of such a priori information, BSS
methods often exploit an assumption on the constituent
source signals and utilize spatial diversity obtained from
the sensor observations. BSS has many important applica-
tions in both the audio and biosignal disciplines, including
medical imaging and communication systems.
In the last decade, the research field of BSS has evolved

significantly to be an important technique in acoustic
signal processing [3]. More specifically, the concept of
time-frequency (TF) masking in the context of BSS has
been of significance due to its applicability to all BSS
scenarios, in particular the underdetermined case, where
there exists more sources than sensors. In the TF masking
approach to BSS, the assumption of sparseness between
the speech sources is typically exploited as initiated in [4].
There exists several definitions for sparseness in the lit-
erature; for example, [5] simply defines sparseness as to
contain as ‘many zeros as possible’, whereas others offer
a more quantifiable measure such as kurtosis [6]. Often, a
sparse representation of speech mixtures can be acquired
through the projection of the signals onto an appropri-
ate basis, such as the Gabor or Fourier basis. In particular,
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the W-disjoint orthogonality (W-DO) of speech signals
was explored for the short-time Fourier transform (STFT)
domain, where the sparseness implies that the STFT sup-
ports of the signals are disjoint. This significant discovery
motivated the degenerate unmixing estimation technique
(DUET) [4]. The DUET proposed a demixing approach
based on the formation of TF masks, where each mask
would essentially correspond to the indicator function for
the support of the source signal. TheDUET algorithm suc-
cessfully recovered the original source signals from stereo
microphone observations using estimates of the relative
attenuation and phase parameters.
The DUET algorithm consequently stimulated a

plethora of demixing techniques. Among the first exten-
sions to the DUETwas the TF ratio ofmixtures (TIFROM)
algorithm which relaxed the sparseness assumption; how-
ever its performance was limited to anechoic conditions
with the observations idealized to be of the linear and
instantaneous case [7]. Subsequent research extended the
DUET to echoic conditions with the use of the estimation
of signal parameters via rotational invariance technique
(ESPRIT) method to form the DUET-ESPRIT algorithm
[8,9]. However, this was restricted to a linear microphone
arrangement and was thus subjected to front-back con-
fusions primarily due to the natural constraint in spatial
diversity from the microphone observations.
A different avenue of research as in [10] composed

a two-stage algorithm which combined the sparseness
principle presented in DUET with the established inde-
pendent component analysis (ICA) algorithm to yield the
sparseness and ICA (SPICA) algorithm. This approach
exploited the sparseness of the signals to estimate and
remove the active speech source at a particular TF point,
and ICA was then applied to the remaining mixtures. Nat-
urally, a restraint upon the number of sources present
at any TF point relative to the number of sensors was
inevitable due to the ICA stage. Furthermore, the algo-
rithm was only investigated for the stereo case.
The authors of the SPICA expanded their research to

nonlinear microphone arrays in [11-13] with the intro-
duction of the clustering of normalized observation vec-
tors. Whilst remaining similar in spirit to the DUET,
the research was inclusive of non-ideal conditions such
as room reverberation, and allowed more than two sen-
sors in an arbitrary arrangement. This eventually culmi-
nated in the development of the multiple sensors degen-
erate unmixing estimation technique, termed MENUET
[14,15]. Additionally, the mask estimation in MENUET
was automated through the application of the k-means
clustering technique. Another algorithm which proposes
the use of a clustering approach for the mask estima-
tion is presented in [16]: this study is based upon the
concept of Hermitian angles between the reference vec-
tor and observation vectors, in the complex vector space.

However, evaluations were restricted to a linear micro-
phone array.
Advancements in the TF masking approaches to BSS

beyond MENUET involve additional stages and complex-
ities. Of particular mention is the approach in [17] which
resulted in superior BSS performance in underdetermined
reverberant conditions. The algorithm employed a two-
stage approach: firstly, observation vectors are clustered
in a frequency bin-wise manner, and secondly, the sepa-
rated frequency bin components classified as originating
from the same source are grouped together. The bene-
fit of this approach is that due to the bin-wise clustering,
it is robust against higher room reverberations in com-
parison to previous techniques such as MENUET, as well
as possessing an inherent immunity to the spatial alias-
ing problem in the measurement of the time differences
of arrival/direction of arrivals [17]. However, despite the
reported improvements in BSS performance, additional
complexity was introduced due to the extra stage for the
alignment of the frequency bin-wise permuted clustering
results. Therefore, the MENUET has the advantage over
the state-of-the-art study in [17] in that the fullband clus-
tering for mask estimation eliminates the requirement for
the additional stage of frequency bin-wise alignment.
However, the simplicity encapsulated in the MENUET

inevitably presents its own limitations. Most significantly,
the k-means clustering utilized for mask estimation is not
highly robust in the presence of outliers or interference
in the data. This often leads to non-optimal localization
and partitioning results, particularly for reverberant mix-
tures [18,19]. Furthermore, binary masking schemes have
been shown to impede upon the separation quality due
to musical noise distortions, and it was suggested that
fuzzy masking approaches bear the potential to signifi-
cantly reduce the musical noise at the output [12]. This
may be attributed to the fact that when a hard partitioning
approach is implemented, abrupt changes will exist in the
recovered source estimate which consequently introduce
artifacts in the time domain.
The suitability of fuzzy c-means (FCM) clustering for TF

mask estimation in the BSS framework has been explored
in [20,21]. In this approach, the fuzzy partitioning in the
c-means was suggested to be preferable to hard clustering
due to the inherent ambiguity surrounding the member-
ship of TF cells to a cluster, where examples of contribut-
ing factors to ambiguity include the effects of reverber-
ation and environmental (background) noise. However,
the investigations to date which employ the FCM, as with
many others in the literature, have been restricted to a
linear and overdetermined microphone arrangement.
Another soft clustering approach which has received

attention in the BSS field lies within Gaussian mixture
model (GMM)-based approaches [22-24]. This avenue of
research is motivated by the intuitive notion that the
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individual component densities of the GMM may model
some underlying set of hidden parameters in a mixture of
sources. Due to the reported success of BSS methods that
employ such Gaussian models, this clustering paradigm
may be considered as a standard algorithm for comparison
of mask estimation ability in the TF BSS framework, and
is therefore investigated and regarded as a comparative
model in this study.
However, each of the TF mask estimation approaches to

BSS discussed above are limited in their evaluations with
respect to the fact that diverse sources of interference are
not considered. Potential contributors to interference in
BSS scenarios include not only room reverberation, but
also environmental background noise, or noise originating
from non-ideal recording sensors. In fact, almost all real-
world applications of BSS have the inconvenient aspect
of noise at the recording sensors [25], and the influence
of such noise has been described as a very difficult and
continually open problem in the BSS framework [26].
In general, the focus of BSS algorithms is not directed

towards the suppression of environmental noise. How-
ever, for a system to achieve optimal performance, the
impact of such noise must be addressed. Numerous stud-
ies in the literature have been proposed for the problem
of additive sensor noise: Li et al. [27] present a two-
stage denoising/separation algorithm; Cichocki et al. [25]
implement a FIR filter at each channel to reduce the
effects of additive noise; and Shi et al. [28] suggest a pre-
processing whitening procedure for enhancement. The
study in [29] considers a variety of common sources
of background noise in the separation algorithm, and
modifies numerous pre- and post-processing algorithms
in order to account for the characteristics of the back-
ground noise. Whilst noise reduction has been achieved
with denoising techniques implemented as a pre- or post-
processing step, the performance was proven to degrade
significantly at lower signal-to-noise ratios [30].
Within the TF BSS framework, the authors of [22]

include the possibility of background noise in the
observation error for their BSS model; however, the
experimental simulations were only conducted for ane-
choic/reverberant conditions, without any clear distinc-
tion between environmental noise and reverberation in
the observation error.
Motivated by such various shortcomings, this work

presents an extension to the MENUET algorithm through
the use of an alternative clustering scheme for mask
estimation, and provides comprehensive evaluations in
adverse acoustic conditions. Firstly, this study proposes
that the substitution of the TF clustering stage with
a fuzzy clustering approach as explored in [20,21] will
improve the separation performance in the same condi-
tions as presented in [14,15]. Secondly, it is hypothesized
that this combination is sufficiently robust to withstand

the degrading effects of reverberation and environmental
noise, and evaluations of all the methods under the chal-
lenging conditions of reverberation and environmental
background noise are presented. For all investigations in
the study, comparisons are provided with both the origi-
nal MENUET k-means and the standard soft GMM-based
clustering algorithm for mask estimation.
The remainder of this paper is organized as follows:

section 2 provides an overview of the proposed BSS
scheme and explains the primary signal processing stages.
Section 3 describes each of the three clustering schemes
in greater detail. Section 4 explains the experimental eval-
uation and presents a discussion on the achieved results.
The section also includes the existing limitations with the
system and offers some potential avenues for future work.
Section 5 concludes the paper with a brief summary.

2 System overview
2.1 Problem statement
Consider a microphone array of M identical sensors in
a reverberant enclosure where N sources are present. A
convolutive mixing model is assumed, whereby the obser-
vation at the mth sensor, xm(t), can be modeled as a
summation of the individual contributions by the nth
active source, sn(t).
When all N sources are active, the observation at the

mth sensor can be expressed via the convolutive mixing
model as

xm(t) =
N∑

n=1

∑
p

hmn(p)sn(t − p) + nm(t), (1)

where hmn(p) p = 0, . . . ,P − 1 denote the coefficients of
the room impulse response between the nth source to the
mth sensor, nm(t) denotes any additive noise received at
themth sensor and t indicates time.
The goal of any BSS system is to therefore recover the

N sources, ŝ1, . . . , ŝN , each of which corresponds to the
original source signals s1, . . . , sN , respectively. Ideally, the
separation is performed without any information about
sn(t) and hmn(p).

2.2 STFT analysis
The time-domain sensor observations are converted
into their corresponding frequency domain time-series
Xm(k, l) via the STFT as

Xm(k, l)=
L/2−1∑

τ=−L/2
win(τ )xm(τ+kτ0)e−jlω0τ , m = 1, . . . ,M,

(2)

where k ∈ {0, . . . ,K − 1} is a time frame index, l ∈
{0, . . . , L − 1} is a frequency bin index, win(τ ) is an
appropriately selected window function and τ0 and ω0
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are the TF grid resolution parameters. The analysis win-
dow is typically chosen such that sufficient information is
retained within whilst simultaneously reducing signal dis-
continuities at the edges. A suitable window is the Hann
window:

win(τ ) = 0.5 − 0.5cos(
2πτ

L
), τ = 0, . . . , L − 1, (3)

where L denotes the frame size.
It is assumed that the length of L is sufficient such that

the main portion of the impulse responses hmn is covered.
Therefore, the convolutive BSS problem may be approx-
imated as an instantaneous mixture model [31] in the
STFT domain

Xm(k, l) =
N∑

n=1
Hmn(l)Sn(k, l)+Nm(k, l), m = 1, . . . ,M,

(4)

where (k, l) represent the time and frequency index,
respectively and Hmn(l) is the room impulse response
between source n and sensor m. Sn(k, l), Xm(k, l) and
Nm(k, l) are the STFT of the nth source, mth observation
and additive noise at themth sensor, respectively.
The assumption of sparseness between the source sig-

nals implies that at each TF cell, at most one source is
dominant [4]. Therefore, (4) can be expressed as

Xm(k, l) ≈
N∑

n=1
Hmn(l)Sn(k, l)δn(k, l) + Nm(k, l),

m = 1, . . . ,M,

(5)

where δn(k, l) is the Dirac-delta function defined as

δn(k, l) =
{
1 when Sn(k, l) is active at (k, l),
0 otherwise. (6)

Whilst this sparseness assumption holds true for ane-
choic mixtures, as the reverberation and/or environ-
mental noise in the acoustic scene increases it becomes
increasingly unreliable due to the effects of multipath
audio propagation and multiple reflections [4,21].

2.3 Feature extraction
In this work, the TF mask estimation is realized through
the estimation of the TF points where a signal is assumed
dominant. To estimate such TF points, a spatial feature
vector is calculated from the STFT representations of the
M observations. Previous researches [14,15] have identi-
fied level ratios and phase differences between the obser-
vations as appropriate features, as such features retain
information on the magnitude and the argument of the TF
points. Further discussion is presented in section 4.3.1.

The feature vector θ(k, l) = [
θL(k, l), θP(k, l)

]T per TF
point is estimated as

θL(k, l) =
[ |X1(k, l)|

A(k, l)
, . . . ,

|XJ−1(k, l)|
A(k, l)

,

|XJ+1(k, l)|
A(k, l)

, . . . ,
|XM(k, l)|
A(k, l)

]
,

(7)

θP(k, l) =
[
1
α
arg

[
X1(k, l)
XJ (k, l)

]
, . . . ,

1
α
arg

[
XJ−1(k, l)
XJ (k, l)

]
,

1
α
arg

[
XJ+1(k, l)
XJ (k, l)

]
, . . . ,

1
α
arg

[
XM(k, l)
XJ (k, l)

]]
,

(8)

for A(k, l) =
√

M∑
m=1

|Xm(k, l)|2 and α = 4π fc−1dmax,

where f is the frequency at the lth frequency bin index,
c is the propagation velocity of sound, dmax is the maxi-
mum distance between any two sensors in the array and
J is the index of the (arbitrarily selected) reference sensor.
The weighting parameters A(k, l) and α ensure appro-
priate amplitude and phase normalization of the features
respectively. It is widely known that in the presence of
reverberation, a greater accuracy in phase ratio measure-
ments can be achieved with higher spatial resolution;
however, it should be noted that the value of dmax is upper
bounded by the spatial aliasing theorem [14,17,21]. If the
exact value of the maximum sensor spacing is not known,
a positive constantmay be used in its place [14]. This elim-
inates the need for the system to know the precise spacing
between sensors.
The frequency normalization in (8) ensures frequency

independence of the phase ratios in order to prevent the
frequency permutation problem in the later stages of clus-
tering. It is possible to cluster without such frequency
independence by implementing a bin-wise clustering as
in [17,32]. However, the utilization of all the frequency
bins avoids the frequency permutation problem and also
permits data observations of short length [14].

2.4 Mask estimation and separation
In this work, source separation is effected through the
estimation and application of TF masks, which are esti-
mated in the clustering stage. For the k-means algorithm,
a binary mask for the nth source is simply estimated as
[14]

Mn(k, l) =
{
1 for θ(k, l) ∈ Cn,
0 otherwise. (9)

where Cn denotes the set of TF points classified as belong-
ing to the nth cluster.
The output of the FCMclustering is a fuzzymembership

partition matrix [21,33]. This partition matrix indicates
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the degree of membership of each TF point in the feature
space to each of theN clusters. These membership values,
denoted by un(k, l), are then interpreted as a collection of
N TF masks:

Mn(k, l) = un(k, l). (10)

For the GMM clustering approach, the mask is set
to the posterior probabilities of the dominant Gaussian
components (cf. section 3.2) [22,23]. This equates to

Mn(k, l) = p(θ(k, l)|μk ,�k), (11)

where μp,�p denotes the mean and covariance matrix of
the pth Gaussian component of the mixture model.
The spatial image estimate of the nth signal received at

themth sensor is then obtained through the application of
maskMn to themth observation as [17]

Ŝmn(k, l) = Mn(k, l)Xm(k, l), n = 1, . . . ,N . (12)

2.5 Source resynthesis
Finally, the estimated source images are reconstructed in
the time-domain to obtain the estimates ŝmn(t). This is
realized through the overlap-and-add method [34] onto
Ŝmn(k, l). The reconstructed estimate is

ŝmn(t) = 1
Cwin

L/τ0−1∑
k′=0

ŝk+k′
mn (t), (13)

where Cwin = 0.5/τ0L is a Hann window function con-
stant, and individual frequency components of the recov-
ered signal are acquired through an inverse STFT

ŝkmn(t) =
L−1∑
l=0

Ŝmn(k, l)e jlω0(t−kτ0), (14)

if (kτ0 ≤ t ≤ kτ + L − 1), and zero otherwise.

3 Clustering approaches
This section presents the details of the three clustering
techniques employed in this study. The first two, the hard
k-means and the Gaussian mixture model, have previ-
ously been used in other TF-based clustering BSS sys-
tems [14,24], whilst the fuzzy c-means is the proposed
mask estimation technique. All three techniques belong
to the family of center-based clustering, and each have
their own objective functions. The common goal of all is
the classification of the set of feature vectors, �(k, l) =
{θ(k, l)|θ(k, l) ∈ R

2(M−1), (k, l) ∈ �}, where � = {(k, l) :
0 ≤ k ≤ K − 1, 0 ≤ l ≤ L − 1} denotes the set of TF
points in the STFT plane, into N clusters. In the instance
where the clusters are distinct, as with the hard k-means,
each data point may only belong to one cluster. How-
ever, for the soft clustering techniques, each data element
may belong to multiple clusters with a certain probability
(membership).

3.1 Hard k-means clustering
Previous mask estimation methods as in [13-16] employ
binary clustering techniques such as the hard k-means
(HKM). The HKM algorithm was initially introduced in
studies published byMacQueen [35]. In this approach, the
set of feature vectors �(k, l) is clustered into N distinct
cluster sets {C} = C1, . . . ,CN . Each set from {C} contains
the feature vectors assigned to the nth cluster, and has an
associated set of prototype vectors, vn, which denotes the
nth cluster center.
Clustering of the data is achieved through theminimiza-

tion of the objective function

JHKM =
N∑

n=1

∑
θ(k,l)∈Cn

Dn(k, l), (15)

where Dn(k, l) = ‖θ(k, l) − vn‖2 is the squared Euclidean
distance between the feature vector θ(k, l) and the nth
cluster center.
Conditional on a set of initial centroids, this minimiza-

tion is iteratively realized by the following alternating
equations

C∗
n = {θ(k, l)|n = argmin

n
Dn(k, l)}, ∀n, k, l, (16)

vn∗ ← E{θ(k, l)}θ(k,l)∈Cn , ∀n, (17)
until convergence is met, where E{.}θ(k,l)∈Cn denotes the
mean operator for the TF points within the cluster set Cn,
and the (*) operator denotes the optimal value (at conver-
gence). Due to the algorithm’s sensitivity to initialization
of the cluster centers it is recommended to either design
initial centroids using an assumption on the sensor and
source geometry as in [14,15], or to utilize the best out-
come of a predetermined number of independent runs.

Summary: HKM clustering algorithm
Input: θ(k, l), N
Output: V∗

HKM, {C}∗HKM
1. Initialise set of centroids V(0) = {vn|∀n ∈ {1, . . . ,N}}

randomly
Repeat for j = 1, 2, . . . ,

2. Compute distances D(j) with V(j−1)

3. Update cluster sets {C}(j) using (16)
4. Update centroids V(j) with {C}(j) using (17)
5. Until predetermined number of runs J∗ reached

Return V∗
HKM ← V(J∗) and {C}∗HKM ← {C}(J∗)

3.2 Gaussian mixture model clustering
A number of studies in the literature for TF-based BSS
have implemented the GMM clustering approach [22-24]
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and it is therefore included in this study for compara-
tive purposes. It is also included in order to compare
the effects of soft masking on the separation system, by
providing the FCM with a fair comparison.
In the GMM-based clustering, each observation θ(k, l)

can be modeled as a weighted sum of P component
Gaussian densities (clusters). Unlike the HKM and FCM
described above, where the number of clusters is equal to
the number of sources, the GMM-based clustering meth-
ods have the additional complexity in that the best fitting
for the data set to a mixture model may not necessitate
that P is equivalent to the number of sources [14].
The pth component of the mixture model is assumed to

follow a Gaussian distribution with a characteristic mean
and covariance, μp and �p, respectively. The probability
density function of an observation θ(k, l), denoted by θ for
simplicity from here onward, is represented mathemati-
cally as:

p(θ ; (μ,�)) =
P∑

p=1
wp · p(θ ; (μp,�p)), (18)

where (μ,�) contains the mean and covariance matri-
ces for all P clusters, and wp denotes the mixture weight
(probability) of the pth distribution. This pth component
density is represented by

p(θ ; (μp,�p)) =
P∑

p=1
wp · 1

(2π |�p|)1/2

× exp
{
−1
2
(θ − μp)

′�−1
p (θ − μp)

}
.

(19)

The unknown parameter sets (μp,�p) for the P distri-
butions are estimated in such amanner as tomaximize the
likelihood of the mixture model; this estimation is most
commonly iteratively calculated using the Expectation-
Maximization (EM) algorithm [22]. The data is then
clustered around the maximum likelihood parameters as
determined from the EM algorithm by the final estimates
of the a posteriori probabilities at convergence.
Conditional on an initial partitioning, that is the initial

cluster sets {C1, . . . ,CP} are known, the parameters sets
(μp,�p) are found via the minimization of the negative
log-likelihood of (19)

argmin
μp,�p,p=1,...,P

⎡
⎣1
2

P∑
p=1

wp log(|�p|)

+1
2

P∑
p=1

∑
θ∈Cp

(θ − μp)
′�−1

p (θ − μp)

⎤
⎦
(20)

and for each wp conditional on (μp,�p, p = 1, . . . ,P)

argmax
wp,p=1,...,P

⎡
⎣ P∑
p=1

wp
1

(2π |�p|)1/2

× exp
{
−1
2
(θ − μp)

′�−1
p (θ − μp)

}]
.

(21)

The cluster sets are then found by assigning poste-
rior probabilities to the mixture components. The use of
GMM clustering within this particular BSS framework
results in the number of components not equal to the
number of sources (see section 4.1); therefore, the domi-
nantN components of the P, as determined by themixture
weights, are selected to represent the N sources. The pos-
terior probabilities of the dominant Gaussians, denoted
p(θ |μp,�p), are then utilized as the TF mask to repre-
sent the corresponding source (analogous to the work in
[14,17]).

3.3 Fuzzy c-means clustering
Whilst the HKM performed satisfactorily in the context
of MENUET for BSS, the work presented in [21] and [36]
demonstrated that the use of a fuzzy clustering algorithm
improves the accuracy of mask estimation. The origins of
the FCM are credited to the work presented in [33], and
as with the HKM method, the feature set is clustered into
N clusters, where each cluster center is represented by a
centroid vn. However, each cluster also has an associated
partition matrix U = {un(k, l) ∈ R|n ∈ (1, . . . ,N), (k, l) ∈
�)} which specifies the probability un(k, l) to which a fea-
ture vector θ(k, l) belongs to the nth cluster at the TF point
(k, l).
Clustering is achieved by the minimization of the cost

function

JFCM =
N∑

n=1

∑
∀(k,l)

un(k, l)qDn(k, l), (22)

where un(k, l) is subject to the constraint
N∑

n=1
un(k, l) = 1

and with Dn(k, l) defined as in section 3.1. The fuzzifica-
tion parameter q > 1 controls the membership softness
in the cost function and therefore controls the fuzzi-
ness of the generated TF masks. Section 4.1 describes
the selection of an appropriate value for the fuzzification
parameter in this BSS context.
The minimization problem in (22) can be solved using

Lagrange multipliers and is typically implemented as an
alternating optimization scheme due to the open nature of
its solution [21,37]. Initialized with a random partitioning,
the alternating updates are

v∗
n =

∑
∀(k,l)

un(k, l)qθ(k, l)∑
∀(k,l)

un(k, l)q
, (23)
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u∗
n(k, l) =

⎡
⎣ N∑

j=1

(
Dn(k, l)
Dj(k, l)

) 1
q−1

⎤
⎦

−1

, ∀n, k, l, (24)

where (*) denotes the optimal value, until a suitable ter-
mination criterion is satisfied. Typically, convergence is
defined as when the difference between successive parti-
tion matrices is less than some predetermined threshold,
ε [33]. However, as is also the case with the k-means, it
is known that the alternating optimization scheme pre-
sented may converge to a local, as opposed to global,
optimum; thus, it is suggested to independently imple-
ment the algorithm several times prior to selecting the
most fitting result [21].

Summary: FCM clustering algorithm
Input: θ(k, l), N
Output: U∗

FCM, V∗
FCM

1. Initialise partition U(0) randomly
Repeat for j = 1, 2, . . . ,

2. Update centroids V(j) with U(j−1) using (23)
3. Compute distances D(j) with V(j)

4. Update partition matrix U(j) with D(j) using (24)
5. Until ||U(j) − U(j−1)|| < ε

Return U∗
FCM ← U(j) and V∗

FCM ← V(j)

4 Experimental evaluations
4.1 Experimental setup
The experimental setup was designed to replicate that of
the studies in [14,15] for comparative purposes. Figure 1
depicts the speaker and sensor arrangement, and Table 1
details the experimental conditions. The wall reflections

Table 1 The parameters used in experimental evaluations

Parameter Value

Number of sensors M = 3

Number of sources N = 4

R 50 cm

Signal length 6 s

Reverberation time 0 ms, 128 ms, 300 ms

Environment SNR −10 dB to 30 dB

Sampling rate 8 kHz

STFT window Hann

STFT frame size 64 ms

STFT frame overlap 50 %

of the enclosure and room impulse responses between
each source and sensor were simulated using the image
model method for small-room acoustics [38]. The room
reverberation was quantified in the measure RT60, where
RT60 is defined as the time required for reflections of a
direct sound to decay by 60 dB below the level of the direct
sound.
Several types of background noise can be described by

a diffuse sound field and modeled by an infinite num-
ber of statistically independent point sources on a sphere
[29]. In this model, the intensities of the incident sound
are uniformly distributed over all possible directions, and
can be modeled as additive noise at the sensors, as in
(1) [29]. In this study, 30 individual and independent
point sources were situated uniformly from the center
of the microphone array at a distance of 1.5m. In an
effort to gain adversity in the evaluations, three types of
environmental noise were considered: white noise, babble
noise and factory noise. All noise samples are available in

Figure 1 The simulated room setup for the nonlinear sensor arrangement experimental evaluations.
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the NOISEX-92 database [39]. The simulated background
noise was scaled according to the signal-to-noise ratio
(SNR) definition as in [40], which uses the standardized
method given by the International Telecommunications
Union to objectively measure the active speech level and
calibrate the interfering noise signal appropriately [41]. It
should be noted that in real-world environments, noise is
never exactly isotropic; therefore, these evaluations must
be considered with caution.
The four target speech sources, the genders of

which were randomly generated, were realized with
phonetically-rich utterances from the TIMIT database
[42], and the target-to-masker ratio between all of the
sources was set to 0 dB. A representative number of
mixtures for evaluative purposes was constructed. To
avoid any spatial aliasing, the sensors were placed at a
maximum distance of 4 cm apart.
Section 3.3 explains the role of the fuzzification param-

eter q in the FCM clustering. Past research [21] has
identified a value of q in the range of q ∈ (1, 1.5] to
result in performance akin to hard clustering. Further-
more, it was empirically determined that for reverberant
speech mixtures, a value of q = 2 is an optimal value in
order to achieve a balance between high separation per-
formance with minimal artifacts [21]. This is consistent
with other studies which also report an optimal value at
2 for the fuzzy exponent [43,44]. Therefore, in this work,
the fuzzification q is set to 2.
As mentioned in sections 3.1 and 3.3, it is widely rec-

ognized that the performance of the clustering algorithms
is largely dependent on the initilization of the algorithm
[19,45]. If the initial partitions are not estimated with suf-
ficient precision, there is a high possiblity of finding a
local, as opposed to global, optimum. It has been rec-
ommended [19] to run the algorithms multiple times to
reduce the degrading effects of its sensitivity; the effec-
tiveness of this style of initialization was also described
in [46]. In an effort to save computational expense, it was
desired to determine the smallest number of indepen-
dent, single-iteration runs for initialization which would
result in the best solution. Previous experiments as in
[21] had implemented the best of 50 runs; however, it
was empirically confirmed that there was little differ-
ence in performance between 25 and 50 runs. Therefore,
it can be assumed that satisfactory clustering initializa-
tion can result when the best solution of 25 indepen-
dent, randomly initialized single-iteration executions are
selected for initilization. The ‘best’ solution was defined as
the execution which resulted in the lowest cost function
output of the independent runs (i.e. the smallest error).
Similar to the HKM and FCM algorithms, the GMM

clustering approach also requires a suitable initialization.
As recommended in [47], an initialization based on the
Forgy method [48] was implemented, where the data set

was randomly partitioned into K non-overlapping sets
with uniform mixing proportions. The initial covariance
matrices for all components were diagonal. However, the
GMM clustering approach is also highly sensitive to the
selection of an appropriate number of components in the
model. It was observed in the experiments that an increase
in the number of mixture components generally resulted
in improved separation performance; however, the selec-
tion of an optimal number of Gaussians was not simple
and required a considerable amount of experimentation
in order to reach the optimal number. For this partic-
ular application of the GMM clustering in the desired
source/sensor configuration, it was empirically deter-
mined asK = 12. This is in accordance to previous studies
using GMM for BSS such as in [14], where the determina-
tion of the optimal number of clusters was at a consider-
able computational expense. As mentioned in section 3.2,
since the number of components are not equal to the
number of sources, the dominant N components (as indi-
cated by the mixture weights) were used to estimate the
TF separation masks. The TF masks were derived from
the posterior probabilities of the dominant components.

4.2 Evaluation measures
In order to provide a comprehensive evaluation of the
separation algorithms presented in this study, a range of
performance metrics have been included. These include
the widely used BSS_EVAL toolkit [49], the Perceptual
Evaluation of SpeechQualitymeasure (PESQ) [50] and the
objective measures in the Perceptual Evaluation methods
for Audio Source Separation (PEASS) toolkit [51].

4.2.1 BSS EVAL performancemetrics
The first set of performance metrics was obtained from
the publicly available MATLAB toolkit BSS_EVAL [49].
This set of metrics is applicable to all source separation
approaches, and no prior information of the separation
algorithm is required. However, the original toolkit does
not account for environmental noise in the metrics. To
account for this, an author of the BSS_EVAL was con-
sulted in order to modify the toolkit to consider the
addition of two extra metrics: the SNR and signal-to-
interference-plus-noise ratio (SINR).
Using a least-squares projection, the BSS_EVAL toolkit

assumes the decomposition of the estimated spatial image
ŝmn(t) as

ŝmn(t) = simg
mn (t) + espatmn (t) + einterfmn (t) + eartifmn (t) + enoisemn (t),

(25)

wherem is the observation index, simg
mn (t) is the true source

image and espatmn (t), einterfmn (t), eartifmn (t) and enoisemn (t) are dis-
tinct error components representing spatial distortion,
interference, artifacts and noise, respectively.
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From this decomposition, the SIR was computed as [52]

SIRn = 10log10

∑M
m=1

∑
t (s

img
mn (t) + espatmn (t))2∑M

m=1
∑

t einterfmn (t)2
(26)

to provide an estimate of the relative amount of interfer-
ence in the target source estimate.
The SINR was computed as

SINRn = 10log10

∑M
m=1

∑
t (s

img
mn (t) + espatmn (t))2∑M

m=1
∑

t (enoisemn (t) + einterfmn (t))2

(27)

to reflect the amount of noise and interference in the
recovered signal estimate.
The global SNR for the nth source was calculated as

SNRn = 10log10

∑M
m=1

∑
t (s

img
mn (t) + espatmn (t) + einterfmn (t))2∑M
m=1

∑
t enoisemn (t)2

(28)

which provides a measure of the amount of noise at
the recovered signal, independent of the interference.
For all ratios, a higher value indicates better separation
performance.

4.2.2 PESQ
The PESQ measure was originally designed to provide
a subjective judgement of the speech quality of the
recovered source signal. Despite its initial intention for
telecommunication applications, it has since been shown
to be an effective predictor for the quality of the speech
isolated from the observation mixtures by the separation
algorithm [53], as well as for ASR performance on the
separated speech signals [54].
The PESQ score is computed by a comparison of the

original (unmixed, anechoic) speech source signal to the
recovered signal estimate. Both signals are time-aligned
and passed through an auditory transform to achieve
a psychoacoustically motivated representation [55]. The
differences between the signals in this representation are
measured and used to provide an estimate of the distor-
tion in the signal estimate. The final measure of PESQ is
reported to correlate well with subjective listening scores
[53].
The PESQ score can take on a range from 0.5 to 4.5,

where 4.5 represents the case when the signal estimate is
equivalent to the original (clean) source. A higher score
suggests better speech quality.

4.2.3 PEASS
The PEASS toolkit was created to provide a set of objec-
tive scores to predict the perceptual quality of estimated
sources. This is complementary to the energy-based ratios
in the BSS_EVAL (cf. section 4.2.1), and the PEASS has
since been implemented as a standard for performance

evaluation in international speech challenges such as the
signal separation evaluation campaign (SiSEC) [52,56].
In this toolkit, the estimated signals are decomposed via

a complex, auditory-motivated algorithm as [51]

ŝn(t) − sn(t) = etarget(t) + einterf(t) + eartif(t), (29)

where sn(t) is the original (clean) target signal, and the
terms etarget(t), einterf(t) and eartif(t) denote the target dis-
tortion component, interference component and artifacts
component, respectively. The salience of these error com-
ponents is then measured using the perceptual similarity
measure provided in the PEMO-Q auditory model [57];
the reader is referred to [51] for a detailed discussion.
The PEASS toolkit computes four auditory-motivated

quality scores; however, the overall perceptual score (OPS)
is considered as a global measure for the separation ability
as it indicates the similarity between the recovered signal
estimate and the original signal, and it is said to have a
high coherence with the subjective perceptual evaluation.
Therefore, in this study, the OPS is included as an addi-
tional performancemetric for the perceptual quality of the
speech. The OPS is expressed from 0 to 100, where 100
denotes the best perceptual match.

4.3 Results
4.3.1 Initial evaluations of MENUETwith FCM
Prior to evaluating the effectiveness of the FCM cluster-
ing for mask estimation in the MENUET framework, the
FCMwas evaluated in a simple stereo setup for a variety of
feature sets in order to test its feasibility in this context. In
[14,15], a comprehensive review of suitable location cues
was presented and their effectiveness at separation was
evaluated using the HKM clustering for mask estimation.
The experimental setup for these set of evaluations

was such as to replicate the original work in [14] to as
close a degree as possible. In an enclosure of dimen-
sions 4.55m × 3.55m × 2.5m with a room reverberation
parameter RT60 constant at 128ms, two omnidirectional
microphones were placed at a distance of 4 cm apart at an
elevation of 1.2m. Three speech sources, with a target-to-
masker ratio of 0 dB, were situated at 30°, 70° and 135° at a
distance of 50 cm from the array, and also at an elevation
of 1.2m. The speech sources were randomly chosen from
both genders of the TIMIT database in order to emulate
the investigations in [14,15] which utilized English utter-
ances. The source separation performance was evaluated
with respect to the improvement in SIR and the results are
depicted in Table 2.
The original purpose of the evaluations upon the range

of features was to determine the effects of appropriate
normalization upon the level and phase ratio features [14].
As expected, separation performance generally increases
as the features are of the same order of magnitude (see
section 2.3). It is additionally observed from the measured
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Table 2 The hard k-means and fuzzy c-means are
implemented for mask estimation

Feature θ(k, l) k-means c-means
(dB) (dB)

θ(k, l) =
[ |X2(k,l)|

|X1(k,l)| ,
1

2π f arg
[
X2(k,l)
X1(k,l)

]]T
1.8 2.1

θ(k, l) =
[

|X2(k,l)||X1(k,l)| − 1
|X2(k,l)|
|X1(k,l)|

, 1
2π f arg

[
X2(k,l)
X1(k,l)

]]T

1.1 1.6

θ(k, l) =
[ |X2(k,l)||X1(k,l)| ,

1
2π fc−1d

arg
[
X2(k,l)
X1(k,l)

]]T
7.8 9.2

θ(k, l) = 1
2π f arg

[
X2(k,l)
X1(k,l)

]
10.2 8.0

θ(k, l) = 1
2π fc−1d

arg
[
X2(k,l)
X1(k,l)

]
10.1 17.2

θ(k, l) =
[ |X1(k,l)|

A(k,l) , |X2(k,l)|
A(k,l) , 1

2π arg
[
X2(k,l)
X1(k,l)

]]T
4.2 5.4

θ(k, l) =
[ |X1(k,l)|

A(k,l) , |X2(k,l)|
A(k,l) , 1

2π fc−1d
arg

[
X2(k,l)
X1(k,l)

]]T
10.4 17.4

θ(k, l) =
[ |X1(k,l)|

A(k,l) , |X2(k,l)|
A(k,l) , 1

αf arg
[
X2(k,l)
X1(k,l)

]]T
10.2 17.2

The reverberation was constant at RT60 = 128 ms. The highest achieved ratios
are emphasized in italics.

SIR gain that the FCM clustering is more robust than the
original HKM for all but one feature set, and thus hints
at the possibility of the FCM yielding similar results for
related TF BSS approaches. Not only does this confirm
the suitability of the FCM in the proposed BSS frame-
work, it also demonstrates the robustness of the FCM
against several types of spatial features. The results of this
investigation provide further motivation to extend the soft
TF masking scheme to other sensor arrangements and
adverse acoustic conditions.
However, in the original evaluations in [14] the authors

also compare the performance of the HKM for the same
stereo, three speaker setup against the more robust GMM
fitting clustering approach. The results of this demon-
strated improvements in SIR gain in comparison to the
HKM, although this was at the burden of significantly
greater computational expense. Furthermore, the selec-
tion of the number of Gaussian components proved to
require a lot of trial and error (cf. section 4.1). In order
to offer a fair comparison of the FCM against other clus-
tering techniques, the GMM fitting method was then
implemented in further BSS evaluations as stated in the
following sections.

4.3.2 Separation in reverberant conditions
The study was extended to the underdetermined case of
three sensors and four sources in a nonlinear configura-
tion as in Figure 1 [14,15]. The average improvement in
SIR measured across all separated sources for all evalu-
ations is depicted in Figure 2, where the average input
SIR was measured at −4.20 dB (consistent with the stud-
ies in [14,15]). It is immediately evident that the two soft

masking techniques, GMM and FCM, improve the sep-
aration quality by a considerable amount. For example,
for the anechoic scenario, the GMM and FCM clustering
techniques perform equivalently, leading the HKM mask
estimation by almost 10 dB. However, as the reverberation
is increased to a mild 128ms, a slight performance gap
between the two soft masking techniques surfaces with
the FCM leading by approximately 2 dB. This gap is
heightened as the reverberation is increased again, with
the performance gap considerably larger at almost 7 dB.
Interestingly, at this higher reverberation time, the GMM
performs even below the HKM.
A smaller standard deviation is also observed in Figure 2

when FCM clustering is used. For example, when the
reverberation is RT60 = 128ms, the SIR performance
using GMM clustering is comparable to that of FCM clus-
tering. However, the standard deviation ismore than twice
that of the FCM clustering, and this suggests that the
FCM delivers more consistent and reliable separation of
the sources.
To evaluate the statistical significance of the evaluations,

the Student’s t test was conducted for the three methods,
where two tests were conducted per RT60 value: one to
compare the statistical significance of the FCM against the
HKM, and one to compare the FCM against the GMM.
A two-tailed distribution was assumed for each test, with
unequal variances between the data. For the FCM against
the HKM, a p value of p << 0.001 was reported for all
reverberation times. For the FCM against the GMM, for a
reverberation time of RT60 = 0ms, a p value of less than
0.1 (p = 0.094) was measured. However, for the remain-
ing reverberation times, a p value of p << 0.001 was
recorded. This demonstrates that the performance of the
proposed FCM mask estimation is largely unlikely to be
due to chance. Therefore, the performance of the FCM
clustering indicates a superior mask estimation technique
for source separation in a reverberant enclosure.

4.3.3 Separation in reverberant conditions with spatially
diffuse environmental noise

The effect of background noise was then evaluated for the
BSS system in the presence of white, babble and factory
noise, added to the mixtures as described in section 4.1.
The numerical results are shown in Tables 3, 4 and 5 for a
range of reverberation times, with similar trends reported
for all types of corrupting noise. To provide a fair com-
parison against the reverberation-free case in Figure 2, the
SIR gain is reported. However, for the SINR and SNR, the
absolute measured ratio at the output is provided.
It is firstly observed that for environmental SNRs of

25 dB and above, the measured SIR gain is approximately
equivalent to the noise-free environment (Figure 2). How-
ever, as the level of noise is increased a steady decline
in SIR gain is recorded, as to be expected. Interestingly,
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Figure 2 BSS results in reverberant and noise-free conditions. Source separation results compare three clustering techniques for mask
estimation (HKM, GMM and FCM). Performance results are given with respect to SIR improvement (dB), where the average input SIR ≈ −4.20 dB.
The error bars denote the standard deviation.

as previously observed in the separation results of
section 4.3.2, the GMM mask estimation ability signif-
icantly declines with the introduction of more adverse
conditions. For example, in the case of babble noise at a
reverberation time of 128ms, when the SNR is decreased
from 25 to 20 dB we note a difference in SIR of almost
5 dB. However, the HKMhas a difference of less than 1 dB,
and the FCM of just 0.34 dB. Additionally, as was previ-
ously observed in the noise-free experiments (Figure 2),
the GMM occasionally performs below that of the HKM
clustering at the higher reverberation time of 300ms.
The performance of the SINR is akin to the SIR across

all room reverberations and environmental SNRs. To gain
an appreciation of any possible noise suppression charac-
teristics of the MENUET and its modifications using the
GMM/FCM, the SNR was measured and then averaged
for all the recovered source signals. The results are gen-
erally as expected, with a decrease in gain as the level of
noise and reverberation time increase. However, as pre-
viously observed, there is often a notable decline in the
performance of the GMM as the SNR drops below 20 dB,
and/or the room reverberation is increased.
The isolation of the effects of reverberation and noise

can be observed in Table 3 when the room reverberation
is set to null. The effects of noise alone appear to have less
of an impact upon separation ability than the reverbera-
tion for the FCM clustering; for example, when the SNR is
varied from 30 to 10 dB, there is a change in SIR gain of
between 3 and 5 dB, with just a 1 dB change in the case

of babble noise. However, when comparing the SIR gains
for the same SNRs across different reverberation times,
there are significant differences especially at the reverber-
ation time of RT60 = 300ms. For example, for the case
of corrupting babble noise, for RT60 = 0ms the recorded
SIR was 16.14 dB, whereas when RT60 = 300ms the SIR
drops to 11.28 dB.
The PESQ was then evaluated on the recovered signals

to provide a measure for the perceptual quality of the
recovered source estimates. A general decrease in PESQ
with an increase in adversity of the conditions is noted,
with the FCM for mask estimation yielding the highest
scores. The effect of environmental SNR appears to be
more detrimental than that of reverberation; for example,
in the case of babble noise, the measured PESQ for the
FCM method at a reverberation time of 0ms and SNR of
30 dB is 2.84. When the room reverberation is increased
to 300ms, the measured PESQ is 2.50. However, when
the reverberation is maintained at 0ms and the SNR is
decreased to 0 dB, a PESQ ismeasured at 1.54. This reduc-
tion in PESQ is likely due to the decrease in the target sig-
nal amplitude and degraded time alignment in such noisy
conditions, which leads to a source estimate of poorer
quality.
The final performance metric implemented for this

experimental setup was the OPS from the PEASS toolkit.
Similar trends were observed in the OPS as with the other
metrics, with a degradation in the achieved score as the
hostility of the environment was increased. In this case
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Table 3 Source separation results in an anechoic enclosure (cf. Figure 1) with background noise

White noise Babble noise Factory noise

Envir. Cluster SIR SINR SNR PESQ OPS SIR SINR SNR PESQ OPS SIR SINR SNR PESQ OPS
SNR scheme (dB) (dB) (dB) (%)

30 dB HKM 7.11 7.01 17.44 1.71 31.15 7.21 6.45 17.94 1.67 28.11 7.15 5.97 18.13 1.65 28.01

GMM 17.35 14.40 23.96 2.68 43.72 15.46 12.41 23.01 2.52 42.01 14.00 11.05 22.50 2.77 42.81

FCM 15.99 15.52 25.63 2.81 47.48 16.14 15.89 25.40 2.84 49.73 16.25 15.78 25.80 2.82 48.45

25 dB HKM 6.97 6.90 16.28 1.55 30.01 5.74 6.16 15.09 1.60 28.01 6.50 6.65 15.85 1.60 27.99

GMM 16.36 15.01 20.98 2.60 43.45 18.75 17.76 25.15 2.49 41.53 16.00 14.95 22.30 2.43 38.82

FCM 17.30 16.63 25.19 2.75 46.80 16.67 16.04 25.18 2.76 47.52 17.01 16.41 24.92 2.76 47.33

20 dB HKM 7.52 6.60 17.57 1.54 28.31 6.03 5.34 15.45 1.51 28.00 6.50 6.65 15.85 1.59 26.11

GMM 10.01 9.59 22.71 2.42 38.38 12.45 11.45 19.34 2.49 40.93 14.30 11.04 18.50 2.21 37.99

FCM 16.68 15.74 23.01 2.70 43.83 16.14 15.23 22.93 2.63 47.48 15.69 14.84 22.63 2.63 45.28

15 dB HKM 7.41 5.94 14.96 1.50 27.53 7.13 6.34 13.14 1.40 26.36 6.36 6.66 10.92 1.41 26.88

GMM 6.98 5.78 16.05 1.74 32.16 7.37 6.12 16.09 1.99 34.01 13.20 10.75 17.43 2.15 37.99

FCM 14.77 13.31 19.22 2.45 37.54 13.51 12.32 17.33 2.42 43.77 15.69 13.71 19.32 2.65 44.00

10 dB HKM 6.51 5.45 11.79 1.37 25.99 5.00 4.02 9.71 1.32 25.01 4.67 5.45 6.70 1.40 26.10

GMM 4.91 3.14 11.93 1.60 26.35 6.36 4.63 12.65 1.84 28.10 4.96 4.01 10.99 1.63 28.31

FCM 12.85 10.14 14.45 2.26 32.75 15.69 11.66 15.50 2.40 35.75 12.92 10.49 14.47 2.33 34.65

5 dB HKM 4.05 2.70 7.56 1.28 24.71 3.32 2.32 7.14 1.30 25.70 2.35 1.46 6.97 1.23 23.22

GMM 5.01 4.00 9.07 1.52 24.69 7.37 6.12 7.09 1.73 24.06 6.70 3.93 8.22 1.56 26.70

FCM 7.15 6.24 9.16 1.99 29.50 8.51 7.32 8.33 1.89 28.15 7.75 6.13 8.41 1.88 29.00

0 dB HKM 4.01 -0.77 2.94 1.20 24.62 3.70 -0.70 0.70 1.21 24.65 2.15 -3.67 1.77 1.20 23.11

GMM 3.98 -0.35 0.58 1.51 23.78 3.43 -0.50 1.03 1.39 23.10 2.42 -0.90 0.82 1.25 26.24

FCM 4.74 -0.11 3.10 1.71 26.11 5.02 0.06 3.25 1.54 26.31 5.32 -0.43 2.62 1.49 26.28

-5 dB HKM 1.05 -2.10 -1.69 1.00 24.51 0.79 -2.10 -0.52 1.06 23.99 0.72 -3.01 -0.80 1.00 24.29

GMM 0.25 -7.41 -2.68 1.11 22.90 -1.50 -4.50 -2.61 1.00 22.81 -1.61 -1.20 -1.62 1.27 24.59

FCM 2.15 -2.01 -1.61 1.49 24.56 0.85 -1.11 0.97 1.28 26.12 3.31 -1.13 -1.08 1.31 25.99

-10 dB HKM -0.97 -4.44 -3.44 0.90 22.90 -1.80 -1.70 -1.34 0.95 21.98 -1.89 -3.10 -1.90 1.01 22.13

GMM -1.88 -5.86 -3.89 0.89 21.90 -0.80 -6.25 -1.28 1.03 21.82 -0.90 -4.01 -1.54 1.10 22.10

FCM 0.46 -2.36 -2.90 1.11 22.97 0.60 -2.50 -2.11 1.12 23.71 -0.89 -3.01 -2.15 1.10 23.10

The room reverberation is set to null. The HKM, GMM and FCM clustering algorithms are compared for TF mask estimation using the performance metrics of SIR gain,
SINR and SNR as defined in section 4.2. The highest achieved ratio for each acoustic condition is denoted in italics.

also, the FCM demonstrated its superiority over the HKM
and GMM clustering techniques.

4.3.4 SiSEC 2010 Data
The proposed method was then evaluated with publicly
available benchmark data of the SiSEC 2010 [56]. The
development data (dev.zip) in “Source separation in
the presence of real-world background noise” data sets
was used. In this data set, two microphones were spaced
at 8.6 cm, and noise signals were recorded in real-world
noise environments: ‘Cafeteria’ (Ca) and ‘Square’ (Sq).
The ‘Cafeteria’ environment was stated as reverberant
(with an unspecified reverberation time), whereas the
‘Square’ had little or no reverberation [56]. The noise sig-
nals were recorded at two different positions within the

environment, center (Ce; where noise is more isotropic),
and corner (Co; where noise may not be very isotropic)
[56]. For each of the noise environments, two differ-
ent locations of the same environment were considered
(A and B).
The recordings were 10 s long, with mixed English and

Japanese utterances of both genders. The original record-
ings were sampled at 16 kHz; however, it was empirically
determined that a downsample to 8 kHz resulted in better
separation for all methods tested. This can be attributed to
the reduced effects of spatial aliasing at the lower sampling
frequency.
For easy comparison against the published results of

the SiSEC as available in [58], the same evaluation crite-
ria for the “Source spatial image estimation”
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Table 4 Source separation results in a reverberant enclosure (cf. Figure 1) with background noise

White noise Babble noise Factory noise

Envir. Cluster SIR SINR SNR PESQ OPS SIR SINR SNR PESQ OPS SIR SINR SNR PESQ OPS
SNR scheme (dB) (dB) (dB) (%)

30 dB HKM 6.53 6.44 19.05 1.50 28.74 6.19 5.35 16.06 1.37 26.85 6.04 6.35 17.60 1.43 27.37

GMM 13.46 14.03 24.25 2.30 43.70 8.22 7.26 22.92 2.53 43.90 11.29 12.94 23.40 2.50 41.78

FCM 14.48 14.07 25.50 2.76 44.82 15.28 14.93 26.29 2.82 45.60 14.99 14.20 25.47 2.72 44.17

25 dB HKM 5.77 5.24 15.72 1.48 28.62 6.13 5.33 16.18 1.37 24.88 5.71 5.11 18.61 1.40 27.86

GMM 12.99 12.46 22.16 2.25 38.81 12.70 12.27 21.00 2.45 40.52 8.80 8.42 20.84 2.26 33.75

FCM 14.70 14.28 24.79 2.71 43.31 14.35 13.94 24.21 2.76 47.52 13.78 13.36 24.16 2.66 44.60

20 dB HKM 5.64 5.05 15.64 1.42 27.16 6.00 5.72 13.95 1.33 25.95 5.51 5.71 14.35 1.32 26.00

GMM 8.68 8.16 18.46 1.96 33.04 7.98 8.25 19.27 2.15 39.34 7.11 7.36 18.55 1.95 30.25

FCM 13.55 12.91 22.10 2.58 41.13 14.01 13.33 22.30 2.57 47.07 13.38 12.75 21.90 2.51 42.66

15 dB HKM 5.53 4.97 10.88 1.41 27.17 5.48 5.69 12.40 1.32 25.72 5.50 5.90 12.36 1.31 25.22

GMM 6.01 6.20 14.46 1.63 25.85 7.79 6.44 15.00 1.70 32.39 7.68 6.72 16.35 1.71 33.10

FCM 11.92 10.88 17.91 2.39 35.62 13.98 12.52 18.33 2.45 40.45 13.23 11.68 19.14 2.63 42.10

10 dB HKM 5.21 5.66 10.11 1.35 25.70 5.87 5.04 11.15 1.30 24.75 5.13 4.99 10.93 1.34 25.15

GMM 5.20 5.29 8.20 1.60 25.83 6.48 5.31 12.12 1.63 25.29 4.99 5.31 10.19 1.62 25.71

FCM 9.75 7.88 13.10 2.14 31.09 12.10 9.54 14.77 2.30 30.65 9.81 7.95 13.14 2.07 31.24

5 dB HKM 3.18 3.46 4.88 1.16 25.40 4.03 3.29 5.20 1.26 23.18 3.00 2.91 4.01 1.21 23.11

GMM 5.00 5.43 7.46 1.40 25.80 6.01 5.90 7.02 1.52 24.02 4.90 5.21 6.45 1.52 26.32

FCM 7.61 4.25 7.93 1.96 26.99 8.01 7.94 8.14 1.83 26.93 6.90 6.43 7.01 1.84 28.19

0 dB HKM 3.49 -0.82 1.18 1.13 23.86 3.13 0.75 -0.49 1.14 24.06 2.65 -1.09 0.62 1.12 23.00

GMM 3.13 -0.19 1.31 1.40 23.50 1.14 -0.83 2.65 1.38 22.94 2.30 -0.95 0.72 1.19 24.19

FCM 4.08 -0.17 2.31 1.69 25.89 6.76 0.87 4.84 1.50 23.91 3.65 -0.15 2.52 1.20 25.44

-5 dB HKM 0.66 -2.40 -2.33 1.09 22.40 1.09 -2.79 0.64 1.12 21.96 0.89 -4.10 -0.04 1.08 22.32

GMM -0.42 -4.45 -2.45 1.01 21.00 -0.22 -2.36 1.29 1.10 22.36 -2.10 -1.40 -1.20 1.11 21.90

FCM 1.53 -2.30 -2.24 1.30 23.37 2.56 -1.30 1.37 1.15 22.80 1.46 -1.39 0.49 1.30 24.01

-10 dB HKM -1.31 -4.45 -5.07 0.88 21.60 -2.03 -6.70 -2.32 0.80 21.80 -2.43 -3.56 -3.02 1.00 21.00

GMM -1.69 -5.40 -6.60 0.90 21.51 -0.62 -6.50 -3.42 1.00 21.81 -2.03 -5.43 -3.21 1.10 21.07

FCM -0.87 -2.70 -3.00 1.01 22.91 -0.48 -2.80 -2.22 1.09 22.15 -1.32 -3.42 -2.21 1.10 22.03

The room reverberation is set to RT60 = 128 ms. The HKM, GMM and FCM clustering algorithms are compared for TF mask estimation using the performance metrics of
SIR gain, SINR and SNR as defined in section 4.2. The highest achieved ratio for each acoustic condition is denoted in italics.

task was used. The estimated source image ŝmn(t) is
decomposed as

ŝmn(t) = simg
mn (t) + espatmn (t) + einterfmn (t) + eartifmn (t). (30)

Three energy ratios, the source image to spatial distortion
ratio (ISR), signal to interference ratio (SIR) and the signal
to artifact ratio (SAR), then measure the amount of spa-
tial distortion, interference and artifacts in the recovered
source estimates. These are expressed in dB as [52]

ISRn = 10log10

∑M
m=1

∑
t s

img
mn (t)2∑M

m=1
∑

t e
spat
mn (t)2

(31)

SIRn = 10log10

∑M
m=1

∑
t (s

img
mn (t) + espatmn (t))2∑M

m=1
∑

t einterfmn (t)2
(32)

SARn=10log10

∑M
m=1

∑
t (s

img
mn (t) + espatmn (t) + einterfmn (t))2∑M
m=1

∑
t eartifmn (t)2

.

(33)

The total error is captured in the signal-to-distortion
ratio (SDR)

SDRn = 10log10

∑M
m=1

∑
t s

img
mn (t)2∑M

m=1
∑

t (e
spat
mn (t) + einterfmn (t) + eartifmn (t))2

.

(34)
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Table 5 Source separation results in a reverberant enclosure (cf. Figure 1) with background noise

White noise Babble noise Factory noise

Envir. Cluster SIR SINR SNR PESQ OPS SIR SINR SNR PESQ OPS SIR SINR SNR PESQ OPS
SNR scheme (dB) (dB) (dB) (%)

30 dB HKM 5.27 5.91 20.29 1.34 22.50 5.10 6.23 20.84 1.36 21.48 5.12 5.89 22.53 1.34 24.45

GMM 6.87 7.71 22.81 1.83 30.15 6.64 7.57 23.52 1.81 21.83 6.34 6.22 22.86 1.71 20.30

FCM 11.62 11.49 24.66 2.42 35.88 11.28 12.12 25.32 2.50 35.46 11.56 9.45 25.12 2.36 35.63

25 dB HKM 5.61 5.97 15.90 1.35 22.90 5.83 5.32 16.76 1.34 21.44 5.23 4.73 15.42 1.33 23.92

GMM 6.60 6.37 20.33 1.81 23.63 6.27 6.07 20.32 1.80 23.91 6.07 5.94 20.31 1.70 20.68

FCM 9.01 8.76 23.68 2.40 35.10 10.26 10.04 24.05 2.36 35.40 9.42 9.25 24.08 2.30 35.84

20 dB HKM 5.46 5.69 14.01 1.35 23.18 5.80 5.25 14.30 1.33 23.30 4.98 4.49 13.75 1.28 23.16

GMM 6.40 5.96 16.67 1.68 23.64 6.15 5.87 18.34 1.67 22.52 6.26 6.01 16.61 1.66 20.70

FCM 8.05 7.77 21.05 2.34 32.31 10.08 9.64 21.69 2.35 34.64 9.22 8.90 21.36 2.27 33.76

15 dB HKM 5.77 5.11 12.85 1.36 23.01 4.16 4.86 13.68 1.32 22.03 5.81 5.88 12.46 1.34 22.54

GMM 6.11 5.35 12.69 1.61 23.51 5.28 5.82 12.35 1.60 21.18 4.70 4.28 13.75 1.59 23.14

FCM 7.12 6.43 16.93 2.21 28.55 7.18 6.66 17.85 2.42 33.34 8.52 7.59 17.94 2.21 32.91

10 dB HKM 4.46 4.90 10.03 1.31 23.80 4.72 4.91 10.94 1.30 22.13 4.67 4.47 10.26 1.30 22.44

GMM 4.01 4.21 9.64 1.58 23.50 5.32 4.61 11.55 1.58 22.16 5.12 4.40 8.79 1.60 22.34

FCM 7.97 6.39 12.29 1.90 26.59 8.65 7.05 12.39 2.10 27.31 6.97 6.85 12.35 1.96 27.11

5 dB HKM 3.09 3.08 5.61 1.14 22.45 3.10 3.71 4.71 1.18 21.51 3.09 2.72 6.45 1.17 22.25

GMM 3.90 3.16 6.26 1.16 22.94 4.65 3.51 5.74 1.40 22.00 4.08 4.91 5.78 1.31 21.05

FCM 6.73 6.37 7.29 1.90 24.82 6.52 5.96 7.39 1.89 24.13 5.55 6.97 7.15 1.81 23.88

0 dB HKM 2.16 -0.60 2.30 1.10 22.01 1.47 -0.34 1.73 0.98 21.03 1.04 -1.70 2.12 0.90 22.24

GMM 1.81 -0.70 1.60 1.04 21.92 -0.46 -0.27 1.70 1.10 22.19 -0.84 -0.64 2.59 1.00 20.57

FCM 2.60 -0.35 2.54 1.15 24.00 2.72 -0.25 2.38 1.14 23.57 2.58 -0.62 2.51 1.13 22.86

-5 dB HKM 0.46 -2.74 -2.71 1.09 21.69 -0.49 -3.29 -0.79 0.92 20.56 -1.19 -2.81 0.80 1.07 21.22

GMM -0.58 -4.59 -0.43 1.02 21.73 -1.01 -3.29 -0.36 0.91 20.57 -1.20 -2.34 1.64 0.92 20.49

FCM 0.88 -2.62 -1.67 1.10 21.93 0.78 -0.42 -0.41 1.12 21.00 1.52 -1.82 2.08 1.10 21.91

-10 dB HKM -2.54 -5.58 -3.34 0.85 21.05 -2.48 -5.13 -3.10 0.79 19.83 -2.34 -4.01 -3.10 0.97 20.37

GMM -1.59 -6.76 -3.71 0.89 21.04 -1.01 -5.64 -1.91 0.90 20.29 -2.13 -5.32 -3.98 0.90 21.05

FCM -1.55 -2.51 -3.14 1.00 21.17 -0.64 -4.16 -1.42 1.01 21.01 -1.57 -3.30 -2.13 0.99 21.09

The room reverberation is set to RT60 = 300 ms. The HKM, GMM and FCM clustering algorithms are compared for TF mask estimation using the performance metrics of
SIR gain, SINR and SNR as defined in section 4.2. The highest achieved ratio for each acoustic condition is denoted in italics.

The quality of the source signals were also evaluated
with the PEASS toolkit as described in section 4.2.3. How-
ever, all four ratios were included: the target-related per-
ceptual score (TPS), interference-related perceptual score
(IPS), artifact-related perceptual score (APS) and the OPS.
The reader is referred to [51] for details.
Table 6 shows the average results per environmental

condition, averaged across all available mixtures. This
table can easily be compared against the results of the
SiSEC 2010, in the table entitled “Average Results
for 2 channels” in [58]. The individual results for
each recording are displayed in Table 7. The reported
results are at a similar performance level with those pub-
lished in the SiSEC 2010 [58], despite the reduced SAR
and APS ratios. An overall decline in performance in

comparison to the simulated evaluations (Tables 3, 4
and 5) can be observed. A likely reason for this is due to
the larger sensor spacing (8.6 cm compared to the 4 cm
spacing in previous evaluations), as for ideal phase mea-
surements, the sensor spacing should be limited to below
c/fs, where c is the velocity of sound and fs is the sampling
frequency [21]. Additionally, the fact that two sensors are
used to retrieve the information compared to three, as
in section 4.3.3, could contribute to the decrease in per-
formance. The reduction of the feature space dimension
may have lowered the capability of the clustering algo-
rithm, making any clustering performance differences less
apparent.
In general, the FCM for mask estimation proved the

most robust. The GMM also achieved notable IPS values,
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Table 6 Average separation results for the SiSEC 2010 data

Environment Cluster scheme SDR ISR SIR SAR OPS TPS IPS APS
(dB) (dB) (dB) (dB) % % % %

Cafeteria HKM 2.27 7.80 5.86 4.49 25.50 52.55 59.16 15.14

GMM 3.13 5.59 7.23 3.98 25.10 35.21 72.00 19.03

FCM 4.13 8.50 7.71 6.10 29.50 66.30 61.11 23.70

Square HKM 0.56 11.47 8.36 −0.64 25.15 56.78 70.54 5.05

GMM 4.04 9.04 11.95 1.50 27.12 35.85 79.49 11.77

FCM 2.53 12.72 12.46 1.67 28.26 71.00 75.79 10.03

The average measured output ratio across all three sources, and for all mixtures in the condition, is displayed. The highest achieved ratio is denoted in italics.

however the remaining ratios were not as high as those
achieved with the FCM. For example, the OPS was con-
sistently at its highest when the FCM was used for mask
estimation. Interestingly, the location of the noise source
(center or corner) did not appear to have a substan-
tial effect on the separation ability. This suggests that
the proposed algorithm is robust in both isotropic and
non-isotropic noise conditions.

4.4 Discussion
The experimental results presented have demonstrated
that the implementation of the FCM clustering for mask
estimation with a nonlinear microphone array setup as in
the MENUET renders superior separation performance
in conditions where reverberation and/or environmental
noise exist. The feasibility of the FCM clustering was ini-
tially tested on a range of spatial feature vectors in an

Table 7 Separation results for the SiSEC 2010 data

Filename Cluster scheme SDR ISR SIR SAR OPS TPS IPS APS
(dB) (dB) (dB) (dB) % % % %

Dev_2ch_3src_Ca_Ce_A HKM 2.72 7.87 5.35 4.91 29.95 41.10 53.22 20.63

GMM 2.63 5.14 5.81 3.71 25.48 37.72 64.63 28.08

FCM 3.90 8.10 7.01 7.13 33.20 63.32 53.92 36.46

Dev_2ch_3src_Ca_Ce_B HKM 3.45 9.44 7.97 5.31 26.40 64.98 62.55 16.69

GMM 4.40 7.37 8.96 5.14 26.03 38.17 74.64 17.55

FCM 5.27 9.78 9.50 6.64 29.23 67.21 63.21 22.40

Dev_2ch_3src_Ca_Co_A HKM 0.28 5.99 3.68 4.22 20.35 44.70 55.63 12.09

GMM 3.40 5.45 10.34 4.09 26.84 36.07 78.14 15.90

FCM 3.90 8.15 7.03 5.33 29.04 67.87 66.01 18.56

Dev_2ch_3src_Ca_Co_B HKM 2.62 7.88 6.45 3.53 25.29 59.43 65.24 11.15

GMM 2.12 4.38 3.84 2.96 22.02 28.87 70.62 14.58

FCM 3.43 7.96 7.29 5.20 26.48 66.61 61.29 17.28

Dev_2ch_3src_Sq_Ce_A HKM −0.31 9.34 6.04 −2.21 23.75 47.35 64.69 5.56

GMM 1.15 3.43 3.46 −4.88 27.01 23.99 77.33 8.08

FCM 1.71 12.37 11.96 0.82 29.62 71.10 73.32 13.51

Dev_2ch_3src_Sq_Ce_B HKM 0.08 10.18 5.83 −1.66 25.14 52.38 70.93 5.78

GMM 4.54 11.23 16.63 3.35 25.75 36.08 82.22 12.40

FCM 1.61 12.78 12.27 0.61 26.33 68.06 76.11 6.83

Dev_2ch_3src_Sq_Co_A HKM 3.49 17.51 16.69 3.23 25.28 70.77 80.39 4.11

GMM 6.38 12.68 16.44 4.43 27.01 39.31 80.24 11.23

FCM 4.03 14.26 14.29 3.4 27.70 72.00 76.93 7.08

Dev_2ch_3src_Sq_Co_B HKM −1.03 8.86 4.87 −1.94 26.43 56.60 66.15 4.74

GMM 4.07 8.83 11.28 3.08 28.72 44.01 78.17 15.37

FCM 2.74 11.47 11.32 1.86 29.40 72.83 76.00 12.75

The average measured output ratio across all three sources is displayed. The highest achieved ratio is denoted in italics.
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underdetermined simulated setting using a linear stereo
microphone array, and compared against the original
baseline HKM of the MENUET algorithm. The success-
ful outcome of this prompted further investigation, with
a natural extension to a nonlinear microphone array. The
GMM clustering algorithm was also implemented as an
additional comparativemeasure to further assess the qual-
ity of the FCM in this context and also to compare the
performance of alternative soft mask estimation schemes.
Evaluations confirmed the superiority of the FCM with
positive improvements recorded for the average perfor-
mance in all acoustic settings, with its significance estab-
lished by the Student’s t test. In addition to this, the
consistent performance of the FCM even in increased
reverberation establishes the potential of FCM within the
TF mask estimation framework.
However, rather than solely focus upon the reverberant

BSS problem, this study extended it to be inclusive of an
additional source of observational error: environmental
noise, which was modeled as spatially diffuse noise by
a number of independent sources. Recordings in real-
world conditions were also considered, with the publicly
available benchmark data of the international SiSEC 2010
included in evaluations. It was proposed that due to the
documented robustness of the FCM in mask estimation
for reverberant BSS, the extension to the noisy rever-
berant case would demonstrate similar abilities. Detailed
evaluations confirmed this hypothesis, with noteworthy
separation performance using a range of performance
metrics in both simulated and real-world conditions
reported. A decline in performance was noted when real-
world evaluations were considered, and this is attributed
to the change in sensor and speaker configuration as well
as the undesired effects of spatial aliasing.
In general, the soft mask estimation techniques out-

performed the binary masking; however, as the level of
reverberation and background noise increased, there was
a distinct performance gap between the two leading soft
masking approaches, FCM and GMM. Furthermore, in
certain scenarios, the GMM was surpassed in perfor-
mance by the HKM clustering.
The poor performance of the GMM formask estimation

can be attributed to the fact that GMMs are often used
for generative modeling for supervised pattern recog-
nition and classification, as opposed to the clustering
techniques HKM/FCM which are designed for unsuper-
vised data clustering. Additionally, in these evaluations,
there is not a one-to-one correspondence between the
number of Gaussianmixture components and the number
of sources. Each data point in the feature set is assumed
to originate from one of the component densities; there-
fore, a mismatch between the number of sources and
components is a likely additional factor in the reduced
performance in corrupted environments. Furthermore,

it may be required to re-determine the optimal num-
ber of mixture components as the acoustic environment
changes; however, this will prove a tedious task with the
possibility of little benefit. It can then be concluded that
such a statistical modeling paradigm as the GMM is not
suitable when the acoustic environment is corrupted at a
moderate to marked level as in this study, and perhaps dis-
tance metric-based methods such as the HKM/FCM are
more appropriate.
Therefore, due to its reliability, consistency and

robustness in mask estimation ability over a range of
acoustic environments, the FCM algorithm is deduced as
the most suitable data classification technique out of the
three evaluated in this study for the purposes of mask
estimation in this BSS framework.

4.5 Future research
Future research should focus upon the improvement of
the robustness of the mask estimation (clustering) stage of
the algorithm. For example, an alternative distance mea-
sure in the FCM can be considered: it has been shown that
the Euclidean distance metric as employed in this study
may not be robust to outliers, such as those originating
from undesired interferences in the acoustic environment
[59]. A measure such as the l1-norm could be imple-
mented in a bid to reduce error [21]. Additionally, the
authors of [20,21] also considered the implementation
of observation weights and contextual information in an
effort to emphasize the reliable features whilst simultane-
ously attenuating the unreliable features. In such a study,
a suitable metric is required to determine such reliability:
consideration may be given to the behavior of proximate
TF cells through a property such as variance [20].
An approach explored in [60] proposes an enhance-

ment to the traditional FCM through the introduction of
a membership (probability) constraint function and also
proposes flexibility in the selection of the fuzzification
parameter to better fit the end application. It was proven
to possess better capability over the FCM with respect to
its clustering power and robustness, and thus remains a
potential avenue for future research.
Furthermore, in a bid to move the presented BSS algo-

rithm to that of a truly blind and autonomous nature, the
introduction of a source enumeration technique is sug-
gested. The automatic detection of the number of clusters
may prove to be of significance as all three of the cluster-
ing techniques in this chapter require a priori knowledge
of the number of sources. A modification to the FCM
may suffice for enumeration; the authors of [61] describe
two possible algorithms which employ a validation tech-
nique to automatically detect the optimum number of
clusters to suit the data. Successful results of this tech-
nique have been reported within the BSS framework [16].
The inclusion of source enumeration into the presented
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study would pave the way towards a truly blind source
separation system.

5 Conclusions
This study has presented an extension to the existing
MENUET algorithm for underdetermined BSS in adverse
environments. A non-exhaustive review of current TF-
based BSS schemes was discussed with insight into the
shortcomings affiliated with such techniques. In a bid to
overcome such shortcomings, the substitution of the k-
means clustering with the fuzzy c-means was proposed for
the purposes of mask estimation for blind source separa-
tion. For an additional level of comparison, another soft
clustering scheme based on Gaussian mixture models was
also implemented.
It was suggested that a binary masking scheme for

the mask estimation is inadequate at encapsulating the
inevitable reverberation present in any acoustic setup, and
thus a more suitable means for clustering the observation
data, such as the fuzzy c-means, should be considered.
The presented algorithm in this study integrated the c-
means with the established MENUET technique for a
range of acoustic conditions encompassing room rever-
beration and background noise.
In a number of experiments designed to evaluate the

feasibility and performance of the c-means in the BSS
context, the MENUET in conjunction with the FCM was
found to outperform both the original in conditions from
a stereo (linear) microphone array setup to a nonlin-
ear arrangement, and in both anechoic and reverberant
conditions. Furthermore, both simulated and real-world
spatially diffuse background noise was included in the
evaluations in order to better reflect the conditions of real-
istic acoustic environments, and again, the FCM proved
an improved approach for mask estimation. Comprehen-
sive performance assessment was implemented through
the inclusion of a wide range of standard evaluation
metrics.
Future research should endeavor upon the improvement

of the accuracy of the mask estimation via modifications
to the fuzzy c-means to move towards a more powerful
and robust clustering algorithm. Furthermore, the evalu-
ation of the BSS performance in alternative contexts such
as automatic speech recognition should also be consid-
ered in order to gain greater perspective on its potential
for implementation in real-life speech processing systems.
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