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Linear IC detectors for low to medium SNR
ill-conditioned communication systems with
unknown noise variance
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Abstract

In this paper, we introduce two new linear parallel interference cancellation (LPIC) detectors that are suitable for
low to medium signal-to-noise ratio ill-conditioned communication systems and do not require knowledge of the
noise variance but perform close to the linear minimum mean square error detector, which needs such information.
Particularly, we focus in this work on fast linear parallel interference cancellation detectors that are asymptotically
equivalent to the steepest descent and conjugate gradient algorithms, respectively, and show that they exhibit a
spectral filtering property and semi-convergence behavior. Consequently, a deterministic stopping rule to stop the
LPIC iterations that is independent of the noise level (known as the L-curve method) is investigated and tested.
Simulation results are presented to support our theoretical findings.
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1. Introduction
The capacity of the third-generation cellular systems and
optical networks using optical CDMA (OCDMA) technol-
ogy is mainly limited by the multi-access interference
(MAI) [1]. Other systems suffer from other types of in-
terference such as the inter-carrier interference (ICI) in
orthogonal frequency division multiple access (OFDMA)
and inter-antenna interference (IAI) in multiinput multi-
output (MIMO) systems, just to name a few [1].
In 4G and beyond wireless communication systems,

the problem of interference is becoming of increasing
importance because cells are getting smaller and condensed
(i.e., femto-cells) and new technologies that cause additional
interference are introduced. For example, relay nodes are
proposed to increase coverage and allow cooperative com-
munication; however, they also bring additional interfer-
ence into the network [2].
To combat these different types of interferences, vari-

ous interference cancellation and multiuser detection al-
gorithms are proposed. Multiuser detectors (MUDs) are
mainly introduced to reduce the effect of interference in
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wireless/wired systems and consequently to boost the sys-
tem capacity and throughput. Many multiuser detectors
were developed in the literature and have found applica-
tions in various wireless/wired systems such as OCDMA,
MIMO-OFDM, and MIMO-UWB, just to name a few
[1-5]; however, due to the fact that the capacity of CDMA
systems is essentially limited by MAI, a large part of the lit-
erature of MUDs focused on systems based on the CDMA
technology.
The decorrelating detector is an effective multiuser de-

tector to eliminate interference. It is also an important
building block for nonlinear multiuser detectors. It enjoys
several desirable features such as: (1) complete removal of
interference and (2) independence of noise level informa-
tion. The latter is very important in situations where the
estimation of the noise variance is not possible or not ac-
curate. This is the case where the noise term includes in
addition to thermal noise, other types of background noise
such as co-channel interference which may change signi-
ficantly with time/frequency (particularly in frequency-
hopping systems) and its variance can be considered as
unknown to the receiver [6,7].
However, the decorrelating detector suffers from two

drawbacks: (1) Its relatively high computational complex-
ity which is of the order of O(N3) [1], where N in the
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dimension of the system's cross-correlation matrix and (2)
noise enhancement effect. Therefore, the challenge is to
maintain the advantages of the decorrelating detector and
overcome its deficiencies, that is, to lower its computational
complexity and combat the noise enhancement effect but
without requiring the knowledge of the noise variance, like
the linear minimum mean square error (LMMSE) detector.
Recent results reported in [8] proved the semi-

convergence behavior of the conventional linear parallel
interference cancellation (LPIC) detector and showed that
early stopping rules can be used to combat the noise en-
hancement effect. They used the Morozov discrepancy
rule to stop the LPIC iterations prior to final convergence
in order to avoid noise magnification. However, the con-
ventional LPIC detector is very slow and may require a
very large number of stages to converge especially for ill-
conditioned communication systems. Moreover, the Mor-
ozov discrepancy rule requires the noise level information
and therefore cannot be used in many practical settings.
Building up on these results, a twofold approach is

proposed in this work to overcome the drawbacks of the
decorrelator detector cited above. First, we employ fast
linear interference cancellation detectors to reduce its
computational complexity, and then, we make use of an
early stopping technique (known as the L-curve method)
that does not require noise level information to reduce
the noise enhancement effect [9]. Up to our knowledge,
this is the first work that investigates the possible use of
these early stopping rules that do not require noise level
information in the communication field. Preliminary re-
sults are promising and suggest that more improvements
and extensions can be made.
The organization of this paper is as follows: in Section 2,

a simplified system model of the OFDMA uplink that will
be used throughout this work is briefly described. In
Section 3, the decorrelator detector's solution is analyzed
and some of the regularization techniques that are used to
overcome its drawbacks are detailed. Section 4 briefly de-
scribes the fast LPIC detectors and shows their spectral fil-
tering property. Section 5 analyzes the semi-convergence
behavior of the LPIC detector and then investigates the
L-curve stopping rule and shows how it can be applied to
the LPIC detector. Section 6 supports the theoretical find-
ings by a number of simulations. Finally, Section 7 con-
cludes the paper with some results and recommendations.

2. System model
For illustration purposes only and similar to [8], we con-
sider an uplink OFDMA system where K users transmit
simultaneously over a Rayleigh fading channel using quad-
rature phase-shift keying (QPSK). Particularly, we consider
in this work the effect of ICI due to the misalignment of
the carrier frequencies and to the Doppler shifts of differ-
ent users such as in the uplink of the mobile WIMAX
(IEEE 802.16 Wireless MAN standard) [10]. This is
depicted in Figure 1.
In this work, we consider the interleaved subcarrier al-

location scheme because it is well known that this
scheme suffers the most from ICI compared to other
subcarrier allocation schemes [11].
An OFDM symbol consisting of Nu samples with sam-

pling time Tu where Nu is the total number of data sam-
ples is transmitted using N orthogonal subcarriers.
Without loss of generality, we assume that the total num-
ber of subcarriers of the IFFT matrix Ψ with elements

Ψnu;n ¼ 1ffiffiffiffiffi
Nu

p e
j2πnun
Nu , 1 ≤ nu ≤Nu, and 1≤ n≤N is divided

equally among all users; therefore, the total number of
subcarriers per user is Nk =N/K.
Based on Figure 1, the received signal r(m) at the mth

OFDM symbol is expressed in vector–matrix form as:

r mð Þ ¼ ~ΨH mð ÞAb mð Þ þ n mð Þ
¼ ~~Ψ mð Þb mð Þ þ n mð Þ; ð1Þ

where

� ~Ψ ¼ Ψ∘ 11;Nk
⊗Ε

� �
is a combination of the IFFT matrix

Ψ and the normalized carrier frequency offset
(NCFO) matrix E. Here, ○ and⊗ denote the Schur
and Kronecker products, respectively, and 11;Nk

denotes a 1-by-Nk vector of ones. The NCFO
matrix can be partitioned as Ε ¼ ε1 ε2 ⋯½
εk ⋯ εK �, where the vector εk is given

by εk ¼
"
e

j2πεk
Nu e

j2π2εk
Nu ⋯ e

j2πnuεk
Nu ⋯ e

j2πNuεk
Nu

#T

;

where εk = Δfk/Δf is the NCFO of the kth user
and Δf is the subcarrier spacing.

� H(m) is the matrix of Rayleigh fading coefficients and
it is given by: H mð Þ ¼ diag H1 mð Þ H2 mð Þ ⋯ð
Hnk mð Þ ⋯ HNk mð Þ Þ , where Hnk mð Þ ¼ diag
h1;nkð mð Þ h2;nk mð Þ⋯ hk;nk mð Þ ⋯ hK ;nk mð Þ Þ.

� A is the matrix of amplitudes and it is given by:
A ¼diag A1 A2 ⋯ Ank ⋯ ANkð Þ , where
Ank ¼ diag a1;nk a2;nk ⋯ ak;nk ⋯ aK ;nkð Þ: It
is used to weight the signals of different users with
different powers to simulate near-far scenarios.

� b(m) is the vector of transmitted data symbols and it
can be partitioned as: b mð Þ ¼ b1 mð Þ b2 mð Þ ⋯½
bnk mð Þ ⋯ bNk mð Þ �T , where bk mð Þ ¼ b1;nk½ mð Þ
b2;nk mð Þ⋯ bk;nk mð Þ ⋯ bK ;nk mð Þ �.

� n(m) is an N-length vector of independently and
identically distributed additive white Gaussian noise
samples with zero mean and variance ρ2.

And finally, the combination ~~Ψ mð Þ ¼ ~ΨH mð ÞA is the
system matrix and it results from the multiplication of



Figure 1 Typical uplink OFDMA channel.
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the IFFT, the NCFO, the channel gain, and power weight-
ing matrices, respectively. To simplify the notations, we
drop in all subsequent equations the OFDM symbol index
m from all matrices and vectors used in Equation (1).

3. Regularization techniques for combating the noise
enhancement effect
The decorrelator detector (known also as the zero-
forcing detector) is a fundamental detector that allows
complete removal of the interference, and it results from
solving the following least square minimization problem:

b� : min
b∈ℂN

r− ~~Ψb
��� ���2

2
ð2Þ

which yields

yDEC ¼ ~~Ψ
†r ¼ ~~Ψ

H ~~Ψ
� �−1 ~~Ψ

Hr; ð3Þ

where ~~Ψ
† is the pseudo-inverse of the system matrix ~~Ψ

and ~~Ψ
H ~~Ψ is the ICI matrix.
Using the singular value decomposition (SVD), the

system matrix ~~Ψ can be decomposed as:

~~Ψ ¼ UΣVH ; ð4Þ
where U and V are the N-by-N and N-by-N unitary matri-

ces that represent the left and right singular vectors of ~~Ψ ,
respectively, and Σ is an N-by-N diagonal matrix with ele-

ments σk, 1 ≤ n ≤N that represent the singular values of ~~Ψ .
In addition, the unitary matrices U and V can be partitioned
as U ¼ u1 u2 ⋯ un ⋯ uN½ � and U ¼ v1½ v2⋯
vn ⋯ vN � , respectively. Therefore, Equation (3) can be

written in terms of the SVD of ~~Ψ as:

yDEC ¼ ~~Ψ
†r ¼ VΣ−1UHr ¼

XN
n

uH
n r
σn

vn: ð5Þ

Consequently, its norm can be written as:

yDEC
�� ��

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n

uH
n r
σn

� 	2
vuut : ð6Þ
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It is clear from Equation (6) that as long as uH
n r



 

 < σn

for large n, the norm of yDEC will not go unbounded.
This is what is known as the Picard condition [12]; how-
ever, due to the contamination of the received signal
with noise, the Fourier coefficients uH

n r


 

 do not decay

monotonically to zero, instead they settle at certain level
ρ while the singular values decay to zero. Therefore, all
singular values below ρ contribute to the noise enhance-
ment effect.
To get rid of the small singular values that may cause

the violation of the discrete Picard condition, the decorr-
elator detector's solution is modified by introducing a fil-
tering matrix F such that:

yREG ¼
XN
n

f n
uH
n r
σn

vn ¼ VFΣ−1UHr; ð7Þ

where yREG is the regularized solution and F is an N-by-
N diagonal matrix with elements fn, satisfying:

f n ≃
1 if σn is large
0 if σn is small

; 1 ≤ n ≤N :

�
ð8Þ

Consequently, these factors filter out solution compo-
nents pertaining to small singular values.
The most straightforward regularization technique

is known as the truncated SVD (TSVD) and is given
by [13]:

yTSVD ¼
Xn0
n

uH
n r
σn

vn: ð9Þ

Therefore, the filter factors for this regularization
scheme can be expressed as:

f n ≃
1 if n ≤ n0

0 if n > n0 ; 1 ≤ n ≤N :

�
ð10Þ

This regularization technique is known also as spectral
cutting technique and relies on cutting off all solution
components under a certain threshold determined by
the discrete regularization parameter n’.
Another regularization scheme is known as the Tikhonov

regularization technique, and it relies on modifying the
least square minimization problem in Equation (2) by pen-
alizing solutions of large norm, that is, [13]:

b� : min
b∈ℂN

r− ~~Ψb
��� ���2

2
þη2 bk k22

� �
; ð11Þ

where η is the regularization parameter that determines
the amount of penalization the solution norm undergoes.
The rationale behind this is that from one side we want to
make the residual small as in the conventional least
squares, but at the same time, we want to obtain
meaningful solutions and exclude those with large norms
as they are usually contaminated with noise. Fortunately,
Equation (11) has a closed form solution and is given by:

yTik ¼ ~~Ψ
H ~~Ψ þ η2I

� �−1 ~~Ψ
Hr: ð12Þ

Note that if the regularization parameter is equal to
the noise level ρ, then the Tikhonov solution equals to
the linear minimum mean square error (LMMSE) solu-
tion. The filter factors of the Tikhonov regularization
scheme are given by:

f n ¼
σ2n

σ2n þ η2
≃

1 if σn ≫ η
0 if σn ≪ η

; 1 ≤ n ≤N :

�
ð13Þ

The filter factors of the Tikhonov regularization
scheme behaves like a smooth low pass filter of the solu-
tion terms damping solution components pertaining to
singular values less than η. The filter factors of the
TSVD and the Tikhonov regularization schemes are
depicted in Figure 2.
Another category of regularization methods is

regularization by early stopping [13], that is, apply an it-
erative method to the least square problem of Equation
(2) and stop the iterations prior to convergence. This is
motivated by the fact that for ill-conditioned systems,
linear iterative methods exhibit a semi-convergence
property and tend to generate good solutions at early it-
erations but after a certain number of iterations, the
noise starts dominating the solution and the perform-
ance of the iterative method worsens.
Many linear interference cancellation schemes have

been shown to be equivalent to certain iterative methods
[1], and therefore, they tend to have the same semi-
convergence behavior for ill-conditioned systems. There-
fore, linear IC detectors equipped with efficient early
stopping mechanisms that do not require the noise level
information can be used to implement a low-complexity
decorrelating detector that resists noise amplification
without requiring knowledge of the noise level. In the
following, we focus on the LPIC detector and use it as
an iterative regularizing scheme to achieve two simultan-
eous objectives: low-complexity and resistance to noise
enhancement.

4. Intrinsic regularization property of the LPIC detector
The LPIC detector is an effective scheme for the low-
complexity approximation of the decorrelator/LMMSE
detector [8]. The conventional LPIC detector is asymp-
totically equivalent to the Jacobi iterative method [1],
and therefore, it inherits its slow convergence behavior.
Faster LPIC detectors based on faster iterative methods



Figure 2 Filter factors of the Tikhonov and TSVD regularization methods.
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such as the steepest descent and the conjugate gradient
methods are now introduced. The residual norm stee-
pest descent (RNSD) and conjugate gradient least
squares (CGLS) methods belong to a class of iterative
techniques known as non-stationary iterative methods
where the weighting factor changes from one stage to
another [14], that is:

ypþ1 ¼ yp þ ωpdp; ð14Þ
where ωp is the step size and dp is the search direction.
For RNSD, the search direction is equal to the residual

error and is given by: dp ¼ ep ¼ ~~Ψ
H r− ~~Ψyp
� �

while the

weighting factor is determined as:

ωp ¼
dH
p dp

dH
p
~~Ψ
H ~~Ψdp

: ð15Þ

For the CGLS method, the initial search direction d0 is

set to the residual error, that is, d0 ¼ e0 ¼ ~~Ψ
H

r− ~~Ψy0
� �

,

and then, we proceed as:

ωp ¼
eHp

~~ΨH ~~Ψep

dH
p
~~Ψ
H ~~Ψdp

ð16Þ

and

ypþ1 ¼ yp þ ωpdp: ð17Þ
Then, we update ep and dp as:

e pþ1 ¼ ep−ωp
~~Ψdp ð18Þ

and

d pþ1 ¼ ~~Ψ
H
epþ1 þ βpþ1dp; ð19Þ

where

β pþ1 ¼
eHpþ1

~~ΨH ~~Ψepþ1

eHp
~~Ψ
H ~~Ψep

: ð20Þ

To determine the filter factors of the RNSD, it can be
shown without loss of generality that if y0 = 0, then yp
can be written in the following form [14]:

ypþ1 ¼ TSD
p

~~Ψ
H ~~Ψ

� �
~~Ψ
Hr; ð21Þ

where the polynomial TSD
p is defined as:

TSD
p θð Þ ¼ TSD

p−1 θð Þ þ ωp 1−θTSD
p−1 θð Þ

� �
ð22Þ

and TSD
−1 θð Þ ¼ 0.

Substituting ~~Ψ ¼ UΣVH into Equation (21), we obtain

ypþ1 ¼ VFΣ−1UHr ¼
XN
n¼1

σ2nT
SD
p σ2n
� �uH

n r
σn

vn; ð23Þ
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where F is N-by-N diagonal matrix with elements fp+1, n
given by:

f pþ1; n ¼ σ2
nT

SD
p σ2

n

� �
; 1 ≤ n ≤N : ð24Þ

Following the same approach used for the RNSD, the
filter factors of the CGLS can be found as:

f pþ1; n ¼ σ2
nT

CG
p σ2n

� �
; 1 ≤ n ≤N ; ð25Þ

where the polynomial TCG
p for the CGLS is defined as:

TCG
p θð Þ ¼ 1−ωpθ þ ωpβp−1

ωp−1

� 	
TCG

p−1 θð Þ−ωpβp−1
ωp−1

TCG
p−2 θð Þ

þ ωp

ð26Þ

and TCG
−1 θð Þ ¼ 0 and TCG

0 θð Þ ¼ ω0

Finally, the average BER of the LPIC detector based
on the RNSD/CGLS iterative methods is given by (see
Appendix for derivation):

Pb pð Þ ¼ 1
N

XN
n¼1

1

2N−1

X
allb
bn¼1

Q
gHp;n

~~Ψb

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHp;ngp;n

q
0
B@

1
CA; ð27Þ

where GH
p ¼ TSD

p
~~Ψ
H ~~Ψ

� �
~~Ψ
H for the LPIC detector

based on the RNSD and GH
p ¼ TCG

p
~~Ψ
H ~~Ψ

� �
~~Ψ
H for
Figure 3 Semi-convergence behavior of the LPIC detector.
the LPIC detector based on the CGLS and Gp =
[gp,1 gp,2 ⋯⋯ gp,n ⋯ gp,N].

5. Semi-convergence behavior of the LPIC detector and
early stopping using the L-curve method
The LPIC detector exhibits a semi-convergence prop-
erty where it reaches a BER that is better than that
achieved at final convergence. This phenomenon has
been studied in more detail in [8]. Interested readers
are referred to [8] for more details. For our case, the
semi-convergence property of the proposed detectors
is illustrated in Figure 3. For the simulation parame-
ters, we set the carrier frequency to 3.5 GHz, signal-
to-noise ratio (SNR) to 13 dB, N to 128, and K to 4
with frequency offsets (ɛ 1 = −0.35, ɛ 2 = 0.38, ɛ 3 = 0.36,
ɛ 4 = −0.39) and speeds 80, 120, 90, and 100 km/h,
respectively.
It is clear that the two detectors, that is, the one

equivalent to the RNSD method (RNSD-LPIC) and the
one equivalent to the CGLS method (CGLS-LPIC), ex-
hibit a semi-convergence behavior where they reach
their minimum average BER at 10 and 45 stages, re-
spectively, and converge to the decorrelator detector's
solution.
The RNSD-LPIC detector exhibits a slower conver-

gence behavior and wide flat minimum while the CGLS-
LPIC detector exhibits faster convergence and a narrow
minimum.
It is difficult to analyze the semi-convergence behavior

using the average BER; nevertheless, we can calculate
the mean square error between the decision variable of
the LPIC detector at stage (p + 1), yp+1 and the vector of
the transmitted data symbols b, that is:



Bentrcia and Alshebeili EURASIP Journal on Advances in Signal Processing 2013, 2013:180 Page 7 of 15
http://asp.eurasipjournals.com/content/2013/1/180
MSE ypþ1

� �
¼ Ε ypþ1−b

��� ���2
2

¼ Ε VFΣ−1UH bþ nð Þ−VΣ−1UHb
�� ��2

2

¼ Ε Σ−1 F−Ið ÞUHb
�� ��2

2þΕ Σ−1FUHn
�� ��2

2

¼
XN
n¼1

f pþ1;n−1
� �2 uH

n b
� �2

σ2n
þ ρ2

XN
n¼1

f 2pþ1;n

σ2n

¼ b−Ε ypþ1

� ���� ���2
2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

squared bias

þ Ε ypþ1−Ε ypþ1

� ���� ���2
2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variance

ð28Þ

It can be seen that the MSE can be decomposed into
two components: the bias (also known as the data error)
and the variance (also known as the noise error). The
data error is caused by using a modified inverse of the

ICI matrix ~~ΨH ~~Ψ instead of the true inverse whereas the
noise error is caused by the noise enhancement effect. It
is evident from Equation (28) that if F ⋍ I, the data error
is small but the noise error is large due to the noise en-
hancement effect; however, if F ⋍ 0, the noise error is
small but the data error is large, and as a result, the so-
lution is heavily damped and a large part of it is lost.
Therefore, a proper choice of the filtering matrix F

should balance between the data and noise errors. Be-
cause the amount of filtering introduced by the filtering
matrix is proportional to the stage index p, a proper
stopping rule needs to be devised. Many stopping rules
have been developed in the literature but roughly they
can be classified into three broad techniques [9]:

� Methods requiring the knowledge of the exact noise
level.

� Methods requiring the knowledge of the
approximate noise level.

� Methods not requiring the knowledge of the noise level.
Figure 4 The L-curve for the LPIC detector.
Due to the fact that we are assuming the absence of the
noise level information, we neglect the first two categories
and focus on the last one. Under this category, the most
known stopping rule technique is the L-curve method
[15]. This method has been used successfully in many
areas such as spectroscopy, seismography, and medical
imaging. The L-curve method exhibits some desirable fea-
tures such as:

� Does not need the noise level information. This is
important for communication systems where this
information is not always available or it is not
accurate.

� Works well under colored Gaussian noise. This is
important when the additive white Gaussian noise
assumption in communication systems is violated,
or it becomes colored because of some signal
processing operations such as matched filtering.

This method intends to balance between two conflict-
ing goals: minimizing the residual error norm and keep-
ing the solution norm small. Careful inspection reveals

that the norm of the residual error r− ~~Ψyp

��� ���
2
declines

sharply at early stages, and then, it flattens while the so-
lution norm ‖yp‖2 increases sharply at early stages and
then it flattens. Consequently, if we plot the residual
error norm versus the solution norm, we obtain an L-
shaped curve with usually a distinct corner that splits
the curve into two separate regions as shown in
Figure 4.
Noting that the residual and the solution norms can

be written in terms of the filtering factors as [13]:

r− ~~Ψyp

��� ���2
2
¼

XN
n¼1

1−f p;n
� �

uH
n r

� �2

ð29Þ
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and

yp

��� ���2
2
¼

XN
n¼1

f p;n
uH
n r
σn

� 	2

; ð30Þ

respectively. It is clear that if fp,n ≈ 1 (at early stages), we
are in the upper part of the curve. A small change in fp,n
leads to a larger change in f 2p;n than in (1 − fp,n)

2; hence,

we expect ‖yp‖2 to change the most in this region, i.e.,
we expect the curve to be steep. On the other hand, if
fp,n ≈ 0 (at late stages), we are in the lower part of the
curve. A small change in fp,n leads to a larger change in

(1 − fp,n)
2 than in f 2p;n ; hence, we expect r− ~~Ψyp

��� ���
2
to

change the most in this region, i.e., we expect the curve
to be flat here.
The two regions, that is, the vertical and horizontal, are

dominated by two types of errors: data error and noise
error, respectively. The corner formed by the conjunction
of these two regions balances between the data and noise
errors, and therefore, the stage index corresponding to this
corner is selected as the best regularization parameter that
compromises between data and noise errors.
Many algorithms have been devised to find the corner

of the L-curve [16]. The most common technique is
known as the maximum curvature method. It consists of
choosing the stage index that maximizes the following
function:

popt ¼ argmax
1≤p≤P

ρ pð Þ00η pð Þ0−ρ pð Þ0η pð Þ00
ρ pð Þ02 þ η pð Þ02ð Þ32

¼ κ pð Þ
( )

;

ð31Þ

where η(p) = ‖yp‖2 and ρ pð Þ ¼ r− ~~Ψyp

��� ���
2

and denotes

differentiation with respect to the regularization param-
eter p.
The authors in [17] suggested plotting the residual

norm versus the stage index p and noticed that this
curve usually exhibits an L-curve shape as well. For this
curve, one should find the stage index that maximizes
the following simplified function:

popt ¼ argmax
1≤p≤P

ρ pð Þ00
ρ pð Þ02 þ 1ð Þ32

¼ κ pð Þ
( )

: ð32Þ

In order to implement the above stopping rule, we
have to evaluate the norm of the residual error for each
OFDM symbol a certain number of stages till the L-
shaped curve is obtained and calculate the curvature in-
formation to ultimately determine the optimal stopping
stage. This is too expensive in practice and consequently,
another alternative should be sought. Fortunately, simu-
lation results reveal that the optimal stage index popt is
insensitive to variations in the condition number of sys-
tem matrix and is almost constant from one OFDM
symbol to another, and therefore, it is sufficient to obtain
popt for a few OFDM symbols (practically in the range of
10 to 100 OFDM symbols) and then average it and use
it for the rest of the OFDM symbols. This works well in
practice and costs only a marginal addition to the overall
LPIC computational complexity.
Another problem with the LPIC detector based on the

CGLS is that the norm of the residual error r− ~~Ψyp

��� ���
2

behaves erratically for very ill-conditioned systems [14]
where the norm of the residual error may increase occa-
sionally and causes the maximum curvature detector to
mistakenly detect the maximum curvature at the wrong
stage index. To overcome this problem, we exploit the
fact that the residual error decay exponentially and
therefore can be fitted by a decaying exponential. The
resulting exponentially fitted curve is used instead in
computing the maximum curvature and hence the opti-
mal stage index. This method proved to be efficient in
combating the erratic behavior of the residual error
norm of the LPIC detector based on the CGLS.
Lastly, the L-curve method has obviously some limita-

tions as discussed in [15]. The main one is that the regu-
larized solution does not converge to the true solution
as the noise variance vanishes to zero. Therefore, in our
application, we expect that the LPIC detector equipped
with the L-curve stopping rule will work well for only a
certain range of SNRs. Fortunately, this range covers low
and medium SNRs where the noise enhancement effect
is most prominent. More insight about this issue is given
in the simulation results.

6. Computational complexity
The computational complexity of the basic LPIC de-
tector with fixed step size used in [8] and the ones pro-
posed here exhibit a computational complexity in the
order of O(N2), namely the conjugate gradient based
LPIC detector needs 4N2 +8N-1 cflopsa per iteration and
the steepest descent based LPIC detector needs 4N2 +6N-1
cflops per iteration, and finally, the conventional LPIC de-
tector requires 2N2 +2N+ 1 cflops per iteration. Even
though the conjugate gradient based LPIC detector ex-
hibits a slightly higher computational complexity per iter-
ation compared to the other detectors, it however needs
the least number of iterations; this is why it is the mostly
used iterative method in practice.
Since early stopping methods, whether they require

the noise variance information or not can be applied to
any LPIC detector, we evaluate in the following the com-
putational complexity of the L-curve early stopping rule
and compare it to that proposed in [8] (known as the
Morozov early stopping rule).
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The L-curve method requires the following operations
with the following computational complexity:

1. Norm calculation of η(p) = ‖yp‖2: 2N cflops.

2. Norm calculation of ρ pð Þ ¼ r− ~~Ψyp

��� ���
2
2 N cflops.

3. Curvature information of κ(p): 2p-3 flops.
4. Obtaining the index of the maximum curvature:

popt ¼ argmax
1≤p≤P

ρ pð Þ00
ρ pð Þ02þ1ð Þ32

¼ κ pð Þ
� �

: p flops.
Fig
Total complexity for M symbols (M in practice is
between 10 to 100) is: 4MN cflops +3M(p-1) flops.
On the other hand, the Morozov stopping rule relies
mainly on the estimation of the noise variance. A
typical noise variance estimation algorithm used in
wireless communication systems and specifically
within the context of spectrum sensing [18], solves a
yule-walker set of equations using Levinson-Durbin
algorithm and needs a complexity of 2MN2 cflops [19].
It is clear from the above expressions that the
computational complexity of the L-curve early stopping
method is less than that of Morozov early stopping
method by an order of magnitude. Therefore, in terms
of computational complexity, using the L-curve, early
stopping method is much cheaper than using the
Morozov early stopping method.
7. Simulation results
In the following, we evaluate the performance of the
LPIC detector equipped with the L-curve stopping rule
and based on the residual norm steepest descent and
conjugate gradient least squares, respectively (which are
referred to by RNSD-LPIC and CGLS-LPIC detectors,
for conciseness).
ure 5 The (a) residual's norm and (b) its curvature of the RNSD-LP
First, we show how the L-curve method works. For
this reason, we plot the norm of the residual error of
both the RNSD-LPIC and CGLS-LPIC detectors for one
OFDM symbol versus the stage index p, and we plot also
its curvature using Equation (32). We set the carrier fre-
quency to 3.5 GHz, SNR to 5 dB, N to 128, and K to 4
with frequency offsets (ɛ 1 = −0.35, ɛ 2 = 0.38, ɛ 3 = 0.36,
ε 4 = −0.39) and speeds 80, 120, 90, and 100 km/h,
respectively.
While a unique peak can be distinguished for the curva-

ture of the residual's norm of the RNSD-LPIC detector as
depicted in Figure 5, this is not the case with CGLS-LPIC
detector. As shown in Figure 6, the residual's norm of the
CGLS-LPIC detector exhibits an erratic behavior at later
stages where it fluctuates and introduces wrong peaks in
the curvature curve resulting in wrong stage index calcu-
lation using the L-curve method. To overcome this
phenomenon, the norm of the residual error is fitted with
a decaying exponential of the form: a1 þ a2e−a3p. It is clear
now that the L-curve method can be used without any pit-
fall and a unique peak is obtained from the curvature in-
formation. In all subsequent simulations, we consider
RNSD-LPIC and CGLS-LPIC detectors in which the norm
of the residual error is fitted with the decaying exponential
stated above.
In Figures 7, 8, and 9, the sensitivity of the L-curve

method with respect to the condition number of the sys-
tem matrix (which varies with the time varying fading
channel) is evaluated for different SNRs. The same param-
eters used in Figures 5 and 6 are used here as well except
for the SNRs where the SNR is fixed to 1, 10, 20, and
30 dB, respectively. In addition, the L-curve technique is
used over 5,000 consecutive OFDM symbols and the
histogram of the stage indices of the RNSD-LPIC and
IC detector.



Figure 6 The (a) residual's norm and (b) its curvature of the CGLS-LPIC detector.
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CGLS-LPIC detectors are plotted in Figures 8 and 9,
respectively.
As depicted in Figure 7, the condition number of the

system matrix varies from one OFDM symbol to another
and it is dependent on the fading channels of the differ-
ent users. It can be seen that the condition number of
the system matrix varies largely in magnitude where it
can go from 103 to 106.
As depicted in Figures 8 and 9, it is clear that the stop-

ping stage determined by the L-curve method for both the
RNSD-LPIC and CGLS-LPIC detectors is almost fixed
with respect to the condition number variations of the sys-
tem matrix over 5,000 OFDM symbol (see Figure 7) for
Figure 7 Channel condition number versus the OFDM symbol.
each SNR. Consequently, it is sufficient to evaluate the
stopping stage index for a few OFDM symbols (say 100
OFDM symbol) and then get the average stopping stage
index and use it for the subsequent OFDM symbols. This
is a very important result as it allows avoiding the calcula-
tion of the stopping stage for every OFDM symbol and
thus renders this scheme very efficient in terms of compu-
tational complexity.
It also is clear that the stopping stage is almost constant

on average with increasing SNR while in principle, it
should increase. This is one of the deficiencies of the L-
curve method, and it is due to the fact that the L-curve
method is not a converging stopping rule, in the sense that



Figure 8 Histogram of the stopping stage index for SNR = (a) 1 dB, (b) 10 dB, (c) 20 dB, and (d) 30 dB.
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the solution obtained using the L-curve method does not
converge to the true solution if the noise variance vanishes
to zero.
The L-curve method is somewhat sensitive to the size of

the system matrix determined by the number of subcar-
riers N. To illustrate this fact, we plot the histogram of the
stage indices determined by the L-curve method over
5,000 OFDM symbols for two values of the subcarriers N,
Figure 9 Histogram of the stopping stage index for SNR = (a) 1 dB, (b
that is N = 8 and N = 32, respectively. We can see from
Figures 10 and 11 that the most dominant stage index for
N = 8 is four stages while the most dominant stage index
for N = 32 is five stages. In addition, we have seen previ-
ously from Figures 8 and 9 that for N = 128, the most
dominant stage index is six stages which indicates that the
most dominant stage index increases with the number of
subcarriers N.
) 10 dB, (c) 20 dB, and (d) 30 dB.



Figure 10 Histogram of the stopping stage index for N = 8.
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This suggests that the stopping stage determined using
the L-curve method should be updated whenever the
total number of subcarriers N in the system changes, for
example, if one user needs a higher data rate and is
assigned a higher number of subcarriers, or if one user
enters or leaves the system, etc.
In Figure 12, we evaluate the convergence behavior of

both the RNSD-LPIC and the CGLS-LPIC detectors
equipped by the L-curve stopping rule by varying the
stage index p and assessing its average BER performance.
For comparison purposes, we simulate also the decorre-
lator (DEC) and the LMMSE (LMMSE) detectors. We
use the same simulation parameters as in Figures 5 and 6
but we set the SNR to 13 dB. One can see the semi-
convergence behavior of both the RNSD-LPIC and the
CGLS-LPIC detectors and how the detectors equipped
with the L-curve method stop at six or seven stages and
yield an average BER that is between that of the decorr-
elator and LMMSE detectors yet they do not require
any information about the noise variance.
Figure 13 illustrates the average BER performance

versus the SNR of the RNSD-LPIC and the CGLS-LPIC
detectors equipped by the L-curve stopping rule. It is
clear that the RNSD-LPIC detector performs better
than the decorrelator detector if the SNR is less than
15 dB and the CGLS-LPIC detector performs better
than the decorrelator detector if the SNR is less than
16 dB. This suggests that the L-curve method can be
used only for low to medium SNRs; fortunately, these
regions suffer the most from the noise enhancement
effect, and therefore, this deficiency of the L-curve
method is not serious.

8. Conclusion
In this work, we introduced new linear interference
cancellation detectors for low to medium SNR ill-
conditioned communication systems that perform close
to the LMMSE detector though they do not require the
knowledge of the noise variance information. These lin-
ear IC detectors are based on early an stopping rule
known as the L-curve method. Simulation results indi-
cate that these detectors are insensitive to both the con-
dition number of the system matrix and SNR and can
work well up to SNR of 16 dB.

Appendix
In the following, we develop the average BER of the
RNSD-LPIC and CGLS-LPIC detectors.



Figure 11 Histogram of the stopping stage index for N = 32
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The QPSK scheme can be seen as two superimposed
BPSK channels, these channels are orthogonal to each
other and do not mutually interfere; therefore, the BER
of QPSK scheme is simply the same as that of the BPSK
scheme, and it is enough to conduct the BER probability
Figure 12 Convergence behavior of the RNSD-LPIC and the CGLS-LPIC
analysis using the real or imaginary part only. In this
derivation, we consider the real part of the decision
vector yp.
The vectors yp and b can be decomposed as yp =

[yp,1 yp,2⋯⋯ yp,n⋯ yp,N]
T and b = [b1 b2⋯⋯ bn⋯ bN]

T;
detectors equipped by the L-curve stopping rule.



Figure 13 Average BER versus SNR performance of the RNSD-LPIC and CGLS-LPIC detectors equipped by the L-curve stopping rule.
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therefore, the real part of the nth element of the vector yp
can be written as:

ℜ yp;n
� �

¼ ℜ gHp;nr
� �

¼ ℜ gHp;n
~~Ψbþ n

� �� �
; ð33Þ

where n is a vector of AWGN I.I.D samples of zero mean
and variance ρ2. By using the total probability theorem, we
can write.

P bn≠
⌢

bn
� � ¼ P bn ¼ 1;ℜ yp;n

� �
< 0

� �
þP bn ¼ −1;ℜ yp;n

� �
> 0

� �
¼ P bn ¼ 1ð ÞP ℜ yp;n

� �
< 0jbn ¼ 1

� �
þP bn ¼ −1ð ÞP ℜ yp;n

� �
> 0jbn ¼ −1

� �
¼ 1

2
P ℜ yp;n

� �
< 0jbn ¼ 1

� �
þ 1
2
P ℜ yp;n

� �
> 0jbn ¼ −1

� �
¼ P ℜ yp;n

� �
< 0 bn ¼ 1Þ; ð34Þj

�

thus

P bn≠
⌢

bn
� � ¼ P ℜ gHp;n

~~Ψbþ n
� �� �

< 0jbn ¼ 1
� �

¼ P ℜ gHp;nn
� �

< −ℜ gHp;n
~~Ψb

� �
bn ¼ 1Þ:j

�
ð35Þ
Due to the symmetry of the Gaussian (Normal) func-
tion, we have

P ℜ gHp;nn
� �

< −ℜ gHp;n
~~Ψb

� �
j

�
bn ¼ 1Þ

¼ P

�
ℜ gHp;nn
� �

> ℜ gHp;n
~~Ψb

� �
jbn ¼ 1

	
;

ð36Þ

hence

P bn≠
⌢

bn
� � ¼ P ℜ gHp;nn

� �
> ℜ gHp;n

~~Ψb
� �

jbn ¼ 1
� �

¼ Q
ℜ gHp;n

~~Ψb
� �

−E ℜ gHp;nn
� �h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ℜ gHp;nn

� �h ir
0
BB@

1
CCA:

ð37Þ

We have

E ℜ gHp;nn
� �h i

¼ 0 ð38Þ

and

var ℜ gHp;nn
� �h i

¼ E ℜ gHp;nn gHp;nn
� �H

� 	� �
¼ E ℜ gHp;nnn

Hgp;n
� �h i

¼ σ2ℜ gHp;ngp;n
� �

;

ð39Þ
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thus

P bn≠
⌢

bn
� � ¼ Q

ℜ gHp;n
~~Ψb

� �
−E ℜ gHp;nn

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ℜ gHp;nn

� �h ir
0
BB@

1
CCA

¼ Q
ℜ gHp;n

~~Ψb
� �

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜ gHp;ngp;n
� �r

0
BB@

1
CCA:

ð40Þ
Conditioning over all interfering bits, the probability

of error can be written as:

Pb p; nð Þ ¼
X

b1∈ −1;1f g
⋯

X
bj∈ −1; 1f g
j≠n

⋯
X

bN∈ −1;1f g
Q

ℜ gHp;n
~~Ψb

� �
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜ gHp;ngp;n
� �r

0
BB@

1
CCA

¼ 1

2N−1

X
all b
bn¼1

Q
ℜ gHp;n

~~Ψb
� �

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜ gHp;ngp;n
� �r

0
BB@

1
CCA:

ð41Þ
Averaging over all subcarriers, we obtain

Pb pð Þ ¼ 1
N

XN
n¼1

1

2N−1

X
allb
bn¼1

Q
ℜ gHp;n

~~Ψb
� �

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℜ gHp;ngp;n
� �r

0
BB@

1
CCA: ð42Þ

Endnote
acflop states for any complex addition, complex sub-

traction, complex multiplication, or complex division.
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