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Abstract

Estimating the number of competing terminals n (who wish to transmit a packet at the same time) in the IEEE 802.11
system is important for system throughput performance because optimal back-off window size needs to be selected
based on n. Therefore, as a new approach for estimating n, we propose H infinity filter that does not need a state
variation detector as opposed to the cases of previously proposed approaches. The state variation detector’s flaw is
incurring tracking latency in addition to the side effect of increased computational cost. All previously proposed
approaches demand the employment of the state variation detector to detect the variation of n in the IEEE 802.11
system. By employing H infinity filter, we show improved throughput performance of the system compared to that of
previously proposed approaches (e.g., the Kalman filter and particle filter) based on the improved performance in
tracking n. In this paper, we justify the superiority of the proposed approach in the terms of tracking performance,
throughput performance, and computational complexity.
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1 Introduction

IEEE 802.11 wireless local area network (WLAN) proto-
col [1] is commonly employed in response to the increased
usage of multi-protocol mobile devices such as smart-
phones. This protocol shares medium resources based on
distributed coordination function (DCF) in its medium
access control (MAC) layer. DCF is a random access
scheme and employs ‘carrier sense multiple access with
the collision avoidance (CSMA/CA)’ protocol [2,3]. If
a terminal detects a collision with other terminals for
medium access, it waits for a random time interval and
retries to acquire medium resources according to the pro-
tocol. The terminal selects random time interval within
‘binary exponential back-off window size! The throughput
performance of the system can be maximized by selecting
the optimal window size based on the number of compet-
ing terminals (n) which try to transmit packets simultane-
ously [4-6]. According to the DCF protocol, a terminal can
choose either the ‘basic access mode’ or ‘request-to-send/
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clear-to-send (RTS/CTS) access mode’ depending on
a predetermined RTS threshold of the packet payload
length. It has been shown in [7] that the RTS thresh-
old which maximizes the system throughput performance
also depends on # [8]. Therefore, there are a number of
motivations for the accurate estimation of #; nonetheless,
the task is not easy because n varies without any prior
information nor statistical knowledge.

The extended Kalman filter (EKF) approach was pro-
posed in [9] where a ‘state variation detector based on
cumulative summary (CUSUM) algorithm’ is additionally
employed to adaptively change the state noise variance
when the variation of n is detected. Particle filtering
(PF) was also proposed in [10] to combat the non-
Gaussian/non-linear problem. Recently, Gaussian mixture
sigma point particle filtering (GMSPPF) was proposed in
[11] that shows outperforming results over existing meth-
ods, e.g., the EKF, unscented Kalman filter (UKF), PF,
unscented PF (UPF).

The novel contribution of this paper can be specified in
the following. In this paper, we propose a new approach,
i.e,, H infinity filter (HIF) for estimating », by which we
can obtain enhanced throughput performance compared
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to that obtained by previously proposed approaches. The
proposed HIF can be employed without the knowledge
on noise statistics of the problem (i.e., the state and mea-
surement noise). Consequently, we do not need to know
the variance of the state noise as opposed to the cases
of the EKF and PF approaches. In the usage of the EKF
and PF, we need the knowledge on the mean and vari-
ance of the state and measurement noise; furthermore,
Gaussian noise is assumed in the applications of the EKF.
However, in the investigated problem of this paper, the
varying pattern of the state (i.e. n) is hard to be known.
Therefore, the state variation detector (i.e. CUSUM algo-
rithm) was additionally employed in the application of the
EKF [9]. This is the same case for the application of PF
to the investigated problem. In other words, additional
CUSUM algorithm needs to be employed for the appli-
cation of PF too for this problem. This state variation
detection algorithm also causes the delay in the tracking
ability against the prompt detection of the state variation.
Consequently, the employment of HIF requires the least
computational complexity due to the non-necessity of the
additional CUSUM algorithm for the detection of the state
variation. The computational complexity of PF is propor-
tional to the number of particles (e.g., if 100 particles are
employed, the computational complexity of PF is approx-
imately 100 times as that of the EKF or HIF). Therefore,
the advantages of the proposed filter are the superior-
ity in the computational complexity and prompt tracking
ability that results in the better mean squared error perfor-
mance for accurate tracking of n. Furthermore, accurate
tracking performance affects the throughput performance
of the network. These advantages originally result from
the feature of the HIF that we can apply this filter with
unknown noise statistics (both state and measurement).
In this paper, we justify the superiority and advantageous
features of the proposed HIF in terms of tracking ability,
throughput performance, and computational complexity.

2 The problem formulation

2.1 Estimation in dynamic state system

Many problems in the area of signal processing, a param-
eter of interest is estimated based on some measurement.
Particularly, if the system model can be described by the
discrete time-varying states with corresponding measure-
ment, we can estimate the state sequentially by applying
dynamic filters. The dynamic state system that # and
observed measurement & with zero mean and additive
noise processes of w and v at time step k is expressed as
follows:

ny = g(np_1) + wy, (1)
Ek = h(ng) + vi, 2)

where boldface denotes a vector, and g(-) and A(-) are
the given state transition and the observation function,
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respectively, which are possibly non-linear. According to
this system model, we can estimate the time-varying state
ny sequentially based on the observed measurement & by
dynamic filters, e.g., the Kalman filter, particle filter, and
their variants.

In general cases, i.e., apart from the linear and Gaussian
case, there exist a number of sub-optimal approaches such
as particle filtering (PF) [12,13]. The Kalman filter also
can be applied as a sub-optimal approach to non-linear
model by extending it using Taylor series (in this case, still
Gaussian noise is assumed) [14].

There are also variants of the EKF and those of PF
approaches, e.g., UKF, Gaussian PF, auxiliary PF, likeli-
hood PF, etc. Although PF approaches require high com-
putational cost, they outperform EKF and its variants in
most highly non-linear problems; furthermore, the Gaus-
sian noise does not have to be assumed.

2.2 Dynamic state system for estimating z

All the filtering methods, i.e. the proposed approach in
this paper and previously proposed approaches, basically
estimate the dynamically varying (in time) state by using
a measurement which is a function of the state. There-
fore, the problem of estimating # needs to be modeled by
the ‘dynamic state system’ and consequent ‘measurement
equation’ first.

Following [7,9], we consider a scenario of the fixed num-
ber of n competing terminals. Each terminal operates
in the saturated network and ideal channel conditions:
the saturated network condition means that all terminals
always have a packet waiting for transmission, and neither
packet corruption nor hidden terminals are assumed in
the ideal channel condition. £ denotes the probability that
a packet is transmitted on a collided channel. Then, # can
be expressed as the function of £ as follows [9].

log (1 —¢)
2(1-2§)

n=fE =1+
log (1 ~ T 25 Ot DT D5

)’ 3)

where m and Dy, denote the maximum back-off stage
and the minimum contention window sizes, respectively.
After a collision, each terminal doubles its contention
window size up to the maximum value Dpyax = 2" Dpin,
where m = log, (Dmax/Dmin). Maximization of the satu-
ration throughput of IEEE 802.11 systems has been stud-
ied [4,7]. Saturation throughput is defined as ‘the number
of successfully transmitted payload slots by all terminals
over observed slot numbers! It can be thought of as the
channel utilization efficiency. In order to maximize the
saturation throughput, the minimum back-off window
size is properly selected, and the optimal relationship is
analytically obtained as follows:

Duin = nv 2T, (4)
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where T is the packet transmission time that comprises
the header, SIFS, ACK, and DIFS. The size of T depends
on the employed PHY and transmitted payload size; there-
fore, it can be easily obtained to the terminal. Dy, needs
to be selected according to (4) to obtain optimal satura-
tion throughput of the system. From (3), we can estimate
the number of competing terminals by measuring col-
lision probability & regardless of the packet size. £ is
measured by each terminal at the time step k (each time
step comprises B slots) as follows:

kB—1

Z Ci (5)

L (k—1)B

where C; = 0 if the corresponding slot is empty or the
transmission is successful during the slot i while C; = 1 if
the slot is busy or collided.

B is a constant value; however, it does not mean that
the true observation time duration is constant [9,15]. As
shown in Figure 1, one slot can have the duration of an
empty slot (defined by the standard) or last the transmis-
sion time of either a successful transmission or a collision.
If the packet length or # increases, then the actual obser-
vation time increases even if B remains the same. This will
degrade the prompt tracking performance.

The discrete time dynamic state system model for the
number of competing terminals is defined as follows [9].

N = Ag—1 + W, (6)

where wy is the state process noise.
The obtained measurement (5) is related with the state
1y based on (3) as follows:

Ec =f " om) + v = h(me) + v, (7)
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where /(-) is the inverse function of (3), v is the observa-
tion noise that follows the binomial distribution with zero
mean, and the variance can be computed as follows [15]:

h(me)-[1 — h(ng)]
—

Therefore, the system model of the problem is non-
linear and non-Gaussian. Based on the problem formula-
tion, i.e., (6) and (7), we are ready to apply all the filtering
approaches now. It is assumed that (6) and (7) are known
except for the information of wy. The state variation detec-
tor is employed to obtain even a limited information of
the statistics of wy in the previously proposed approaches,
while preliminary training process with unknown statis-
tics is performed in the extended HIF (EHIF) approach.
The filtering methods estimate 7y by using the measured
information of (7) at every time step. Note that all vari-
ables (ny, &, wi, v) are expressed in a scalar form because
the state and measurement are all scalar in this problem.

Var[vi] = (8)

3 Filtering methods

In this section, we propose H infinity filter for the problem
of estimating the number of competing terminals and also
discuss previously proposed approaches.

3.1 Previously proposed approaches

The Kalman filter is the optimal method if the problem
is linear and jointly Gaussian. The investigated prob-
lem is non-linear and non-Gaussian. The EKF can be
employed in non-linear systems using the Taylor expan-
sion. This EKF algorithm was proposed in [9], and addi-
tional CUSUM algorithm was employed for the state
variation detector. Using the CUSUM algorithm, the
EKF changes the state noise variance Q adaptively. This
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approach may work well, but it has considerable latency.
Another disadvantage for limited performance is that only
two deterministic variances are used regardless of statisti-
cal variation pattern of n.

GMSPPF [16] adopts an ‘UKF-based Gaussian sum fil-
ter” in particle filtering framework. GMSPPF employs the
Gaussian mixture model (GMM), and GMM has multiple
means and variances to represent a complicated density
which cannot be represented by a normal Gaussian model.
GMSPPF uses G - I - ] numbers of parallel UKF banks
(where G is the number of GMM components, [ is the
number of state noise components, and J is the num-
ber of measurement noise components). Furthermore,
the expectation maximization algorithm is employed to
obtain the GMM from particles.

In [11], GMSPPF was proposed for the investigated
problem and showed that GMSPPF provides more out-
standing performance compared to that of the EKF, UKF,
PF, and UPF; however, this paper assessed the perfor-
mance of the approaches without employing the CUSUM
algorithm in any approaches, which is not appropriate.
Therefore, in this paper, we apply the CUSUM algorithm
to all existing approaches, and compare the performance
with that of EHIF which does not need the CUSUM
algorithm.

We also consider another PF approach, i.e., Gaussian
PF (GPF) [17] in this paper for performance comparison
although GPF has not been proposed for the investigated
problem in the literature. In GPF, resampling process is
replaced by another step of particle generation from a
Gaussian density that has the sample mean and the sample
variance of generated particles from the prior density. Due
to the advantages of simplicity and low computational
complexity, it is relatively easy to apply GPF algorithm
among particle filtering approaches. We can expect that
GPF outperforms the EKF when the CUSUM is employed
for both approaches.

3.2 Proposed approach

In this paper, we propose EHIF which does not require
the knowledge on noise statistics in its applications [18].
Whereas the EKF minimizes mean squared error (MSE)
of the estimate, EHIF is designed to minimize the worst
possible error. The original HIF was employed in control
areas, and HIF has not been widely employed due to its
level of mathematical understanding and the necessity of
a good modeling of the system. Discrete time HIF is based
on zero-sum game theory, and we minimize the cost func-
tion which is designed on the basis of the strategy that
the probability of maximum expected error is minimized
regardless of the opponent; therefore, the filter is a player
prepared for the worst strategy that the other player (the
nature) can provide, and the goal is providing a uniformly
small estimation error for any processes, measurement
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noises, and any initial states. Consequently, we do not
need to know the noise statistics of the system for the fil-
tering process. Accordingly, the cost function in discrete
time HIF is defined as follows:

N—-1 ~ 2
Ym0 I e — g 15,

~ 2 N-1 2 2
o — o 12, + 3 (u Wi o+ v “v;l)

J=

’

9)

where N is the number of total time steps, 71 is the esti-
mated state at time step k, wy is the state noise, vy is the
observation noise, and #y is the initial state, respectively.
Xio Pr» Wi, and Vi are weighting factors, and || - || denotes

the vector norm |i.e., || wg II%V,l impliesw,l—W’lwk .
3

The way how the weighting factors are determined is that,
for instance, if it is known that the second element of v(k)
is small, then Vj(2,2) is chosen to be small compared to
other elements; otherwise, the weighting factors are deter-
mined after preliminary training process. However, the
state () to be estimated is a scalar in this problem, which
results in simplified process of the preliminary tuning
process for satisfactory tracking performance.

Direct minimization of J is not tractable; therefore, the
performance bound y is introduced, and it satisfies

J < y_l. (10)

Then, /' is defined as

-1 ~ 2
J ==y lino =il +
0
N-1
~ 2 -1 2 2
> [n i — i I, —y (H wic Iy + I v ”vk‘l)]’
k=0

(11)

and the problem becomes a matter of solving the following
minimax problem:

min ( max J /) .
e \WkVkono
The EHIF approach which solves above minimax problem
is given by [18]

(12)

e = g1 + Hy [& — h(ig—1) ] (13)

if and only if there exists a stabilizing symmetric solution

Py > 0 to the following discrete time Riccati equation:
Pr = Pr_1Sk + Wi (14)

where ‘*” denotes the estimate version, Hy is the Hy gain,
and given by

Hy = Py Skt (ie—) Vi ! (15)
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oh(ny)
W » and

where /' (7x_1) = R
=1

-1
Sk = il — Y XkPk-1 + [h/(;lk—l)]Z Vk_IPk—1} , (16)

where [ is the identity matrix or 1 in case of a scalar.
Note that /' (71¢_1) is employed for an approximated lin-
ear form using Taylor expansion due to the non-linearity
of the state equation.

Although we need to compute the derivative of the
non-linear function k(ny), it is relatively easy to compute
because the state # is a scalar, and consequently, we do not
need to compute Jacobian. When the noise attenuation
level y is selected, we have to be very careful, especially it
has to satisfy the following condition:

y < P,:l + [h’(ﬁk_l)]2 V,:l

to maintain P > 0 [19]. We select y after preliminary
training process for optimal performance. The detailed
steps of EHIF algorithm for estimating » are summarized
in Algorithm 1.

17)

Algorithm 1 Extended H infinity filtering for
estimating n

Initialization Initialize the performance bound y, the
estimate 719 and weight parameters (xx, Pr, Wk, Vk); we
select 1 for xi.

Recursive update for k=1,...,N

(1) Compute H infinity gain
Hye = Pr_1Sih (- Vi
(2) Update the estimate
g = fg—1 + Hi [Pk - h/(hkfl)}
(3) Update the error variance Py = Px_1Sg + Wx.

In case the system model is linear (could be in some
other linear problems), i.e., if (1) and (2) can be expressed
in linear forms as follows:

ne = Gnp_1 + wy, (18)

£ =Hm + vy, (19)

where G and H are matrixes. Non-extended, original H
infinity solution can be obtained by the steps in the fol-
lowing:

1. Hinfinity gain Hx = GPr_1ScH " V', where

-1
Sk = {1 — ¥ XiPr-1+ HTV[IHqu}

2. The estimate #y = Giy_1 + Hy [Ek — Hﬁk_l].

3. Update Py = GPy_1S:G T + Wx.

The proposed EHIF approach just adopts Taylor expan-
sion to this solution for approximate linearization of

Page 5 of 9

non-linear measurement function. In this problem of esti-
mating n, G equals 1, and furthermore, H and Hig_;
are replaced by /' (#ix—1) and h(i1x_1), respectively, for the
application of extended version of Hy, filtering approach.

3.3 Computational complexity

We also assess the computational complexity of
approaches in big O notation in this section. The big
O notation concerns only major part of computational
complexity for comparison purpose. We assume that
‘matrix floating point’ multiplication demands the highest
computational complexity as assumed in [11]. The com-
putational complexity of the approaches are given in the
following, when M is the number of employed particles,
the dimension of the state is L, and G is the number of
GMM mixtures. The EKF requires O(L?), and the compu-
tation of the Kalman gain spans most of calculation time
in the algorithm. The EM algorithm requires most time in
the GMSPPF algorithm, and its computational complex-
ity is O(GL?*M). GPF requires the complexity of O(L*M),
and the calculation of the particle weight takes most time
in the algorithm. The computation of Sy demands most
time in EHIF filtering, and whole algorithm requires the
complexity of O(L%).

Furthermore, if the state is a scalar, i.e. L = 1 with 8 =2
and G = 3, the computational complexity becomes O(1)
for the EKF, O(M) for GPF, O(3M) GMSPPF, O(1) for
EHIF, respectively. The number of particles are the main
factor of the computational complexity for PF approaches.
When the number of particles are the same for all PF
approaches, GMSPPF requires the highest computational
complexity. Although the EKF and EHIF have the same
complexity in the big O notation, actually EHIF is much
simpler because it does not need the CUSUM algorithm.
Due to its low complexity, EHIF has an advantage for
implementing in small devices.

4 Performance assessment

By simulations, we assess and compare the performance
of the EKF, GPF, GMSPPF, and EHIF. We consider IEEE
802.11 system’s DCF basic access mode where the slot
period is 20 us, Dpax is 1024, and the other simulation
parameters are the same as selected in [9]. We assume
2,000 observation slots of B, the initial estimate 79 = 5,
and the initial error variance Py = 10 for all filtering
methods. The CUSUM algorithm is adopted in the EKF,
GPF, and GMSPPE. Three hundred particles are employed
for GPF and GMSPPE. The parameters for GMSPPF and
EHIF are as follows: G = 3,1 = 1,] = 2, y = 0.001,
xx = 1, Wy = 2, and V;x = 0.0001. The simula-
tions are performed using MATLAB 7.11.0. Some ReBEL
Toolkit functions (e.g., GMM) are adopted for GMSPPF as
employed in [16]. The performance is assessed via ‘MSE
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of estimated #’ and the ‘saturation throughput’ which has
been defined in Section 2.

Figure 2 shows how Dp,ip affects the saturation through-
put performance. In the middle of simulation, # varies
from 10 to 25. At that time, Dy, is adjusted based on two
numbers of terminals according to (4), i.e., the true n and
the estimate #FXF by the EKF, respectively. Whereas the
throughput is degraded as # increases with non-adjusted
Dpin, the throughput degradation is not observed when
Dhin is adjusted based on true n and AEKE,

In the saturated network condition, all terminals are
assumed to always have a packet waiting for transmis-
sion in their buffers. We assume that # varies with time
as follows: (5,10,25, and 15 terminals) and simulation
time duration is 350 s. This scenario is similar to that
employed in [9]. We run 200 simulations for both MSE
and throughput performance assessment. In this scenario,
all terminals estimate # and reflect it for adjusting Dmin
to maximize the throughput. The result shows that EHIF
outperforms all the other approaches in both MSE and sat-
uration throughput as shown in Table 1. The result shows
similar throughput performance for all approaches dur-
ing the period of non-variation of n whereas EHIF shows
the best throughput performance during the period of
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Table 1 Results of saturated network condition

Saturation throughput

Mean squared error (1500 160's)

Mean Variance Mean Variance

(107°)
EKF 1492829 0.055072 0.634940 4.891636
GPF 1.105716 0.034910 0.635292 3.649367
GMSPPF 1.079393 0.032417 0.635308 3.179673
EHIF 0.894879 0.019242 0.637274 1.853646

variation of #n. In Table 1, we highlighted the throughput
performance of EHIF during the period of the largest vari-
ate of 7 (i.e., from 10 to 25 at 150 s). This result is from the
fact that the approaches that employ the state variation
detector based on CUSUM algorithm has considerable
latency to make the decision for adjusting the variance in
their filtering. On the other hand, EHIF approach does
not have any latency during any variation of # because any
decision is not needed to be made in its filtering process.
This is how EHIF avoids the latency and makes the prompt
tracking possible for consequent enhanced performance.
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Figure 4 Mean squared error in non-saturated network condition.
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In the non-saturated network condition, all terminals
send packets randomly with random lengths. The scenario
is close to the real internet network condition where users’
random requests generate random data traffic. Therefore,
prompt tracking and latency avoidance is more critically
demanded in this scenario than the case of the non-
saturated network condition. We assume that the data
traffic length and the transmission period follow the expo-
nential distribution with the rates of 0.11/s and 0.7/s,
respectively. To describe large and frequent variations of
n, e.g., as in subways or hotspot areas, we change » every
20 s in the pattern of (15,25,15,30,and 20 terminals).
Figure 3 shows an example of tracking # by the EKF and
EHIF where we can notice that the tracking performance
of EHIF is better than that of the EKF. The EKF shows
latency clearly in tracking # that is caused by the employ-
ment of the state variation detector in the algorithm. On
the other hand, EHIF shows prompt tracking in response
to the variation of the state # without any latency. We eval-
uate MSE of estimates and saturation throughput by 200
runs with this scenario. Figures 4 to 5 and Table 2 show
that EHIF outperforms all the other filtering approaches
in the non-saturated network condition. EHIF shows the
best performance, particularly during the periods of the
large variate of # due to its prompt tracking performance.
Figure 5 shows the throughput performance of the meth-
ods, and the performance comparison is noticeable clearly
only during the periods of the large variate of n. Dur-
ing the periods of non-varying n, significant difference
of the throughput performance is not observed unless
the difference between the optimal Dpi, and applied one
is greater than a certainly impactive level. Nonetheless,
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Table 2 Results of non-saturated network condition

Mean squared error Saturation throughput

Mean Variance Mean Variance

(1077)
EKF 4363303 0.792361 0.639690 8408113
GPF 2.818697 0.391450 0.640170 8.687158
GMSPPF 2432454 0.292157 0.640205 7.770071
EHIF 1.528985 0.110101 0.640418 7.325334

prompt tracking ability is a crucial factor for enhanced
throughput performance, particularly for the periods of
dynamic variation of n.

5 Conclusions

In this paper, we proposed the EHIF approach for esti-
mating the number of competing terminals to enhance
the throughput performance of the IEEE 802.11 system.
We showed that EHIF outperformed previously proposed
approaches (i.e., EKF and GMSPPF) in both saturated
and non-saturated network conditions. We focused on
the ‘non-saturated condition’ more because the prob-
lem is barely investigated for the non-saturated condition
in the literature. Furthermore, the non-saturated condi-
tion is closer to real scenarios because the state n varies
more dynamically in the condition than it varies in the
saturated condition. In the application of EHIF, the knowl-
edge of noise statistics is not needed; therefore, additional
CUSUM algorithm is not needed that incurs the con-
siderable latency in tracking », which results in signifi-
cantly degraded tracking performance. Consequently, we
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obtained improved saturation throughput performance by
employing EHIF based on prompt tracking of n. Further-
more, EHIF can be easily implemented in small devices
due to its low computational complexity.
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