
Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23
http://asp.eurasipjournals.com/content/2013/1/23

RESEARCH ARTICLE Open Access

Multi-GPU based on multicriteria optimization
for motion estimation system
Carlos Garcia*, Guillermo Botella, Fermin Ayuso, Manuel Prieto and Francisco Tirado

Abstract

Graphics processor units (GPUs) offer high performance and power efficiency for a large number of data-parallel
applications. Previous research has shown that a GPU-based version of a neuromorphic motion estimation algorithm
can achieve a ×32 speedup using these devices. However, the memory consumption creates a bottleneck due to the
expansive tree of signal processing operations performed. In the present contribution, an improvement in memory
reduction was carried out, which limited accelerator viability usage. An evolutionary algorithm was used to find the
best configuration. It supposes a trade-off solution between consumption resources, parallel efficiency, and accuracy.
A multilevel parallel scheme was exploited: grain level by means of multi-GPU systems, and a finer level by data
parallelism. In order to achieve a more relevant analysis, some optical flow benchmarks were used to validate this
study. Satisfactory results opened the chance of building an intelligent motion estimation system that auto-adapted
according to real-time, resource consumption, and accuracy requirements.

Keywords: GPGPU, Motion estimation, Memory reduction technique, Multiobjective optimization

1 Introduction
Motion estimation and compensation are crucial for mul-
timedia coding characterized by high memory require-
ments and computation complexity. When considering
MPEG processing, motion estimation is acknowledged
as the most time-consuming [1], creating up to 90% of
the total execution time [2,3]. Additionally, motion esti-
mation has several applications regarding multimedia
scope as segmentation, extraction of 3D structure, pat-
tern tracking, filtering, compression, and de-blurring.
Differently developed motion estimation models and
algorithms can be classified into three main categories:
matching domain approximations [4], energy models [5],
and gradient models [6].
Block matching algorithms have the pros of robustness,

low cost VLSI implementation (because of their regular
parallel procedure), and low overhead (since they con-
tain one vector per block). Nevertheless, there are many
cons, since a block may contain several moving objects
and fail for zoom, rotational motion, local deformation,
and blocking artifact. In additional, they usually estimate

*Correspondence: garsanca@dacya.ucm.es
Computer Architecture Deparment, Complutense University of Madrid,
Madrid, Spain

the motion error by minimizing a metric, which does
not release the true movement, etc. Energy models are
probabilistic, delivering a population of solutions that do
not indicate motion itself and are not usually used for
multimedia purposes.
The gradient-based family can estimate vector motion

of every single pixel, giving a dense representation of the
processed frame. There are several examples of video
compression using gradient based algorithm [7]. Recur-
sive algorithms belonging to this family do not have to
transmit motion information. Nevertheless, this algo-
rithm family has the drawback of large motion vectors
(severe motion), noisy images, and changes in illumina-
tion. The present approach is based on a Multichannel
Gradient Model (McGM) [8-10], a neuromorphic algo-
rithm fitted to allow the construction of viable, highly
robust, front-end processors for image recognition
systems [11].
The increased computing capabilities of graphics pro-

cessing units (GPUs) in recent years has increased their
use as accelerators in many areas such as scientific sim-
ulations, computer vision, bioinformatics, cryptography,
and finance, among others. This increase is largely due
to impressive performance rates. For example, one of
the latest GPUs from Nvidia, the GTX 680, achieves

© 2013 Garcia et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 2 of 12
http://asp.eurasipjournals.com/content/2013/1/23

three petaflops in single precision with 1006 cores and
also incorporates the newer Kepler architecture. Current
trends seem to indicate that this capacity will grow even
more with the incorporation of 22 and 28 nm technolo-
gies. Recently, for example, AMD announced its Radeon
8000 Series, branded as Sea Island, and Intel is manu-
facturing Knights Corner products. However, key points
that dramatically affect performance rates include the effi-
cient use of the memory hierarchy and the exploitation of
parallelism capabilities.
The increased demand for information to be processed

also plays a role, because the use of these devices as accel-
erators is limited due to DDR memory restrictions. To
solve this problem, research [12] has often proposed a data
reuse alternative with the aim of minimizing the memory
traffic between GPU and CPU. Another approach in the
field of rendering meshes can be found in [13] a solution
that uses more efficient algorithms in terms of memory
consumption alongside other techniques based on simpli-
fication or information compression. The GPU memory
reduction proposed here is addressed using a motion esti-
mation scenario, which, to the best of our knowledge,
doesn’t exist as a solution in any of the current literature.
In previous study [14], we developed a GPU-based

McGM implementation. In the present article, we address
an efficient solution for dense and robust motion estima-
tion per pixel related with GPU memory consumption,
which limits the GPU viability.
This article is organized as follows: Section 2 moves

through a specific neuromorphic model; Section 3
presents the motivation of this study where multi-
objective optimization is used; and Section 4 shows per-
formance and visual results. Finally, Section 5 concludes
with the main contributions of this study.

2 Multichannel gradient model (McGM)
This original algorithm was proposed by Johnston et al.
We have applied Johnston’s description of the McGM
model [9,10] while adding many specific variations to
improve the viability of the GPU implementation, as we
will comment upon in later sections. Figure 1 shows a
simplified scheme of the processing pipe to be completed.

2.1 Stage I. temporal filtering
Taking as starting point the study performed by Hess and
Snowden [15] on temporal processing in human beings,
we model three different temporal channels: one low-pass

filter and two band-pass filters with a central frequency of
10 and 18Hz, respectively. These channels can be accom-
plished using a Gaussian differentiation in the log-time
domain.

k(t) = e−
(
log(t/α)

τ

)2
√

παe
(

τ2
4

) (1)

2.2 Stage II. spatial filtering
According to the space domain, the shape of the recep-
tive fields from the primitive visual cortex can be mod-
eled either by using Gabor functions—where the impulse
responses are defined by harmonic functions multiplied
by a Gaussian—or by using a derivative set of Gaussians
[16]. The Gaussian is a unique function in many ways and
is of particular importance to biology.
When the differentiation order increases, the Gaussians

are fitted and tuned to higher spatial frequencies. Finally,
a range of independent channels is constructed.

dn

dxn
(G0) = dn

dxn

⎛
⎜⎜⎝e

−
(

x2+y2

2σ2

)

σ
√
2π

⎞
⎟⎟⎠

= Hn

(
x√
2σ

)
Hn

(
y√
2σ

)(−1√
2σ

)2n

×

⎛
⎜⎜⎝e

−
(

x2+y2

2σ2

)

σ
√
2π

⎞
⎟⎟⎠

(2)

The nth Gaussian derivative can be expressed as a
Hermite polynomial multiplied by the original Gaussian:
(where σ is the standard deviation of the Gaussian, and
the scale factor ensures the function integrates to unity).

2.3 Stage III. steering filtering
The steering stage represents the approach to projecting
the space-temporal filters calculated in previous stages
under different orientations. Calling n and m the order
in x and y directions, respectively, θ (the angle projected)
and D (the derivative operator), the general expression is

Figure 1 Scheme of the multichannel gradient model with several stages.

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 3 of 12
http://asp.eurasipjournals.com/content/2013/1/23

derived as a linear combination of filters belonging to the
same order basis.

Gθ
n,m =

[n∑
k=0

(
n
k

)
(Dx cos θ)k

(
Dy sin θ

)n−k
]

∗
[m∑

i=0

(
m
i

)
(−Dx sin θ)i

(
Dy cos θ

)m−i
]
G0

(3)

2.4 Stage IV. Taylor truncation
At this stage, a truncated Taylor expansion is per-
formed, using each oriented filter previously calculated.
This function represents a robust structure that gathers
all space-temporal information sequences, approximat-
ing one generic pixel by the set of derivatives from the
neighborhood, which can be written as follows:

I
(
x + p, y + q, t + r

) =
l∑

i=0

m∑
j=0

n∑
k=0

piqjrk

i! j! k!

∗ ∂n

∂xi∂yj∂tk
I
(
x, y, t

) (4)

The three Taylor expansion derivatives are constructed
in one large image using the completed set of basis fil-
ter responses. According to the original model [9], the
expansions are truncated after the third-order in the pri-
mary direction and the second-order in the orthogonal
and temporal directions.

2.5 Stage V. quotients
This is the last stage derived to the common pathway
calculation. The next stages implement the modulus and
phase estimation with separate expressions. The goal here
is to compute a quotient of every sextet’s component:

X = ∂I/∂x
Y = ∂I/∂y
T = ∂I/∂t

∣∣∣∣∣∣→
XX XY XT
YY YT TT

∣∣∣∣→ YT/TT XY/XX XT/XX
YT/YY XY/YY XT/TT

(5)

2.6 Stage VI. velocity primitives
The previous stages compute the visual information con-
sidering a Taylor representation of each pixel and cal-
culating the speed for a range of orientations in order
to simulate the orientation columns found in the striate
cortex [9]. This is accomplished by rotating the coor-
dinate system and Gaussian derivative filters (Steering
Stage) to a number of primary directions. Next, the speed
measurements–parallel and orthogonal–are placed in pri-
mary directions in order to yield a vector of speed mea-
surements, whose components are speed and orthogonal
speed:

ŝ = (ŝ‖, ŝ⊥) (6)

The raw measurements of speed are also conditioned
by including the measurements of the image structure
XY/XX and XY/YY, where the final conditioned speed
vectors are given by:

ŝ‖ =
√

2
�

⎡
⎣XT
XX

(
1 +

(
XY
XX

)2
)−1

⎤
⎦

ŝ⊥ =
√

2
�

⎡
⎣YT
YY

(
1 +

(
XY
YY

)2
)−1

⎤
⎦

(7)

∑
is the number of orientations at which speed is

evaluated. Inverse speed is also calculated:

s̆‖ =
√

2
�

[
XT
TT

]
s̆⊥ =

√
2
�

[
YT
TT

]
(8)

Inverse speed is evaluated using different terms from
those used to compute speed, and so constitutes an
additional independent measurement. Finally, the motion
modulus is calculated through a quotient of determinants:

Modulus2 =

⎡
⎢⎢⎢⎣

ŝ‖ cos θ ŝ‖ sin θ

ŝ⊥ cos θ ŝ⊥ sin θ

ŝ‖s̆‖ ŝ‖s̆⊥
ŝ⊥s̆‖ ŝ⊥s̆⊥

⎤
⎥⎥⎥⎦ (9)

The direction of motion is extracted by calculating a
measurement of phase that is combined across all speed
related measurements, since they are in phase:

phase = arctan
((

s̆‖ + ŝ‖
)
sin θ + (s̆⊥ + ŝ⊥

)
cos θ(

s̆‖ + ŝ‖
)
cos θ − (s̆⊥ + ŝ⊥

)
sin θ

)

(10)

3 Multi-criteria motivation for tunningMcGM
Potential benefits of GPUs in the McGM context have
been explored in the literature [14], where authors stud-
ied the viability in these novel devices. Throughput results
with respect to a single CPU were satisfactory enough in
terms of performance, achieving ×32 speedups for 2562
resolution movies.
We would like to emphasize that this particular GPU-

based motion estimation scheme is an alternative to
consider in terms of Mpixel/s compared to other pur-
pose systems used for suchmotion-estimation algorithms,
although the algorithm features create a bottleneck,
specifically when memory requirements are increased in
each stage, with an upward trend. This disadvantage lim-
its GPU viability. Attending to the largest memory usage
configuration considered in [14], 3.5GB of global mem-
ory was used, which was close to the capacity limit of a
single GPU. Although the memory capacity is greater for
GPUs nowadays, this problem is still present with larger
data input resolutions.

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 4 of 12
http://asp.eurasipjournals.com/content/2013/1/23

The scope of this study is to explore mechanisms in
order to reduce the data amount without losing the
efficiency and accuracy requirements. To highlight the
memory handicap of GPUs, Table 1 shows the sum-
marized performance results observed using the McGM
algorithm in a graphic device compared with a single
CPU. The performance observed at each stage of the
algorithm is shown in Mpixel/s (Mpps), and the global
throughput with a particular model configuration, as
follows: three temporal derivatives, a temporal convo-
lution window of 15 frames, five spatial derivatives, a
spatial separable convolution window of 31 pixels, and
12 angles steered. Moreover, as shown in this table,
GPU implementation amply fulfilled real-time require-
ments in all of the resolution configurations considered.
This is further shown in the last column, which cor-
responds to overall performance, which was measured
in frames per second (fps). While general-purpose pro-
cessors can only reach real-time rates for small video
resolutions, GPU-based systems enabled higher resolu-
tion movies where more DDR memory capacity was
available.
In order to reduce algorithm memory consumption,

we could afford not to store, as a particular solution,
some of the temporary data computations, recalculat-
ing when necessary at the expense of reducing perfor-
mance throughput under real time conditions. The most
memory-demanding stages in the McGM algorithm cor-
respond to the Spatial Filtering and Steering stages. On
the one hand, an efficient way to reduce memory neces-
sities was to perform the Steering stage with less θ angles
at the expense of accuracy degradation. On the other
hand, it was possible to use a numerical derivative [17]
instead of the Gaussian counterpart in the Spatial Filtering
stage in order to allow faster derivative recalculation. This
alternative scheme was based on the fact of not requir-
ing intermediate data computation storage by saving a
huge amount of memory and to recalculate whenever data
were used. A simple numerical differentiating filter was

used based on the convolution commutative properties:
I ⊗ Gx = I ⊗ (G0 ⊗ Dx) = (I ⊗ G0) ⊗ Dx. The number
of operations performed in (I ⊗ G0)⊗Dx are smaller than
the Gaussian derivative filtering, making the convolution
process faster.
Table 2 shows the error in computing G0 ⊗ Dx to eval-

uate accuracy degradation. Filter degradation denotes
|(G0⊗DG)−(G0⊗DN)| difference whereDG andDN cor-
responds to Gaussian and Numerical derivative filtering,
respectively. As can be appreciated, loss of accuracy is not
so important for 9–31 pixel filtering, reaching a maximum
of 3% error. A priori, we may conclude that performing
numerical derivatives rarely creates considerable error.
Despite the unimportance of degraded filtering accu-

racy, an experiment comparing motion estimation degra-
dation is carried out to evaluate the loss of accuracy in the
overall algorithm. As benchmarks, we have used a cou-
ple of synthetic sequences widely accepted in this context:
the ‘diverging tree’ and the ‘translating tree’, both created
by David Fleet at Toronto University [18]. The ‘diverg-
ing tree’ shows an expansive motion of a tree (in camera
zoom mode) with an asymmetric velocity range depend-
ing on the pixel position (null in the central focus and
1.4 pixels/frame and 2 pixel/frames in the left and right
boundaries, respectively). The ‘translating tree’ shows the
translational motion of a tree with an asymmetric veloc-
ity range depending on the pixel position (zero to 1.73
pixel/frames and zero to 2.3 pixel/frames in the left and
right border, respectively). For an error metric, we used
Barron [19], considered to be one of the most accepted
metrics in the specialized literature.
Barron Equation (11) shows deviation from the correct

space-time orientation, the velocity being a 3D unit direc-
tion vector. This vector wraps both modulus (speed) and
phase (direction) in a single value reducing and reduce the
rise of directional errors for small velocities.

v = 1√
u2 + v2 + 1

(u, v, 1)T (11)

Table 1 Performance of the GPU versus CPU

Init. GPU Temp. Fil. Spatial F. Steering Taylor Velocity Total Total
(s/pix) (Mpps) (Mpps) (Mpps) (Mpps) (Mpps) (Mpps) (fps)

CPU(322) 10.30 21.63 90.99 217.87 247.24 6.14 6327

GPU(322) 3.28E-5 124.69 0.62 4.66 8.04 50.40 0.50 375.7

CPU(642) 12.85 1.44 2.09 3.78 20.14 0.64 195.2

GPU(642) 9.08E-6 495.98 2.55 15.77 25.54 169.08 2 296.4

CPU(1282) 13.97 0.92 1.20 2.06 11.53 0.39 30.72

GPU(1282) 7.21E-6 1166.12 8.79 36.17 51.49 240.65 6.03 210.8

CPU(2562) 21.50 1.05 1.30 1.70 12.98 0.41 8.631

GPU(2562) 2.25E-6 1724.63 27.56 47.62 64.20 289.21 13 99.64

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 5 of 12
http://asp.eurasipjournals.com/content/2013/1/23

Table 2 Filter accuracy degradation using a numerical derivative instead of the Gaussian counterpart for first, second, . . .
to the fifth derivative order

x′ x′′ x′′′ xIV xV

filter degradation 0.003825 0.009415 0.018444 0.033701 0.060134

Since the vector is self-normalized, the angle between
the measured velocity ve and the correct one vc is given
by Equation (12). This error measurement is calculated
for every pixel for which a velocity measurement was
recovered.

ψE = arccos (vc · ve) (12)

Table 3 shows an error in Barron’s angle when used
as a numerical derivative instead of a Gaussian counter-
part in spatial filtering with a significant θ angles reduc-
tion in the steering stage. Columns O(h), O(h2), O(h3),
and O(h4) denote the observed error of Barron’s angle
when performed with numerical derivatives with first-,
second-, third- and fourth-accuracy order, respectively. #θ
is related to the maximum number of θ angles projected
in the Steering stage. The table shows the impact of half-
or quarter-θs.
As observed, the ‘diverging tree’ experiment behaves

reasonably well with numerical derivatives reducing their
impact with a higher order of accuracy. Nevertheless, in
the ‘translating tree’ experiment, the algorithm is more
vulnerable to numerical derivatives than the number of
angles variation. Due to this disparity observed in Table 3,
it is advisable the space of feasible solutions with any set of
input data be explored. Given the large number of param-
eters to configure, on one hand relative to the McGM
algorithm, and on the other hand those based on avail-
able resources, the use of genetic algorithms (GAs) can be
useful to reduce time-consuming exploration.

3.1 Multi-criteria optimization description
The use of GAs arises from non-viability exploration with
a large solution space. In our context, the target is to
find a compromise in the reduction of the GPU’s mem-
ory usage with negligible accuracy degradation that allows
motion estimation system self-adaptation under apprecia-
ble environmental conditions and changes in a reasonable
time.
The goal of the multi-objective optimization [20] is

to simultaneously optimize several objectives that could

be inconsistent. Considering the problems, some trade-
offs among the different variables involved also need to
be considered. In our context, we consider the following
three-objective minimization problem:

Minimize z = (f1(x), f2(x), f3(x))
subject to x ∈ X, (13)

where z is the objective vector with 3 objectives to be
minimized: execution time f1, memory usage f2, and loss
of accuracy f3; z is the decision vector, and X is the fea-
sible region in the decision space, which corresponds to
all possible McGM configurations with respect to the
derivative decision and the number of angles involved. In
GA terminology, x corresponds to a chromosome. In our
context:

• Dx corresponds to the derivative to be computed in
spatial filtering. This information is stored in a
two-dimensional array whose values determine the
way their derivative is computed by means of
Gaussian or order-numerical differentiation. The
two-dimensional array position is related to the
derivative order.

• The number of θ angles to be performed in the
steering stage, which can be assigned as an integer.

3.2 Our multi-GPU implementation
Over the last few years, a great number of multi-objective
evolutionary algorithms have been developed [21-23]. A
revision of the GA can be found in a tutorial [24], where
the authors provide the revision’s more relevant features.
For this study, we have chosen the NSGA-II [25] for its

following advantages:

• Weights are not required, so it is not necessary to
study the impact of fi(x) and assign them.

• Its computational requirement is one, which presents
less computational complexity.

• Its ‘good’ behavior and ability to find a set of solutions

Table 3 Overall degradationmeasured as mean absolute error of Barron’s angle

O(h) O(h2) O(h3) O(h4) #θ/2 #θ/4

Diverging tree 0.9297 0.4982 0.4432 0.4020 0.0008 0.0122

Translating tree 1.5185 0.7965 0.7762 0.6903 0.0015 0.0296

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 6 of 12
http://asp.eurasipjournals.com/content/2013/1/23

near the true Pareto-optimal with few iterations.
• It’s widely used and amply tested.

The NSGA-II is based on a fast non-dominated sort-
ing procedure where a fast crowded distance estimation
is carried out. It involves a simple crowded comparison
operator [25]. The NSGA-II algorithm could be summa-
rized in the next stages:

1. Initially, a random population is created in pop.
2. The population is sorted based on the

non-domination scheme.
3. It is assigned a fitness, which means every individual

of the population is ranked into levels. First-level or
Pareto-front is most preferable.

4. A binary tournament selection and combination is
carried out.

5. A mutation phase is done.
6. A combined population R comes from the union of

an old pop with the new one new pop. The
population R is size 2 ∗ pop size.

7. R is ranked by means of the McGM algorithm and
sorted according to a non-domination scheme.

8. New population pop is made from size pop size.

The fast non-dominated sorting is the most computa-
tional cost part of the GA, because it involves ranking

every individual of the population. We urge that this task
be performed entirely on multi-GPUs since this is more
efficient than using a CPU, from computational point of
view. Most GA operators are executed in CPU due to its
low computational demand.
To rank an individual of the population means

to compute the McGM algorithm with chromosome
configuration, to compute the derivatives in Spatial Filter-
ing, and to compute the number of angles in the Steering
Stage to be performed. Several levels of parallelism are
exploited: a coarser level, where non-dominate sorting is
evaluated in parallel on several GPUs, and finer level by
means of data parallelism exploitation available in each
stage of the McGM algorithm. Algorithm 1 summarizes
our parallel implementation where pop size, ngens and
%mutation are GA input parameters which correspond
to population size, number of generations, and muta-
tion probability, respectively. The OpenMP paradigm is
used to distribute a non-dominated sort across multiple
devices by means of #pragma omp parallel for directives.
Our implementation generates Pareto-optimal solutions
with a set of motion estimation execution time, accu-
racy pixel error, and GPU memory usage points. This
feature allows the choice of one of the best solutions, tak-
ing into account the available computational resources
favoring the dynamic tuning depending on current
conditions.

Algorithm 1 pareto front = multiGPU NSGAII(pop size,ngens, %mutation)
pop = random init Population(pop size) %NSGAII − 1ststage
Fronts = McGM fast nondominated sort(pop) %NSGAII − 2nd&3rdstages
while gen ≤ ngens do

#pragma parallel for shared(Fronts,R) private(i,GPUth, p1, p2)
for i = 0; i ≤ pop size; i = i + 1 do

p1, p2 = select parents(pop(i))
newpop(i).x = crossover(p1, p2) %NSGAII − 4thstage
newpop(i).x = mutation(%mutation) %NSGAII − 5thstage
R(i) = newpop(i) ∪ pop(i) %NSGAII − 6thstage
GPUth = threadID();
Fronts = McGM fast nondominated sort(GPUth,R(i)) %NSGAII − 7thstage

end for
k = 0
pop = ∅
%NSGAII − 8thstage
while sizeof (pop) < pop size do

frontk = get fronts(Fronts, k)
pop = pop ∪ get Relements in front(R, frontk)
k = k + 1

end while
gen = gen + 1

end while
pareto front = get fronts(Fronts, 0)

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 7 of 12
http://asp.eurasipjournals.com/content/2013/1/23

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
20

30

40

50

60

70

80

90

100

Barron´s angle error ΔψE Barron´s angle error ΔψE

%
 o

f m
em

or
y

us
ag

e

Translating Tree
optimal
iter=200
iter=50
iter=20
iter=1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
20

30

40

50

60

70

80

90

100

%
 o

f m
em

or
y

us
ag

e

Diverging Tree
optimal
iter=200
iter=50
iter=20
iter=1

Figure 2 Evolution of the average objective in the GA for diverging and translating tree sequences. The number of points in the optimal
front is a subset of the final solution because execution time components have been removed. This figure shows only 15% of Pareto-pairs for the
‘translating tree’ while those in the ‘diverging tree’ are displayed at 40%.

4 Results
4.1 Work environment
The systems used are based on Tesla technology. The
first one consists of 2 Intel Xeon E5645 processors
with six cores (2.40GHz with 12MB cache memory
and Hyper-threading technology) and 2 Tesla M2070
GPUs. The second one is equipped with 2 Quad Intel
Xeon E5530 processors (2.40GHz with 8MB cache mem-
ory and Hyper-threading technology), connecting with
4 Tesla C1060 GPUs. In both cases, the operating sys-
tems are Debian 2.6.38 kernels; the compiler used is a
GNU g++ v.4.4 with compilation flags -O3 -m64 -fopenmp
and CUDA C/C++ SDK v.4.2 with -O3 -fopenmp -arch
sm 20/13 flags enabled.
The system based on Tesla M2070 incorporates Fermi

technology, but due to a scarce number of devices avail-
able, a scalability study has been completed with a system
based on 4 Tesla C1060 GPUs that allow projections be
made of parallel efficiency rates in more modern systems.

4.2 Multicriteria results
Multi-objective GAs are used to look for optimal solutions
in a huge search space. In our context, they are employed
to achieve a set of optimal solutions that reduce the GPU’s
memory usage in the McGM algorithm without losing
significant accuracy in the motion estimation scenario.
As previously mentioned, the tests were performed using
the ‘diverging tree’ and the ‘translating tree’ benchmarks,
which are widely accepted in this area.
The first experiment was to evaluate both the conver-

gence of the GA and the set of optimal solutions reached.
For this purpose, a Euclidean distance metric between
consecutive solutions was employed as described in [25].
The GA implemented incorporated a stop condition
based on a Euclidean metric when a certain number of

iterations remained invariant to ensure the non-dominant
solutions converged to the optimal Pareto-front.
Figure 2 shows the evolution of the set of non-

dominated solutions throughout the iterations with a
severe stop condition. To facilitate its visualization, only
the GPU’s memory reduction and the error difference
were included, although the GA also optimizes themotion
estimation time. Barron’s angle error ψE corresponds to
the difference of mean Barron error with respect to the
original McGM counterpart.
In this experiment, the population size was fixed to 500

with 1% mutation probability. The results obtained indi-
cated that after a certain number of generations, the GA
barely improved the non-dominant solutions, although it
reported new pairs.
Population size only affects the final execution time,

achieving results of an optimal solution with similar qual-
ity. Empirically, 1% of mutations reported better GA per-
formance. Higher mutation rates only suppose significant
variations between consecutive generations, which means
higher generations are necessary to reach the convergence
criterion. Particularly, greater mutation rates suppose a
higher number of iterations, which varies between 15 to
320%.
As shown in Figure 2, optimal solutions are gener-

ated with significant reduction in memory requirements,
achieving even more accurate solutions than the original
McGM’s algorithm for the ‘translating tree’ benchmark.

Table 4 Multi-GPU execution times for Tesla M2070 based
system

Tesla M2070 tCPU(s) tGPU(s) tComm(s)

1 GPU 1.24 22495.6 869.5

2 GPUs 124.2 12464.9 447.4

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 8 of 12
http://asp.eurasipjournals.com/content/2013/1/23

4.3 Multi-GPU results
Table 4 shows GA time measured in seconds in a system
based on the Tesla M2070 for the best GA configuration:
1% of mutation rate configuration, 500 individuals and
a severe convergence condition to find the Pareto-front.
The ‘diverging tree’ was used as a benchmark, although
similar performance rates were observed with the ‘trans-
lating tree’. Note that the benchmark choice only affects
the number of generations processed to reach an opti-
mal solution. As expected, the fitness evaluation is the
most costly stage of the GA by far. The information
exchange overhead between host and devices is not so
relevant, which reports satisfactory speedups of ×1.79 for
2GPUs.
Analogous results were obtained in a system with a

larger number of graphic devices. Table 5 shows even
higher accelerations when 2GPUs are enabled. Fur-
thermore, it is noticeable that scalability rates remain
satisfactory with 4GPUs, achieving ×3.71 speedups.
Computational results show that our multi-GPU imple-
mentation is efficient in terms of scalability (95 and 93%
using 2 and 4GPUs, respectively), and the tendency indi-
cates that GA convergence times would be even lower
if more computational resources were available. We can
conclude that this successful scalability makes GAs useful
for solving problems of this nature. These good perfor-
mance results are due to both a well-balanced workload
and low overhead involved in data exchange.
Moreover, the use of multiple levels of parallelism

reports multiplicative accelerations: first, the speedups
achieved in the multi-GPU system, which can be up to
×3.71 with 4GPUs enabled; and second, the accelera-
tions up to ×32 the can be achieved by exploiting the
data parallelism on a GPU. On one hand, the combination
of both accelerations allows the reduction of exploration
time to reach an optimal solution in 99.2% compared with
a general-purpose processor. On the other hand, the use
of a multi-GPU system not only reports greater FLOPS
rates than a CPU, but it is also beneficial in terms of power
consumption (MFLOPS/watt).
Moreover, although GA search times are important,

their use encourages getting suboptimal solutions that
meet the requirements of response time or resource con-
sumption, and as GAs evolve, they are gradually refined.
This feature, coupled with the chance of a population

Table 5 Multi-GPU execution times for Tesla C1060 based
system

Tesla C1060 tCPU(s) tGPU(s) tComm(s)

1 GPU 1.18 23748.0 2025.8

2 GPUs 278.52 12613.1 1022.5

4 GPUs 153.28 6284.4 513.5

size reduction, supposes an impressive simulation times
decrease which opens the possibility to build an intelligent
system that auto-corrects/adapts depending on the spe-
cific requirements or substantial environment changes.

4.4 Visual result
Finally, visual results are presented for both benchmarks
considered. Figure 3 shows the main differences in motion
estimation outputs in the ‘diverging tree’ benchmark. The
original McGM outputs appear at the top of the figure;
in the center and at the bottom their counterparts with
GA solutions for 75 and 50% memory requirements. It is
also remarked the motion estimation time consumption
(MEtime). The motion phase (the direction of the pixels)
is color-coded from the boundary frame (each particular
color pixel points outward to the border color frame). The
modulus or velocity magnitude is represented by a lin-
ear intensity of gray scales. Similarly, Figure 4 displays GA
solutions for the ‘translating tree’ benchmark.
For the ‘diverging tree’, a reduction of 75% in mem-

ory usage returns the same precision using the Barron
metric and 50% of the McGM execution time (MEtime)

Figure 3 The temporal blur of the original stimulus, modulus,
andmotion phase with the original McGM algorithm (top), and a
z GA solution of 75% (center) and 50% (bottom) of memory
usage for the ‘diverging tree’.

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 9 of 12
http://asp.eurasipjournals.com/content/2013/1/23

Figure 4 The temporal blur of the original stimulus, modulus,
andmotion phase with the original McGM algorithm (top), and a
z GA solution of 50% (bottom) of memory usage for the
‘translating tree’.

compared to the original algorithm. However, the config-
uration that reduces memory usage by 50% degrades the
accuracy in 22% with a speedup of ×3.3.
For ‘translating tree’ benchmark, a solution with half of

memory requirements is more accurate (Barron’s error is
0.13 radians less than the original McGM) and×3.5 faster.
Despite Barron metric’s popularity by the scientific

community in the context of motion estimation, some
authors [26,27] point out specific performances due to its
asymmetry and its bias of large flow vectors.

4.5 Other error metrics
Although Barron’s metric [19] is probably themost used in
the motion estimation scope, there are other metrics used
by Machine Vision community that must be taken into
account in order to enhance the visibility and generality of
the results obtained.
Otte and Nagel [26,27] remarked the fact of asymme-

try and bias for extensive optical-flow vectors. Based on
this drawback, it is proposed a newmetric which accounts
the magnitude difference between bidimensional ground
truth flow vector (ofvc) and the estimated one (ofve) as
shown in the Equation (14):

O&N =
∥∥∥ ˆofvc − ˆofve

∥∥∥ (14)

McCane et al. [27] claims this is not sufficient due it gets
discount error in regions of small flows. They propose two
metrics in order to overcome these problems. The first

metric is the angle difference between the correct tridi-
mensional vc vector and the estimated one ve used in the
Barron’s metric (Equation (15)) but the third component is
replaced by δ. In our experiments we assign δ = 0.75. This
threshold modulates the error considering less significant
in zones of small flow than in zones of large flow.

McCaneA = cos−1(v̂c, v̂e) (15)

An additional metric is proposed, such as the normalize
magnitude of the vector difference between the estimated
and the correct tridimensional flow vectors. The normal-
ization factor is the magnitude of the correct flow, it is
taken into account the effect of small flows using a signifi-
cance threshold T as shown in Equation (16). It is chose T
to be 0.5 pixels. The effect of this threshold would result
in a normalized error equal to the unity.

McCaneB =

⎧⎪⎨
⎪⎩

‖vc−ve‖‖vc‖ if ‖vc‖ ≥ T
‖ve−T‖

‖T‖ if ‖vc‖ < T ≤ ‖ve‖
0 if ‖vc‖ < T > ‖ve‖

(16)

Figure 5 shows the trend of the NSGA-II algorithm con-
sidering McCane and Otte&Nagel metrics. Analogously
to Section 4.2, ‘translating’ and ‘diverging tree’ sequences
are also used as benchmarks.
For the sake of clarity, Table 6 summarizes the main suc-

cessful configuration reported by GA execution. Results
observed are consistent with regardless of the metric
used. Meanwhile for ‘translating tree’ improves Motion
Estimation effectiveness with a significant reduction of
memory requirements, for ‘diverging tree’ no degrada-
tion is observed for 75% memory usage for any metric
performed. From the viewpoint of the execution times,
performance results are as expected. On the one hand
a reduction in memory requirements by 50% are trans-
lated into speedups from 3.3× to 4×. On the other hand,
75% of memory consumption reports an average of 50% in
motion estimation execution time.

5 Conclusions
A new and highly parallel approach is presented to over-
come the GPU memory usage problems that occurred in
our previous implementation of a well-known neuromor-
phic motion estimation algorithm. This context provides
the main motivation for using evolutionary algorithms
to solve multi-criteria optimization problems. The use of
GAs based on a multi-GPU scheme allowed for quick
exploration of feasible solutions with any set of input
data. The choice of NSGA-II is motivated by the good
results observed in a few iterations and a near-optimal
Pareto-front.
From the viewpoint of reaching a solution that meets

the requirements of memory consumption, we observed:

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 10 of 12
http://asp.eurasipjournals.com/content/2013/1/23

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
20

30

40

50

60

70

80

90

100

McCaneA´s error ΔψMcCaneA

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

McCaneB´s error ΔψMcCaneB

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

McCaneA´s error ΔψMcCaneA

%
 o

f m
em

or
y

us
ag

e

20

30

40

50

60

70

80

90

100

%
 o

f m
em

or
y

us
ag

e

20

30

40

50

60

70

80

90

100

%
 o

f m
em

or
y

us
ag

e

20

30

40

50

60

70

80

90

100

%
 o

f m
em

or
y

us
ag

e

Translating Tree

optimal
iter=200
iter=50
iter=20
iter=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

McCaneB´s error ΔψMcCaneB

20

30

40

50

60

70

80

90

100
%

 o
f m

em
or

y
us

ag
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20

30

40

50

60

70

80

90

100

%
 o

f m
em

or
y

us
ag

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Diverging Tree

optimal
iter=200
iter=50
iter=20
iter=1

Translating Tree

optimal
iter=200
iter=50
iter=20
iter=1

Diverging Tree

optimal
iter=200
iter=50
iter=20
iter=1

Translating Tree

optimal
iter=200
iter=50
iter=20
iter=1

Nagel´s error ΔψNagel Nagel´s error ΔψNagel

Diverging Tree

optimal
iter=200
iter=50
iter=20
iter=1

Figure 5 Evolution of the average objective in the GA for Diverging and Translating Tree sequences for McCane and Otte&Nagel metric.
The Pareto-front show the optimal configuration depending to the metric applied.

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 11 of 12
http://asp.eurasipjournals.com/content/2013/1/23

Table 6 Best configuration achieved for a reduction of 75
and 50%memory requirements usingMcCane and
Otte&Nagel metric

Error metric Benchmark Memory MEtime Accuracy
(�ψ)

Barron ‘Translating tree’ 50% 28.6% −0.13

‘Diverging tree’ 75% 50.0% 0.00

50% 33.3% 0.05

McCaneA ‘Translating tree’ 50% 26.9% −0.12

‘Diverging tree’ 75% 49.1% 0.00

50% 28.9% 0.05

McCaneB ‘Translating tree’ 50% 29.6% −0.11

‘Diverging tree’ 75% 49.2% 0.00

50% 34.5% 0.09

Otte&Nagel ‘Translating tree’ 50% 25.3% −0.21

‘Diverging tree’ 75% 49.1% 0.00

50% 35.7% 0.12

• For ‘diverging tree’, a reduction of 75% in memory
usage returns the same precision as the all metrics
considered and 50% of the McGM execution time
compared to the original algorithm. A configuration
that reduces memory usage by 50% degrades the
accuracy from 15 to 25% with a range of speedup
which varies from ×2.8 to ×3.5.

• For ‘translating tree’, a configuration that has half of
the memory requirements is more accurate in terms
of error and is between ×3.3 to ×4 faster.

From the point of view of multi-GPU efficiency is
observed:

• Successful performance of ×3.71 speedups are
archived when four GPUs are enabled.

• Our implementation is a scalable approach due to
both a well-balanced workload and low-impact
communication between host and device.

• A found multiplicative effect: ×3.71 speedups in a
multi-GPU system by ×32 acceleration by means of
exploiting the data parallelism on a GPU. An
impressive GA time in reaching an optimal solution
in 99.2% compared with a CPU.

• An alternative to be considered in terms of power
consumption (MFLOPS/watt).

Because of these encouraging results, the possibil-
ity exists for building an intelligent system that auto-
corrects/adapts depending on specific requirements or
environmental condition variations as the GA evolves.
Future lines are based on reusing this system with

an environment predictor, with the possibility of real-
time execution and self reconfiguration depending on

the external constraints and resources available in the
platform. This system is expected to contribute to the
new machine vision trends, useful for many real-world
applications.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The present study had been supported by Spanish Projects CICYT-TIN
2008/508, CICYT-TIN 2012-32180 and Ingenio Consolider ESP00C-07-20811.

Received: 31 October 2012 Accepted: 14 December 2012
Published: 19 February 2013

References
1. M Shaaban, S Goel, M Bayoumi, Motion estimation algorithm for real-time

systems. IEEE Workshop on Signal Processing Systems, 257–262 (2004)
2. JY Kang, S Gupta, S Shah, JL Gaudiot, An efficient pim

(processor-in-memory) architecture for motion estimation, IEEE
International Conference on Application-Specific Systems. Architectures,
and Processors, 282–292 (2003)

3. JY Kang, S Gupta, JL Gaudiot, An efficient data-distribution mechanism in
a processor-in-memory (pim) architecture applied to motion estimation.
IEEE Trans. Comput. 57(3), 375–388 (2008)

4. HS Oh, HK Lee, Block-matching algorithm based on an adaptive
reduction of the search area for motion estimation. Real-Time Imag. 6(5),
407–414 (2000)

5. CL Huang, YT Chen, Motion estimation method using a 3d steerable filter.
Image Vis. Comput. 13(1), 21–32 (1995)

6. S Baker, R Gross, I Matthews, Lucas-kanade 20 years on: a unifying
framework: Part 3. Int. J. Comput. Vis. 56, 221–255 (2002)

7. YM Chi, TD Tran, R Etienne-Cummings, Optical flow approximation of
sub-pixel accurate block matching for video coding. IEEE ICASSP. 1,
1017–1020 (2003)

8. A Johnston, PW McOwan, CP Benton, A unified account of three apparent
motion illusions. Vis. Res. 35(8), 1109–1123 (1995)

9. PW McOwan, CPB, A Johnston, Robust velocity computation from a
biologically motivated model of motion perception. Proc. Royal Soc. B.
266, 509–518 (1999)

10. X Liang, PW McOwan, A Johnston, Biologically inspired framework for
spatial and spectral velocity estimations. J. Opt. Soc. Am. A. 28(4),
713–723 (2011)

11. G Botella, A Garcı́a, M Rodriguez-Alvarez, E Ros, U Meyer-Bâse, MC Molina,
Robust bioinspired architecture for optical-flow computation. IEEE Trans.
VLSI Syst. 18(4), 616–629 (2010)

12. L Mattes, S Kofuji, Overcoming the GPU memory limitation on FDTD
through the use of overlapping subgrids. Int. Conference on Microwave
and Millimeter Wave Technology, 1536–1539 (2010)

13. Y Zhou, M Garland, Interactive point-based rendering of higher-order
tetrahedral data. IEEE Transactions on Visualization and Computer
Graphics. 12(5), 1229–1236 (2006)

14. F Ayuso, G Botella, C Garcia, M Prieto, F Tirado, GPU-based acceleration of
bioinspired motion estimation model. Concurrency and Computation:
Practice and Experience p. (in press). doi:10.1002/cpe.2946 (2012)

15. RJ Snowden, RF Hess, Temporal frequency filters in the human peripheral
visual field. Vis. Res. 32(1), 61–72 (1992)

16. JJ Koenderink, Optic flow. Vision Research. 26, 161–180 (1996)
17. B Fornberg, Generation of finite difference formulas on arbitrarily spaced

grids. Math. Comput. 51(184), 699–706 (1988)
18. DJ Fleet,Measurement of Image Velocity. (Kluwer Academic Publishers,

Norwell, MA, USA, 1992)
19. JL Barron, DJ Fleet, SS Beauchemin, Performance of optical flow

techniques. Int. J. Comput. Vis. 12, 43–77 (1994)
20. A Konak, D Coit, D Smith, Multi-objective optimization using genetic

algorithms: a tutorial. Reliab. Eng. Syst. Safety. 91(9), 992–1007 (2006)
21. C Fonseca, P Fleming, Genetic algorithms for multiobjective optimization:

formulation, discussion and generalization. Int. Conference on Genetic
Algorithms, 416–423 (1993)

http://dx.doi.org/10.1002/cpe.2946

Garcia et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:23 Page 12 of 12
http://asp.eurasipjournals.com/content/2013/1/23

22. N Srinivas, K Deb, Muiltiobjective optimization using nondominated
sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

23. CA Coello Coello, in Computational Intelligence: Principles and Practice,
chap. 4, ed. by GY Yen, DB Fogel. 20 years of evolutionary multi-objective
optimization: what has been done and what remains to be done (IEEE
Computational Intelligence Society, Vancouver, Canada, 2006), pp. 73–88.
ISBN 0-9787135-0-8

24. E Zitzler, M Laumanns, S Bleuler, A tutorial on evolutionary multiobjective
optimization. In Metaheuristics for Multiobjective Optimisation
(Springer-Verlag). 535, 3–38 (2003)

25. K Deb, A Pratap, S Agarwal, T Meyarivan, A fast elitist multi-objective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

26. M Otte, HH Nagel, Estimation of optical flow based on higher-order
spatiotemporal derivatives in interlaced and non-interlaced image
sequences. Artif. Intell. 78(1), 5–43 (1995)

27. B McCane, K Novins, D Crannitch, B Galvin, On benchmarking optical flow.
Comput. Vis. Image Underst. 84(1), 126–143 (2001)

doi:10.1186/1687-6180-2013-23
Cite this article as: Garcia et al.:Multi-GPU based on multicriteria optimiza-
tion for motion estimation system. EURASIP Journal on Advances in Signal
Processing 2013 2013:23.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Multichannel gradient model (McGM)
	Stage I. temporal filtering
	Stage II. spatial filtering
	Stage III. steering filtering
	Stage IV. Taylor truncation
	Stage V. quotients
	Stage VI. velocity primitives

	Multi-criteria motivation for tunning McGM
	Multi-criteria optimization description
	Our multi-GPU implementation

	Results
	Work environment
	Multicriteria results
	Multi-GPU results
	Visual result
	Other error metrics

	Conclusions
	Competing interests
	Acknowledgements
	References

