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Abstract

Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional
fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms
from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of
a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast
block-wise inverse Jacket transform of orders N = 2%, 3%, 5% and 6% where k is a positive integer. Based on the
Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for
realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and
Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be
applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order g-ary
Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and
4G MIMO long-term evolution Alamouti precoding design.
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1. Introduction
The orthogonal transforms, such as the discrete Fourier
transform (DFT) and Walsh-Hadamard transform (WHT),
have widely been used in images processing, data
compressing and coding, spatial multiplexing, and other
areas [1-11]. Using orthogonality of the WHT, the orthog-
onal matrices such as the element-wise or block-wise in-
verse matrices have been developed. It is shown that many
interesting orthogonal matrices say the Hadamard matrices
and the DFT matrices belong to the Jacket matrix family.
Jacket matrix [8,12,13], which is motivated by the center
weight Hadamard matrix [5,9,10], is a class of matrices with
its inverse being determined by element-wise of matrix.
Definition 1.1: An n x n matrix J,, = [a;],x, is called
the element-wise inverse Jacket matrix (EIJM) of order n
if its inverse matrix J,* can be obtained by its element-
wise inverse, ie., J,! = l/n[ajjl],{xm where T denotes the
transpose, then [J],,[/1,,* = [1],..
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Since the inverse of the Jacket matrix can be calculated
easily, it is very helpful to employ this kind of matrix in sig-
nal processing [1,14-16], encoding [17], mobile communi-
cation [16,18], and so on. In addition, Jacket matrices are
associated with many kinds of matrices, such as unitary
matrices and Hermitian matrices which are very important
in signal processing [19,20] and communication [15,19,20].

Motivation of this article is to develop an efficient matrix
inverse with a big size. For single-input single-output
communication systems, this problem has been solved
based on the EIJM [10]. However, nowadays communica-
tion environment changes to multiple-input multiple-
output (MIMO)-based 4G mobile systems. For example,
the coordinated multi-point transmission and reception
(CoMP) technique [21] is a new promising interference
cancelling scheme which has been adopted in LTE-
advanced systems. For these LTE-advanced systems, CoMP
is mostly required to reduce inter-cell interference. It also
increases the intra cell edge user throughput and improves
the coverage. Most research works based on precoding with
feedback schemes mainly focus on an explicit feedback in
the downlink CoMP with diagonal subchannel decompose
for interference alignment. Otherwise, the diagonal block-
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wise precoding matrix MIMO has been studied in [16,22].
A recent study [15,19,20] is valid only for the intra coopera-
tive reciprocal matrix with many parameters. It is shown
that the inverse transform of the element-wise inverse
Jacket transform can easily be obtained by taking each re-
ciprocal entry of the forward matrix of Jacket transform
and then transposing the resulting matrix. Thus, this article
proposes only a simple block-wise inverse Jacket matrix
(BIJM) for an orthogonal code design of inter matrices such
as MIMO channel with Alamouti code.

Therefore, in this article, we mathematically propose a
new fast block-wise inverse (FBI) Jacket transform. Our
main contributions are summarized as follows.

1. We propose an FBI Jacket transform for the orders
of N = 2, 3%, and 5%, where k is a positive integer.
With the help of the Kronecker product of the
successive lower order Jacket matrices and the
identity matrix, the fast algorithms can be realized.

2. We provide Arikan polar binary and Alamouti non-
binary matrices using the proposed simple inverse
and the fast inverse algorithm. It will be seen that the
resulting Arikan polar binary and Alamouti non-
binary matrices become the FBI Jacket transforms.

3. We derive the space—time block code (STBC) matrix
for the MIMO communications based on the
Alamouti nonbinary matrices.

This remainder of this article is organized as follows. In
Section 2, we present the conventional FBI Jacket trans-
form. Section 3 presents the proposed binary block-wise
inverse and Arikan polar binary basic matrices of order 2*.
Section 4 presents the binary block-wise inverse Jacket
transform (BIJT) of orders N = 3% and 5* for integer value
k. Section 5 presents the two-dimensional fast algorithms
for the binary BIJT. In Section 6, Alamouti MIMO non-
binary BIJT of order 2* is presented. Finally, conclusions
are drawn in Section 7.

2. The conventional fast BUT
In this section, we present the BIJM as follows [1]. Let p
be an odd prime and a denote a permutation matrix unit,
a’ = I, which is corresponding to the complex unit
exp‘/__l(z”/p) and the elements are over the same multi-
plicative group.

Definition 2.1: The BIJM is defined as

V), = ViV Vo], (1)

Where V; = {a®,a™ o, .. a?-V*} i€ {0, 1,...,
p — 1}. The inverse matrix of [J], is given by
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Ve, Vi-Vphl =1, (2)

Given a BIJM over GF (2), which is defined by @%al},
the permutation matrix unit o' = lei;],» is defined as

or i=(j+h
e = {(1) fi (j+h) (3)

otherwise

where (j + /1) = (j + h)mod p, with0 <4, j, h < p — 1. It can
easily be seen that @ al,..., a1} forms one Abelian
group with traditional matrix multiplication and I =a cor-
responding to the complex unit exp\/’_l(z”/m‘ Similar to
the Hadamard matrix, the BIJM [J], can be written as

(4)

S = O -
= o O
S = = O

- o = O

From Definition 2.1, the inverse matrix of [/], is given

1 0 1 O
-1 _ [(a® ! (a) I]T o 0 1 0 1
V" = [(Wl @' {1 0o o0 1| (5)
0O 1 1 O
with (@)™ = (@7. Further, the higher-order BIJT can

be generated from the following recursive equation
[]]N = []]N/2®[]]2, N = 4. (6)

where ® denotes the Kronecker product [23].
As an example, the order-4 matrix based on the block
factorization algorithm can be written as

a® a® a® a° [a® 2 0 0] [a® 0 0 O
a o' a® al| [a® &' 0 0| |0 a® 0 0
a a® ol | |0 0 a® 2| |0 0 a® o
a® ot al L0 0 a a'] 0 0 0 a°

[a® 0 a° 0]

0 a® 0

@ 0 a' o

L0 a® 0 a']

(o5 &)@ (Vo).
(7)
where [I]y is the identity matrix. From Equations (6)

and (7), we can derive a generalized formula for con-
struction of order N = 2%, k€ {1, 2, 3, 4 ...}, BIJMs as
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[]}N = []]N/2®[]]2 = U]N/4®U]4
~ (mee |G &) (@) (asi).

Note that

which is a mathematic problem; therefore, we will per-
fectly solve this problem based on Arikan Polar binary
and Alamouti MIMO non-binary matrices in the follow-
ing sections.

3. Proposed binary block-wise inverse and Arikan
polar binary basic matrices of order 2*

3.1. Binary BUT of order 2

Definition 3.1: Let B be a square binary matrix of size m,
then B is called EIJM if it is invertible and B™* = B,

An m x m binary matrix [B]m over GF( 2), which has
only two elements 0 and 1, is called a binary EIJM if [B]lm
is invertible and [B],; = [B]%, i.e., [B],.[Bl,, = [Bl,ulB]% =
i

0 1

Example 3.1: Let [B], = (1 0

e = (9 5)(3 )=

Therefore, [Bl3! = [B]% and [B], is EIJM. More gener-
ally, we give the following definition.
Definition 3.2: BIM

) , then obviously

(10)

Let,
B B B
B — By By By,
m
Bml BmZ Bmm
and
By By B,
Ble| Br Bz B | (11)
Blm BZm Bmm

be an m x m block-wise matrix and the transpose of block-
wise inverse matrix B, where B;; is a k x k matrix for all i,
j =1,...,m. Defined [B],, is called a binary BIJM since

(12)

where [1],,, is identity matrix of size m. In other words, [B]
n is BIJM which is EIJM having the block-wise structure.
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Example 3.2: BIIM of order 4 case, let

= (5 1) and = (] 1)

then we have aa + B = [I], and aff + fa = 0,, where

0 0 .
0, = [ 0 O] , and satisfying

(o) o) - (oortt i)

(13)

(14)
— [1]2 0 :m
0 [, v
Therefore, we can have the followings.
-1 T
a B\ _(a BY _(a B
G0 -GO-G2Y 1
1 011
Jfa B\ [0 111
[]]22:</3 a>_ 1 1 1 0 (16)
1 1 01
and
1 011
0 (a B 01 1 1
Vi (/3 a> 1110 (17)
1 1 01
Clearly, [J], is a BIJM since
1 0 0 O
. 01 0 O
[]]22 []]221 - [1]22 = 001 0 (18)
0 0 0 1

Moreover, it can be considered a circular block-wise
permutation matrix as given in Example 3.3.

For our simple explanation, we consider only 2 x 2
case, where each block-wise matrix is a 2 x 2 submatrix.
We introduce the binary block-wise Jacket transform
(BJT) and binary BIJT. Let [J],, be a binary block-wise
Jacket matrix (BJM) for the one-dimensional binary
Jacket transform. We can transform a temporal or
spatial vector x into a transform vector y by

y =], (19)

then the input vector can be obtained via-binary BIJTs
as follows:
x=[, y="ln > (20)

A block-wise permutation matrix [P]y = (py) is de-
fined as for 1 < k, [ < N,
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[Pkl] {[1]2 if I=k+1( modN)

0 Otherwise

(21)

The block-wise permutation matrices P” are referred
to circulant permutation matrices. Moreover, it is easy
to see that {, B, ..., PN’l} forms an Abelian group with
the conventional multiplication which is corresponding
to the group of all complex N— roots of unity. For N = 2
we have

()

P, = <£ [1(12) (22)
While, we have the followings
, o 0
[Pl = ( o [, o )
o o [,
o [, o
[Pl3,s = ( 0 0 [1]2),
i, o o
and
0 o [
[P)3,, = ([1]2 0 0 ) (23)
0 1, O

In Equation ( 16), [J], is regarded to the smallest order
binary BIJT. Moreover, [/], is a circulant block-wise
matrix since it can be written as

a
Ve = a*lll, + 4P, = (5 ). (24)
B a
A larger order binary BIJT can be generated by the fol-
lowing recursive relation, otherwise, the non-binary case

is proved in Section 6.
Uy = Uln /28Uy, N = 4.

From the definition of the transpose of the block-wise
transform, we have

(25)

(26)

Note that since [Jla[/la' = D41 = (14, [J]a becomes a

4 x 4 binary BIJM. In general, we can prove that [/],« is
a 2% x 2X binary BJM for a positive integer k. In fact
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Ml = (U1 ®U) (P ©17:)
= (V) ®l],) U]fk—@VbT)
= (15 ) (U017

(28)

Thus, [/ = [y and [l = Pl " = My -
For the 4 x 4 binary BIJM, [J],» can be decomposed to
the product of two sparse matrices,

Ve =Ux®Uly = (Uzl@ 22)(1]22‘8’[]]22)
a 0 B O a f 0 O
o a0 B|[B a0 O (29)
T |B 0O a O 0 0 a B
0 5 0 «a 0 0 f «a

From Equation ( 25), we can derive a general formula

for construction of order N = 2%, k = 1, 2,..., binary
block-wise inverse as
U]zk [ 2k‘®]] ) (]]2k‘® )(1]2“@[/ )
= ((Vy—l,) el 235 2t 1®U]2§
= (V=@ (1,8l,)) (1 ®],

- ®llL) (@ (Uel,) (1, U,

(1@ 1,®[1])-

i=0

=W
k—

(30)

This proof is given in Appendix. The fast signal flow
graph corresponding to Equation (30) is similar to the
graph in [1].

3.2. Arikan polar binary basic matrix of order 2¢
Polar coding introduced recently by Arikan [24] is a
structured coding technique which approaches capacity
for every output-symmetric discrete memoryless chan-
nels. Polarization has been applied later also in multi-
terminal information-theoretic settings, such as the mul-
tiple access channel. We present here two classes of
Arikan polar code matrix of order2®. For binary Jacket
matrices, the definition has a special form.

We first consider the following Arikan Polar binary
basic matrices. Equation (31) discussed in Appendix.

[oc]zéﬁ ﬂ and Vj‘]ﬁ{é ”
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It can easily be showed that

[} <[s =[5 3 -m

_|1 1 1 1) _ o2 39) Where (j+h) =j+hmodpand0<ij, h<p-1 The
- 0 1 X O 1 - [ﬁb? ( ) . h .
matrices [E]”, for 0 < & < p — 1, are refer to circulant per-
mutation matrices. It can be seen that {/, E,. . ., Ep’l} form

h .o
[E} = [el7l] 0 otherwise ’

vy ande;; = {1 fo i = (j+h) (38)

[a],[B], + [Blylal, = H (1)} { (1) i] + {(1) ” E (1)} an Abelian group with conventional matrix multiplication
and [ = E.
sl R
10 11 v Example 3.3: For 3GPP ultra mobile broadband, per-

(33) mutation matrices based on order-4 Abelian group are
defined as follows.

and 8, + hiok = |} o] [ 3] =5 3| =10

. L 1 0 0 O 0 0 0 1
From Equations (32)—(33), we can readily find - 010 0 [E}l 100 0
a=a' p=p" >+ =Lap=pa—1(ap) " = pa, *“loo 1 0" o 10 0f
d 0 0 0 1 0 0 1 0
an 0010 0100
- 0 0 0 1 0 0 1 0
(Ba) = ap. (34) £ = , and [Efo—
. 1 0 0 O 0 0 0 1
Furthermore, we can verify that
01 0 0 1 0 0 O

IR -

1 o Similar fashion as Equation (31), we define two add-
= {0 1],(1.(—:.,) itional matrices:
- I 0 I E™*"
1
a /)) _ /)) a . (35) [A]23é|:Eh 1:| and[Q]zsé[O I :|, (40)
B« a B
Now we present a BIJM based on submatrices a and f  where
defined above ‘100000 0 07
10 1 1 0100000 0
a 11 0 1 001 0O0O0O0TO
V]zzé[ /3] =11 110 (and)
B a al 00010000
3 = an
L g 00011000
1110 101 11" 1 0000100
[]}7213/))&:0111:1101 :mT 01000010
Zla B 1 01 1 1 110 2
110 1 01 1 1 L0 O1 0 0 0 0 1]
(36) 1 0 0 0 0 1 0 07
01 000 O0T1TO0
From Definition 3.1, it is certain that [J], is a binary 0010000 1
BIJM since it satisfies
0], 00 0110 0O
V2llz = - (37) 710000100 0
. . . 0000 O0T1O0O0
These Jacket block matrices are useful in coding theory
and orthogonal code design. Let p be a positive number, 00000010
then from Equation (3) yields L0000 00 0 1]
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Then, we have (aoag + ara] + axaj ) = Iy, (a0, + arag + aay )
1 01l B =0, and (aoa] + aa; + aray)
[A]23 [9123 + [9}23 [A]23 = o1llo I =0. (46)

—h
+ I E o Example 4.1: Let
0 I |LE" I
_Er et _ (0 0\ _(1 0oy (00
10 11 =10 1) o 0)"%2= 0 o)

= [[]». (41) (47)

Furthermore,

[A Q} [Q A} B
Q Al la Q)

be three 2 x 2 binary matrices over GF(2) which satisfy
the above conditions in Equation (46). Similarly, the
smallest order 3 binary BIJM can be written as follows

AQ+0OA A%+ 0?
QP+ A% QA+ AQ

_[r o o
o I (42) ap ayp  a
Useo = a2 a0 o
Now we can evaluate two matrices a; ay A
I o0 I E™* 001 000
A Q E" T 0 I 01 0000
A —
V]f:[o A]_ I E" 1 0 and _|o0o 0010 (48)
0o I E" I “]10 0 01 0 0
1 000 00O
I E" 1 o0 0000 O01
a4l Al o 1 E" I
U]24: - —h |
A O I 0 I E
B 0 I Then we can show that
which satisfies -1 T
U]sU]:»; - U]gms - [1]3
-1
U]z4[]]24 :[1}16' (43)

. . Clearly, [/]5 is also circulant binary BIJM. Using the
Thus, the proposed Arikan Polar binary matrix be-  Kronecker product of BJMs, the larger order 3* binary
comes BIJM. BJT can be determined by the following recursive rela-

tion, i.e.,
4, Binary BUT of order 3¥ and 5%

In this section, a binary BJT and binary BIJT with orders
3Xand 5" are proposed. From Equation (23), the smallest Ul = Vle®Ul3:N 2 9. (49)
order 3 x 3 binary BJT can be written as

By a similar method, it can be proved that [J]y is a
binary block-wise inverse Jacket of order 3% according to
Equation (50). We can also derive a fast algorithm based
on the proposed factorization of the binary BIJT.

15 = ao[Pl3 + au[P]3 + as[P]3. (44)
From the definition of the BJM, we can show that

V13015 = (ao[Pls + a[P]; + a2[PT3) .

x (ao[Pl3 + 1 [P]; + a[P);) k

= (ocoozg + aloclT + oczcrg) [P]g i=0,[/]3 = (U]sk*l*f@[]]g@[l]s')' (50)
+ (aoaQT +aal + azalT) [P]; !

+ (aoa] + ma +aag) [Pl 2

= 1], (45) Example 4.2: For DFT 3 x 3 matrix, N=3%p =3, 0 =
¢*™3, and N = p", we can get the fast transform of Jacket

if the following conditions are satisfied, matrix J5: as follows:

|
—

Il
o
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S o
g =
> i
5 )
= ® ¥ BB IRV 3IRB3
g - &
2 a v _ow 23233333 ow_
£ I ﬂy, [
3 =~ ~
2 A

2,
(55)

+B,[P]

3
5

+ B[P

2
5

+ B, [P]

1
5

+ B[Pl

0
5

Muller (RM) matrix [25].

[]]5:( 0[P

Now, we consider an order 5° binary BJT. The smallest

order 5 binary BJT can be defined as follows.

Reed

(53)

(50) for the

binary BIJT according to the following equation:

[1]32-

1

3

J52 /]

We can take the left-hand side Equation (51) of coeffi-

cient

Certainly, we get a fast algorithm Equation
U
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Table 1 Computational complexity of the proposed fast algorithms for the block Jacket transforms compared with its
direct computation (DC)

DC Proposed
N=2% N =3k N =55 N =pX N=p"q" Two-dimensional: p=q, m=n
ADD
NN =1) Nlog,N 2NlogsN 4NlogsN (p - 1)Nlog,N nip-1p" +m@g-1q" 2m(p - 1)p™
MUL
N x N 1/2Nlog,N 4/3NlogsN 16/5NlogsN @Nlogp/\/ np - 1’0" + 2 m(g - 1)g"" m(p? - 1)p™!
In Table 1, ADD and MUL, respectively, abbreviate real additions and real multiplications.
whlere [123](5) 153 the 5 ><45 block-wise identity matrix and (BoBs + BiBT + BoBs + BsBs + BuBi) = [,
[P]‘S, [P, [{’]5, and [P]5 are the 5 x 5 block-wise permu- (/30 ﬁ4 + A ﬁo + By ﬁl + B ﬁz +Ba /33> -0,
tation matrices. Thus, we can get
(/30/33 +/31ﬁ4 + /’)zﬁo +/33/31 + 54/32) =0, (57)
(/30:32 +:81:BS +/))2/3)4 +ﬁ3/3’)0 "‘/3)4/3)1) =0, and
150715 = (BolP)5 + BuIPI5 + BolPT; + B3[P} + BalPl;) (BoBT + BBY + BoT + BoBT + BBT) = 0.
T
* (Bo[P)3 + BilPls + Bo[P; + Bs[P)3 + BulPl5)
= (/J’o/J’T +BB BB+ BsBL + BBy ) [Pl The signal flow graph corresponding Equation (56) is
I I I I p shown in Figure 1 and its factorization is defined by
B +Pify BB+ Pafs 1B )P Equation (57). The general formula is given in Appendix.
+(ﬁ0ﬂ3 +ﬁlﬁ4 +182ﬁ0 +ﬁ3ﬁ1 +[))4ﬁ2) P]S Exﬂmple 43. Let
+</30/3 +BiBs + BBy + BsBo +ﬁ4ﬁ1) P]s
+(ﬁ0ﬁ1 +ﬁ1ﬁ2 +ﬁ2ﬁ3 +ﬁ3ﬁ4 +ﬁ4ﬁ0) P]S B 1 1 B 1 0 B 1 1
= []}5 (56) ﬁO - 1 1) /))1 - 0 1 7[))2 - 1 1
0 0 0 0
/33 - (O 0) ﬂl’ld /))4<O 0)7
if the following conditions are satisfied (58)

oS 7 —
77

o\\\_7//

o N/ XXXX .
o \N\XX/// —,
o X7/ SIS .
o 0000 —
v Z/X0O0N S o=
2N )
LAY OOCK
ol N\ XX —

V7NN B Y
i \ .

Figure 2 Two-dimensional 4 x 4 fast signal flow graph of the proposed Jacket transform.
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be five 2 x 2 binary matrices over GF( 2) which satisfy
the condition defined in Equation (57). From this know-
ledge, the order 5 binary BJT can be written as

Bo Bi By By B

Buo Bo B By Bs
U]sz /33 /34 /30 /31 ﬁz
By Bs Bi Bo B
Bi By By Bs Bo
111 0 1 1 0 0 0 O
1101 1 1 0 0 0 O
00111011 00
0011 0111 00
00 0 011 1 0 1 1
1o 0 o0 01 1 01 1 1 (59)
1 1.0 0 0 0 1 1 1 0
1 1.0 0 0 0 1 1 0 1
1 0110 0 O O 1 1
01 1 1 0 0 0 0 1 1
Then, we can show that
- T
U]s[]]sl = [] 5[]]5 = [1]5'

Clearly, [/]5 is also circulant binary BIJM. Using the
Kronecker product of two matrices, we can generate a
higher order binary BJT according to the following re-
cursive form:

msk

[J}ik—@[ﬂs

k—

=TT (ins-.@s®l15),

=0

(60)

where [I]0 = 1. Further, it is easy to construct binary
BJMs with orders 6, 10, 15, 25, and so on.

Similarly as in Equations (30) and (60), we can derive
an order p* fast binary BJT, where p is the prime num-
ber. For the matrix of order 6, the binary BJT can be
written as [J]g = ([J/l> ® [J]3). We can further express [/]s
in following block-wise form

Vs = (U128®1115) (1,801;)-

Now, with the aid of recursive relation, the matrix
Ulg = U]g—1®l]s becomes an order of 6° binary BJT.
The fast algorithm depends on the following sparse
factorization:

(61)

(ing--@Usell;). (62)

If the matrix is of order 15, we can decompose [/];5 as
Ulis = U1;8U]5-

A corresponding block-wise form of Equation (63) is
given by

(63)
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U]ls = ([1}3@’[]}5) (U]3®[1]5)

Bo B By Bs B
By By B By Bs
= [I]3® By Bs By B By
By Bs B By B
B By By Bu By

x (Vs8ls)-

(64)

It can be seen that the computation of order-15 matrix
is the combination of three times of order 5 and five
times of order 3 of two sparse matrices as shown in
Figure 1. In general, the computational complexity of the
proposed fast algorithm and higher order binary BJT
implementations of inverse are similar to those in [1]. For
example, a binary BJT of order N = 2X requires Nlog,N ad-
ditions and 1/2Nlog,N multiplications. Another BJT of
order N = 3 requires 2Nlog;N additions and 4/3NlogsN
multiplications. Also, a binary BJT of order N = 5° re-
quires 4NlogsN additions and 16/5NlogsN multiplications.
These results are summarized in Table 1.

5. Two-dimensional fast algorithm for binary BJT
The two-dimensional matrix transforms a temporal/
spatial matrix X into a transformed matrix Y as

Y = X (V)" (65)

In general, the linear transform of matrix X verified as
AXB = Y can be expressed by the transformation of the
column-wise stacking vector of X as in [1,5,18].

(Vln®U]y)vee(X) = vec(Y). (66)

Thus, the two-dimensional binary BJM in Equation (56)
can be expressed by

vee(¥) = (] @Vl )vee(X). (67)

Based on this one-dimensional fast algorithm, the two-
dimensional fast algorithm for the binary BJT decom-
position can be described as follows:

[]]N = []]N2®U]N1
= (1801 ) (N8l ) (68)
For example, N; = N, = 4 = 27 then we have
V.Ul = E[ 12 ®U]y: )([ ]22®m22)
= sz®([/} []2))(([] ®ll,)® ) [I]zz) (69)
= ([0z8[1,8V1,) ([1-8l,8l,)
(I]2®[] 1]22) ( 1]2®[1}22)

It is shown that block matrix [J], is a 2-order BJT that
can be constructed in the recursive fashion on the basis
of [J], with the fast algorithm. The two-dimensional BJT
can be designed by the fast algorithm described by
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Equation (69) and Figure 2. There are four sparse matri-
ces stages in Figure 2, i.e., log,16 = log,2* = 4. For the
two-dimensional 4 x 4 case, the fast algorithm requires
64 additions and 32 multiplications as shown in Table 1.

6. Alamouti MIMO non-binary BUT of order 2*
Similar to the binary case of Equations (18), (23), and (44),
a non-binary BIJT can be developed by the Kronecker
product of the successive lower order identity matrix and
the basis [/], matrix. The mobile communication diagonal
channel matrix is given by [17], Equation (32)

[H]y = [I]N/2®[]]2a (70)

where 1 — cost —sint)_ (1 1 ét 0
" \sint cost ) V2\—i i 0 ¢t
(1
V21l
then
7, = cosd5° isind5°\ 1 (1 —i
2\ sind5° icosd5° ) 2\ 1 i
B 0.8881 — 3251 +0.3251i
= 10.3251 + 03251 0.8881
0.9659 — 0.2588i 0
0 —0.2588 + 0.9659i
0.8881 0.3251 — 0.3251i | o
|:—0.3251—0.3251i 0.8881 :| = UAU”,
(71)

where U is eigenvector matrix and A is eigenvalue matrix.
From Equations (70) and (71), the MIMO channel
matrix H is decomposed by the singular value decom-
position (SVD) [26], that is, we have
H=Uxv", (72)
where U and V are unitary matrices, and X is a rectangu-
lar diagonal matrix with non-negative real elements
which means the EIJM. Figure 3 shows the block dia-
gram of the considered MIMO channel. The diagonal el-
ements of ¥ are the singular values of the channel
matrix H, denoting by o1,09,...,0n,,, , where Ny, =
min(Ny Np). In case of Ny, = N SVD in Equation (72)
can be expressed as

2N
H =UZV" = [Un,., Ung-N o) [ Moo }
——— [ 0NN

X

x V' = Uy, Zn,, V"

min

(73)
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where Uy, is composed of N, left-singular vectors
and Xy, is a square matrix. In case of Ny, = Ng, SVD
in Equation (72) can be expressed as

Vi
H=U [ZNminONT*Nmin] H - ] (74)
VNT 7Nmin
P
= UZN min VI{-][ min v

where Vi is composed of Ny, right-singular vectors.
Then we get eigenvalue decomposition,
HH" = us>"u" = uaut (75)

where U"U = Iy, and AeCM*N* s a diagonal matrix.
Equation ( 75) is same as Equation (71). Based on Equa-
tion ( 71), the 2 x 2 Jacket matrix, the 4 x 4 BJM can be
evaluated as

= <U<12 [J(})z) :J%

:@ 3®%(1;ﬁ=M@m-<%>

Certainly, the inverse matrix of [H], is given by

S O = =
o

1 1 0 O
H =val o )Y Y | =menst . o7)
2 0O 0 1 1 2 2
0o 0 i —i
From Equations (76) and (77), we can show that
[H}z[H]gl = 2[1]4, (78)

which satisfies the property of the Jacket matrix.
Similar fashion as Equation (70), the Alamouti encoder
[22,27] encodes two consecutive symbols x; and x, by

decoder

[Gecoder]

Figure 3 Block diagram of the MIMO channel.
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the following space—time codeword matrix,

A], = ( " x2> and [A]" = ("T _"2>. (79)

k *
—x; X Xy X

Encoded signals are transmitted from two transmit an-
tennas over two symbols intervals. In the first symbol
interval, two symbols x; and x, are transmitted from the
two transmit antennas, whereas in the second symbol
interval, —x, is transmitted from the first transmit an-
tenna and x, transmitted from the second transmit an-
tenna. From this employment, the Alamouti codeword
becomes a complex-valued orthogonal matrix as follows

o

. 0 oa|* + o

= (|301|2 + |x2|2)12, (80)

where I, denotes the 2 x 2 identity matrix. Also, Equation
(79) becomes the EIJM.

For the STBC with two antennas in the transmitter
and receiver in the LTE [21,28,29], we can define the
Alamouti matrix as

o X1 X2
=2 2)

G50 n)(E %)

= VLAl (81)
We now show that the Alamouti coding matrix can be
the BIJM.
_f(a a (A0
= (5 &) m= % 2) and 0,
_(c d
 \e¢ —d)’
then yields

VLAl = (bcclfzi)(L/111+—/1/21)2)

By comparing with both sides of [A], = [J1][A][)5], it is
easy to get the following equations

ﬂd(ﬂ.l — /12)
bdozc()q +/12) '

ac(A1 +12) = x ,
bc(My —Ay) = —x5

dd(Al — /12) = X2
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By solving the above equations, we have

ach +4) a1 chi—A)  —xy

dd(Al — Ag) X2 ' d(Al +/12) xf‘

2
<C)2 215 % (%5)
d xox7" X1X5 XXy
ix

We can put ¢ = d= % Similarly, we have

fal’

(/Z(/ll +A2) - X1 (l(/h —/12) _ x_2
*x;’ b(/ll +A2) x;"

bl — 1y)

From these computations, we can obtain the following
two forms for transmitted symbols

2
_ M

| 2

(/11 +A2) = X1 and &(Al —/12) = X3.

x |1 [[x2]

Having obtained these two symbols, we are able to get
the half rate Alamouti matrix [A], as follows

X1 X 0 0 a a 0 O
), - —xy; %y 0 0| _|b —b 0 O
4 0 0 x X 0 0 a a
0 0 x5 X 0O 0 b —b

A 0 0 O ¢c d 0 0

0 A 0 0 c —d 0 0

0 0 A3 O 0 0 ¢ d

0 0 b A 0 0 ¢ —d

1,8 (V1[A111,) = ([1,801,) diag(A)([1,®U],)
(82)

From Equation ( 82), we can rewrite as

[Al, = mz®[]1]2 diag(Al,/lz,/lg.,M)[]z]z (83)
= ([1,80"],) diag(h1, A2, A3, Aa) ([1],®]%],)

where [I], is identity matrix, [J'], is a unitary matrix,
A1Aa,. . wAq eigenvalue, and [/?], is another unitary
matrix. We know that the binary fast block-wise Jacket
transform (BEBJT) of 2%, 3%, 5%, and 6% is general Equations
(30), (50), (60), and (62). The non-binary Alamouti fast
BJT based on the BFBJT, then the general equation is
given

(Al = (2@, diaga, A2, 10 (@ [7,)  (84)

From Equation (82), if |x;|* = |x,|> = 1, we can show
that



Lee et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:37

http://asp.eurasipjournals.com/content/2013/1/37

X1 X 0 0 x; —x 0
N e O 0 x5 x 0
[AL*[A]‘* o 0 0 x1 x 0 0 x
0 0 —x; « 0 0 xj
e+ Joa|? , 0 , 0
_ 0 1|+ |z 0
0 0 |9C1 ‘2 + ‘xz‘
0 0 0

Also, a full rate 4 x 4 Alamouti matrix can be
decomposed as

X1 X 0 0 x; —x 0
1 —x; % 0 0 x5 x 0
[Al[A]," = \
0 0 x3 x4 0 0 x5
0 0 —x; x5 0 0 x
or|* + Ja 0 0
_ 0 e [* + oo ? 0
0 0 [%3|" 4 |4l
0 0 0

Note that if |x;,|* = |%5|* = |x3|* = |x4]> = 1, then [A],
[AlaY = 2[1]4, so that [H], and [Als, respectively, in
Equations (76) and (82) become BIJTs.

7. Conclusion

The fast Arikan Polar binary BIJTs and Alamouti MIMO
non-binary block-wise inverse transforms are proposed,
which overcome the mathematical problem raised in [1]
and also satisfy the relation [J] NUIA = [n- The orders
2K, 3%, 5%, and 6* binary BJTs are constructed and their
binary block-wise inverse transforms are easily obtained
by the transpose of binary block-wise transforms. The
one- and two-dimensional binary block-wise fast trans-
forms are proposed based on their recursive forms. The
Kronecker product of the successive lower order matrix
and binary block-wise basis matrix are used in recursive
forms. Furthermore, the Alamouti MIMO non-binary
BJT is verified that it is the Kronecker product of lower
order identity matrix and the basis [/], matrix. From our
verification, the proposed BIJTs can be applied in areas
such as 3GPP ultra mobile broadband permutation
matrices design, RM code design, diagonal channel,
MIMO 4G LTE Alamouti code, and precoding design.
The diagonal block-wise basis identity matrices are well
suitable to without inter-symbol interference orthogonal
frequency division multiplexing, diagonal block zero for-
cing precoding, and SVD for multiuser MIMO.
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0
0
— %y
X1
85
. (85)
0
0 = 2[1],.
|x1| + |xz|
0
0
x4
X3
86
. (86)
0
=2(I|,.
o 1],
s | +
Appendix

Proof of Table 1 with N = p™q"

Suppose [/],, and [/], are constructed using the above ap-
proaches specified in Equation (30), where p, g are prime
numbers and m and z are non-negative integer num-
bers. Then a larger size BIJM [/]y_,»,» can be cons-

tructed in the following way similar to those in [30],

Uix = {Iq"® (ﬁlqm’l®jp®1p’> }

i=0

n—1
X { < ani1®fq®qu> ®]pm}
i=0
m
= {an®< Ipmi®]P®Ipil> }
i=1
X { ( ani®]q®1pil> ®Ipm}
i=1

Proof: Block-wise Jacket matrices [/],, and [J], are given
by

(87)

)y = L1 ®)p®1y and ]|, = Iy 1®J,@1;.  (88)

We can prove left side of Equation ( 88),

I ]p = (jp@lpm*"*l) (1p®]m”'*1)v
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where I, is an identity matrix of order p*> and [J] o1 = For the matrix [M]y, we can check easily
(11®]p®[pm—l—2) (1p®]m_i_2). Thus, we obtain

Uy 0
Iy ®lLyn-i1) (1, ®m—i1) = Jp®m—i-1- (89) Aoy = Aoy Aoy = < ON 1] )7 [A7] ;N
N
Uy 0
For a general form, we rewrite Equation (88) as = < N )7 and
0 [y
U, = (11®]p®1 ’"*’*1)<Ip®]m*i*1)'
’ ’ Al + (A7) = (0 °> (95)
The second term can be written as 0 0
I ® ®I m—i—2 O
[I]p@[]]m_i_l _ (N Jp 0 P L®,® Ipm,z> Suppose [M]y = [U]y is an orthogonal matrix then
1,®)m—i— 0
0 [p®]m—i—2 T
= (Ip®jp®1p’””"1)(Ipz@]m*iﬂ)' [A]zN[/ﬂT = ( Uy 0 )(mN [ }v)
(90) N U]y [I]NT 0 n
_( Uy Ul
From Equations (88)—(90), we have - < [u }Ij\, 0 and
7 1 [A]T Ay = Y [U]i Uy 0
[]]p = 11 ([p171®]p®lpm—1). w EtaN = 0 [I]NT Uy My
| (o
Since ]; = J,» we have = <[U}N ]y ) (96)
m—1
U]p = 11 (Ip'"*’”@]p‘g’lp")' (91) That is,
Similarly, we prove the right side of Equation (88).
I 0
1 [A]ZN[AE; = [ALTN[A]ZN - <[(])N [I]N>' (97)
U]q = | (Iq’”’i“@]q@]qi)? (92)

where ke{p, ¢} and [ €{m, n}. Subsequently, a general [/ Now we form the matrix [Qay.

can be constructed as
T
Ty = () U @1y). 93)  (Qly - ( o ) 7 (98)

In [31], Equation (15), similar fashion as Equations (6)
and (93) are Kronecker product of diagonal subchannel  this satisfies the orthogonality as
and decomposed of interference alignment for cellular
networks. The idea is to align interferences into multidi-

mensional decompose subspace to one dimension. , (Al [A}; [A]ZTN (Al
S AN A
Discussed of Equation (31) over GF(2) o RN AT R S
We consider here matrices only over GF(2). Let 0 be the - (WW [A]2N2 * w“f A2y L, + 471, )
all-zero matrix of size N. [AT],, + A, (A1, ALy + (Al AT
For an arbitrary matrix [M]y, form the matrix _ <[1]N 0 > (99)
0 [y
Uy O . . .
Al = ] u, ) (94) Therefore, [Q)] is an orthogonal of size 4 N. If [U] is
N N

an orthogonal of size N then
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