
Morell et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:41
http://asp.eurasipjournals.com/content/2013/1/41

RESEARCH Open Access

Coupled-decompositions: exploiting
primal–dual interactions in convex
optimization problems
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Abstract

Decomposition techniques implement the so-called “divide and conquer” in convex optimization problems, being
primal and dual decompositions the two classical approaches. Although both solutions achieve the goal of splitting
the original program into several smaller problems (called the subproblems), these techniques exhibit in general slow
speed of convergence. This is a limiting factor in practice and in order to circumvent this drawback, we develop in this
article the coupled-decompositions method. As a result, the number of iterations can be reduced by more than one
order of magnitude. Furthermore, the new technique is self-adjustable, i.e., it does not depend on user-defined
parameters, as opposite to what happens with classical strategies. Given that in signal processing applied to
communications and networking we usually deal with a variety of problems that exhibit certain coupling structures,
our method is useful to design decentralized as well as centralized optimization schemes with advantages over the
existing techniques in the literature. In this article, we expose there different resource allocation problems where the
proposed method is successfully applied.

1 Introduction
Convex optimization theory [1,2] has provided in the
last decades a powerful framework to solve optimization
problems in many distinct areas. Besides the numerous
applications existing in the signal processing literature, it
is also possible to find examples in topics such as filter
design, machine learning, or finance among others. This
great success has been motivated by (i) convex optimiza-
tion provides relevant insights into each specific prob-
lem, thanks to a mature theoretical framework, (ii) some
problems can be solved analytically or semi-analytically
applying the so-called Karush–Kuhn–Tucker (KKT) opti-
mality conditions, and (iii) efficient numerical methods,
e.g., interior point methods, have been developed to solve
generic convex problems in polynomial time.
In many engineering areas, optimization problems with

a partially coupled structure arise. In particular, we con-
sider programs where the objective can be expressed as a
sum of functions that depend on disjoint sets of variables,
which are additionally coupled by the problem constraints
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(e.g., [3-5]). The optimization of such programs is the
topic addressed by decompositionmethods [6] and a com-
mon strategy is to split the original problem into several
smaller subproblems that are somehow coordinated until
they reach the optimal solution. Additionally and as a by-
product, the resulting methods can deal more naturally
with decentralized implementations [7,8].
However, existing decompositionmethods exhibit some

drawbacks in practice. Roughly speaking, the speed of
convergence of the algorithms is in general slow (this can
be appreciated, for instance, in the numerical examples of
[6]) and furthermore, it is necessary tomanually adjust the
step-size used in the successive updates of the algorithms.
Since there is no universal rule to do that optimally,
the performance of the methods is compromised [9]. In
order to overcome these drawbacks, we introduce a novel
technique, the coupled-decompositions method (CDM).
It can be applied to decentralized implementations and
furthermore, due to its superior computational perfor-
mance in terms of convergence speed, the new technique
is also competitive when compared to well-established
centralized methods.
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In the following, we synthesize the main contribu-
tions of this article: (i) development of new interactions
between the primal and dual domains in convex decompo-
sition problems, (ii) development of a new method based
on these novel interactions for problems with a single cou-
pling constraint, (iii) convergence proof of the proposed
method, (iv) further analysis of the method when it is
applied to a subset of the problems of interest, and (v) pre-
sentation of numerical examples that show the benefits of
having an unsupervised and efficient solution (in terms of
both computational cost and convergence speed).
The remainder of the article is organized as fol-

lows. Section 2 formulates the type of problems that
we deal with and it also reviews the classical decom-
position techniques. Section 3 describes the proposed
CDM and proves its convergence to the optimal solution
whereas Section 4 provides further analysis on the pro-
posed method when the problem is particularized. Finally,
Section 5 presents numerical examples of the proposed
method and Section 6 concludes the article.

2 Problem formulation and existing solutions
In this section, we first define the type of problems that
we deal with throughout the text. Thereafter, the existing
decomposition techniques in the literature are reviewed.

2.1 Problem formulation
Let us consider the following optimization problem,

min{xj}
∑J

j=1 fj(xj)

s.t. xj ∈ Xj, j = 1, . . . , J∑J
j=1 hj(xj) ≤ C

(1)

with variables xj ∈ R
nj . The functions fj, hj : R

nj → R

are assumed convex and differentiable in the sets Xj, also
convex and compact too. These sets are defined as Xj =
{xj | gj(xj) � 0}a with gj(xj) =[ g1j (xj), . . . , g

Gj
j (xj)]T , where

the functions gkj : R
nj → R are convex and differentiable.

Therefore, Equation (1) defines a convex problem and if
we further assume that its feasible region has non-empty
relative interior, then strong duality holds.
Note that we may interpret (1) as the distribution of a

quantity C of resources among J entities where the jth
entity aims to set the values of the variables in xj (con-
strained to lie in Xj) in order to minimize the global
cost function

∑J
j=1 fj(xj) without exceeding the coupling

constraint
∑J

j=1 hj(xj) ≤ C. The presented formulation
applies, among others, to fair dynamic bandwidth alloca-
tion (DBA) in point-to-multipoint networks [4], to prob-
lems related with multiple-input multiple-output design
[3,10,11] or problems related to OFDM system design
[12,13].

The problem in (1) is suitable for a dual decomposition
approach and also for a primal decomposition if it is ade-
quately reformulated. In the next sections, those classical
solutions are reviewed.

2.2 Primal decomposition
Let us consider the following modified version of (1),

min{xj},y
∑J

j=1 fj(xj)

s.t. xj ∈ Xj, j = 1, . . . , J
hj(xj) ≤ yj, j = 1, . . . , J∑J
j=1 yj ≤ C
y ∈ Y , Y = Y1 × . . . × YJ

(2)

where we have introduced the coupling variables y =
[ y1, . . . , yJ ]T . The subsetsYj ∈ R are defined as the images
of Xj through the functions hj, i.e., hj : Xj −→ Yj. Since
the functions hj are convex overXj and so continuous, the
subsets Yj are guaranteed to be compact ([14], Th. 5.2.2).
Therefore, each Yj has both a minimum and a maximum.
In primal decomposition, we assume that the coupling

variables are fixed to a given value y ∈ Y (more details can
be found in [15], Sec. 6.4.2). Then, the problem in (2) is
solved as J independent problems in the variables xj. They
are called the subproblems and they are expressed as

pj(yj) =

⎧⎪⎨
⎪⎩
min
xj

fj(xj)

s.t. hj(xj) ≤ yj
xj ∈ Xj

(3)

Interestingly, we know from ([15], Sec. 5.4.4) that −λj, i.e.,
minus the Lagrangemultiplier associated to the constraint
hj(xj) ≤ yj, is in fact a subgradientb of pj at yj.
Having defined the primal subproblems, we can rewrite

(2) as

min{yj}
∑J

j=1 pj(yj)

s.t.
∑J

j=1 yj ≤ C
y ∈ Y

(4)

and (4) is referred to as the primal master problem. Note
that since the subgradients of the primal subproblems
are obtained at no cost, we can use a projected gradient
approach ([15], Sec. 2.3) to solve the problem. In other
words, the following recursion (k indexes iterations)

yk+1 =
[
yk − αksk

]†
(5)

with sk = −[ λ∗
1(y

k
1), . . . , λ∗

J (y
k
J )]T and where [ ·]† is

the projection onto the feasible set (i.e., y ∈ {y | y ∈
Y ,

∑J
j=1 yj ≤ C}) converges to y∗. The interested reader

can findmore details about primal decomposition in ([15],
Sec. 6.4.2) and also in [6]. However, note that it is nec-
essary to appropriately adjust the value of αk in order to
guarantee the convergence to the desired solution [6,9].
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2.3 Dual decomposition
Dual decomposition is the dual-domain alternative to
primal decomposition. Let us compute the partial
Lagrangian of (1) by means of relaxing only the coupling
constraint

q(μ) =
J∑

j=1
min
xj∈Xj

{fj(xj) + μhj(xj)} − μC (6)

Clearly, the problem in (6) decouples into J independent
problems, called the dual subproblems and defined as

qj(μ) =
{
min
xj

fj(xj) + μhj(xj)

s.t. xj ∈ Xj
(7)

Note that the dual subproblems are convex programs for
μ ≥ 0 and that given a value of μ, the values of the vari-
ables in xj are found after solving the subproblems in (7)
for j = 1, . . . , J , which can be computed in parallel. In par-
ticular, the optimal values of the primal variables, i.e., {xj},
are obtained from an optimal value of the dual variable,
i.e., μ∗.
Using the dual subproblems, the dual master problem is

written as
max

μ

∑J
j=1 qj(μ) − μC

s.t. μ ≥ 0
(8)

and, as in primal decomposition, a projected gradient
approach can be applied ([15], Sec. 6.4.1) to finally get μ∗.
The recursion is

μk+1 =[μk + αksk]+ (9)

where k indexes iterations and [ a]+ = max{0, a}. As well
as in primal decomposition, it can be shown that a sub-
gradient of qj at μk is readily found asc hj

(
x∗
j
(
μk))

once the dual subproblems are solved ([15], Sec. 6.1) and
therefore, a subgradient of q at μk is given by sk =∑J

j=1 hj
(
x∗
j
(
μk)) − C. Finally, note that a user-defined

step-size is also necessary in dual decomposition and, as
we discuss later, this is a serious drawback of classical
decomposition methods in practice.

2.4 Primal–dual techniques
There is a huge list of methods in the literature that are
termed primal–dual but, to the best of our knowledge, the
essentials in our proposed CDMhave not been established
previously. In general, all the reviewed methods suffer
from (i) slow speed of convergence to the optimal solution
(this restricts the number of practical applications), (ii) no
consideration for the separated nature of the problem (i.e.,
the techniques are not decomposition-based approaches),
and/or (iii) the decentralized implementation of the meth-
ods is not taken into account. On the contrary, all these
aspects are addressed in the proposed CDM.

A first group of existing primal–dual techniques focus
on iteratively finding a saddle-point of the Lagrangian,
which is a convex and concave function of the primal and
dual variables, respectively. Although these methods were
not originally conceived from a decomposition perspec-
tive, they can be applied to the problems of interest in
this article (and also implemented in a decentralized man-
ner). Among these techniques, we find the classical work
of Arrow et al. [16] or the more recent Mean Value Cross
(MVC) decompositions method [17,18]. However, both
techniques need to fix an step-size (explicit or implicit
as in the MVC decompositions method) and, as a conse-
quence, they penalize in terms of convergence speed in
practice.
In a second group of techniques we include all the

possible combinations of classical primal and dual decom-
positions, as described in [6]. The idea in this case is to
solve some parts of the problem with a primal decompo-
sition approach while other parts are tackled by means
of a dual decomposition. Therefore, these solutions do
not consider full primal–dual interactions as in the pro-
posed CDM, where each part considers both domains
simultaneously. Furthermore, they also suffer from slow
convergence speeds due, in part, to the manually adjusted
step-sizes. However, it is important to remark that in the
last decade a significant progress has been made in dual-
decomposition-based solutions using smoothing [19] or
path-following [20] strategies, improving the number of
iterations of the classical dual decomposition by an order
of magnitude. Notwithstanding, these methods tackle
problems with linear constraints and are not designed
under a decentralized implementation perspective.
Finally, let us mention the primal–dual interior point

methods ([2], Sec. 11.7) and its variants [21,22] as the
third group of primal–dual approaches. In this case, the
basic idea is to iteratively solve the KKT conditions of
the problem using numerical methods typically applied
to the resolution of systems of nonlinear equations such
as the Newton method. These techniques have received
great attention during the past years due to their good
performance in terms of convergence speed when used in
generic convex problems. However, since they were not
conceived to exploit the separability of the problem (if it
exists), it is not straightforward to derive decentralized
solutions from this third group of techniques (one of the
goals in this article).

3 The CDM
In order to overcome the detected drawbacks, we design
our CDM with the aim to (i) exploit the primal and dual
domains in convex optimization problems and (ii) simul-
taneously benefit from the separability of the problem in
order to derive decentralized solutions. Although there
are solutions in the literature that exploit both solution
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domains as discussed, the development of a fast technique
satisfying (i) and (ii) is still pending. In the following, we
first describe our proposed CDM and thereafter, we prove
that the iterates of the method convergence to the optimal
solution.

3.1 Description of the method
The proposedmethod has four building blocks: the primal
subproblems, the dual subproblems, the primal projec-
tion, and the dual projection. These blocks are connected
as depicted in Figure 1 and in what follows, we describe
the actions taken at each step of the method and we pro-
vide a summary of the technique in algorithmic form.
Thereafter, the convergence of the successive updates of
the CDM, i.e., μk , towards an optimal value of the dual
variable, i.e., μ∗, is proved (and the same is valid for the
rest of variables, primal, and dual).

3.1.1 Step 1: dual subproblems
From μk , the primal value ykj is obtained after solving the
following convex optimization problem in dj

dj(μk) =

⎧⎪⎪⎨
⎪⎪⎩
min
xj ,ykj

fj(xj) + μk ykj

s.t. hj(xj) ≤ ykj
xj ∈ Xj

(10)

Note that dj(μk) coincides with (7) if we substitute ykj by
hj(xj). Note also that λkj , i.e., the dual variable associated
to the constraint hj(xj) ≤ ykj , always takes the value of
μk . This can be checked using one of the KKT optimality
conditions of the problem as follows

∂L(xj, ykj , λ
k
j , . . .)

∂ykj
= μk −λkj = 0 −→ λkj = μk

(11)

where L(xj, ykj , λ
k
j , . . .) stands for the Lagrangian func-

tion of the problem. The interested reader can find more
details on the Lagrangian function as well as on the KKT
optimality conditions of convex problems in ([2], Sec. 5.1,
Sec. 5.5).

3.1.2 Step 2: primal projection
In the second step of the method, the values in ykj from
all the subproblems are grouped in yk =[ yk1, . . . , y

k
J ]T and

projected to the subset Y ∩ {y| ∑i yi = C} if μk > 0 and
to the subset Y ∩{y| ∑i yi ≤ C} otherwise. Note that both
projections force the values in ŷk to be feasible and that
the choice of the projection subset depending on μ is in
accordance with the complementary slackness constraint
μ(

∑J
j=1 yj − C) = 0 of the problem.

primal
sub. 1

dual 
sub. 1

STEP 1STEP 3

primal
sub. 2

dual 
sub. 2

STEP 1STEP 3

DUAL
PROJECTION

STEP 4

PRIMAL 
PROJECTION

STEP 2

primal 
sub. J

dual 
sub. J

STEP 1STEP 3

k

k
jy

ˆ k
jy

k
j

Figure 1 Block diagram of the CDM.
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In the most usual case, that is, for μk > 0, the following
convex problem has to be solved

min
ŷk

||yk − ŷk||2

s.t.
∑J

j=1 ŷ
k
j = C

ŷk ∈ Y

(12)

which can be done semi-analytically as discussed in “Proof
of Proposition 2” in Appendix.

3.1.3 Step 3: primal subproblems
The jth primal subproblem is defined as

pj(ŷkj ) =

⎧⎪⎨
⎪⎩
min
xj

fj(xj)

s.t. hj(xj) ≤ ŷkj
xj ∈ Xj

(13)

and it can be solved once ŷkj is available. In this case, we are
interested in the optimal value of the Lagrange multiplier
associated to hj(xj) ≤ ŷkj , that is, λ̂

k
j . As later discussed in

Section 3.4, the step 4 of the method uses only the values
of λ̂kj that result from ŷkj /∈ bd Yj, where bd A stands
for the boundary of the subset A. The selected values are
then grouped in the list {λ̆kj }, which is the input of the
dual projection. Note that if

∑J
j=1 ŷ

k
j = C, then the list

is guaranteed to be non-empty as shown in Proposition 3
(Section 3.4). Besides, it is important to solve the primal
subproblem in (13) according to its dual version in (10).
In other words, if ŷkj is fixed in the jth primal subproblem
then λ̂kj (not necessarily unique) is accepted as valid only
if dj(λ̂kj ) gives y

k
j = ŷkj .

3.1.4 Step 4: dual projection
If

∑J
j=1 ŷ

k
j = C, a new update of μ, i.e., μk+1, is obtained

as the solution of the following optimization problem

min
μk+1

||μk+1 − μk||2

s.t. μk+1 ∈ {λ̆kj }
(14)

In other words, μk+1 takes the value in {λ̆kj } that is the
closest toμk . As discussed in Section 3.3, this is equivalent
to set μk+1 = min{λ̆kj } if μk < μ∗ and μk+1 = max{λ̆kj } if
μk > μ∗.
If

∑J
j=1 ŷ

k
j < C then μk+1 is fixed to 0, which is in

accordance with the complementary slackness constraint
μ(

∑J
j=1 yj − C) = 0.

3.2 The CDM in algorithmic form
Let us consider without loss of generality a decentralized
implementation of the proposed method with a controller

and J independent participants. Each participant is able
to solve the corresponding primal and dual subproblems
whereas the task of the controller is to compute the primal
and dual projections. Note that both operations involve
simple computations as discussed in the steps 2 and 4
above. The proposed CDM is then summarized in the
following algorithm,

Choose an initial value for μ0 and repeat
1. The controller sends μk to the participants, which

compute dj(μk) in (10) and return ykj .
2. With yk =[ yk1, y

k
2, . . . , y

k
J ], the controller computes

ŷk using the primal projection (step 1 above) and
sends ŷkj to the participants if ŷkj /∈ bd Yj.

3. The participants compute pj(ŷkj ) in (13) and
return λ̂kj to the controller.

4. The controller fixes μk+1 to the received value
that is closer to μk .

Until convergence.

3.3 Resource–price interpretation
Often in convex optimization, primal variables are inter-
preted as resources and dual variables as prices to be paid
for them. In the sequel, we revisit the proposed technique
under this resource–price perspective. Initially, a global
price μk is fixed and sent to the parts. Given that price,
the parts estimate the amount of resources they want to
buy. Intuitively, there will be a deficit of resources (a total
request over C) if the price is too low and an excess if it is
too high. In both cases, the primal projection corrects the
allocation in order to distribute all the available resources
among the parts. However, there is no guarantee that the
distribution follows a common market law. In order to
correct the situation, the primal subproblems estimate the
price to be paid for the new resource allocation and, in
case the individual prices differ, the dual projection fixes
a new common price μk+1 in order to advance towards a
consensus price μ∗.

3.4 Proof of the method
Before proving that the successive updates of the proposed
method converge to the optimal solution, let us establish
the relationship between primal and dual variables in the
subproblems with the following proposition.

Proposition 1. Take the jth primal subproblem pj in
(13) and the jth dual subproblem dj in (10) of the CDM.
Then, the following two statements hold: (i) λ̂kj (ŷ

k
j ) is non-

increasing on ŷkj in (13) and (ii) ykj (μk) is non-increasing on
μk in (10).

Proof. See “Proof of Proposition 1” in Appendix.



Morell et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:41 Page 6 of 18
http://asp.eurasipjournals.com/content/2013/1/41

Next, the goal is to verify that the primal and dual pro-
jections effectively coordinate the subproblems towards
the optimal solution. Let us assume, without loss of gener-
ality, that the initial guess is μ0 = 0 so that μ0 ≤ μ∗. From
that value, the CDM starts by solving the dual subprob-
lems in (10) in order to obtain y0. As a result, there are two
possibilities, namely, (i)

∑
j y0j ≤ C and (ii)

∑
j y0j > C. In

the first situation, μ0 as well as y0 and the corresponding
values in {xj} are optimal. Note that the subproblems are
in this case decoupled and therefore the individual opti-
mization carried out in the dual subproblems is globally
optimal, too. For the sake of brevity, we do not discuss
here what are the outputs of the following steps and itera-
tions of themethod, but it can be checked that the solution
remains unaltered as expected. In the second case, μ0 = 0
is clearly non-optimal and in the sequel we show how the
successive updates of μk converge to an optimal value of
the dual variable, that is, μ∗ > 0.
Let us revisit then a complete iteration of the method

starting at the dual subproblems in (10) with μk < μ∗,
which holds at least for k = 0. Since ykj is a non-increasing
function of μk in the jth dual subproblem (see Proposi-
tion 1), μk < μ∗ and ykj (μ∗) = y∗

j , it is true that ykj ≥
y∗
j . Moreover, if we take into account that

∑J
j=1 y

∗
j = C

(we are considering the case where the optimal solution
is coupled), we can establish that

∑J
j=1 y

k
j > C unless

yk = y∗.
Thereafter, it is verified in the second step of the method

(primal projection) that ŷk � yk (ŷkj < ykj for some j)
according to Proposition 2 next.

Proposition 2. Given the optimization problem in (12)
and yk 	 y∗ (yk 
= y∗), its optimal solution can be
expressed as ŷk = yk − r with r 	 0 (rj > 0 for some j).

Proof. See “Proof of Proposition 2” in Appendix.

In the third step of the method, the jth primal sub-
problem defined in (13) computes the individual price
λ̂kj and the list of individual prices {λ̂kj } is constructed
with the values obtained from the J independent sub-
problems, indexed by j = 1, . . . , J . Note, however, that
our main interest is not in the prices λ̂kj but in finding a
global consensus price μ∗. Fortunately, if we come back
to the problem definition in (2), we notice that there is
a dependence between the dual variable associated to
the constraint hj(xj) ≤ yj, i.e., λj, and the dual variable
associated to the constraint

∑J
j=1 yj ≤ C, i.e., μ (in terms

of the proposed algorithm, ŷkj , λ̂
k
j and μk play the role of

yj, λj and μ, respectively). This dependance motivates in
our algorithm the selection of some of the values in the
list {λ̂kj }. To be more specific, the value λ̂kj is chosen if the

corresponding primal variable ŷkj satisfies ŷkj /∈ bd Yj as
discussed next.
Let us first write the Lagrangian of the problem in (2),

that is

L({xj}, y,λ,μ, {ξ j}, {ψ j}) = ∑J
j=1 fj(xj) + ∑J

j=1 ξTj gj(xj)
+ ∑J

j=1 ψT
j qj(yj) + ∑J

j=1 λj
(
hj(xj) − yj

) + μ (
∑J

j=1 yj − C)

(15)

where the set of convex functions qj(yj) with associated
Lagrange multipliers ψ j define the subset Yj. From the
Lagrangian function we derive some of the KKT opti-
mality conditions of the convex optimization problem as
far as the optimal values of the variables form a saddle-
point in the function plot. In particular, let us consider the
following condition

∂L
∂yj

= μ − λj + ψT
j

∂

∂yj
qj(yj) = 0 (16)

that reveals

μ = λj − ψ j
T ∂

∂yj
qj(yj) (17)

This equality is not very useful in general and neither
from an algorithmic point of view because the values
of the multipliers in ψ j are unknown. However, we can
make use of the following complementary slackness con-
ditions ([2], Sec. 5.5.2) of the problem, compactly written
as ψ j � qj(yj) = 0,d and observe that if yj /∈ bd Yj then
qj(yj) ≺ 0 and consequently ψ j = 0. In that case, the link
between μ and λj is clear,

μ = λj if yj /∈ bd Yj (18)

Back to the algorithm, this result motivates the use of λ̂kj
only if it is derived from ŷkj /∈ bd Yj and so a new list {λ̆kj }
that contains all these suitable dual values is constructed.
Besides, it is necessary to guarantee that the new list {λ̆kj }
is non-empty or, equivalently, that after the dual projec-
tion at least one value in ŷk satisfies ŷkj /∈ bd Yj. This is the
result of Proposition 3 next.

Proposition 3. Let ŷk = yk − r (ŷk 
= y∗) be a primal
point resulting from the primal projection of the CDMwith
the value of r 	 0 suitable to fulfill

∑J
j=1 ŷ

k
j = C, ŷk ∈ Y .

Then, at least one value in {ŷkj } verifies ŷkj /∈ bd Yj and also
ŷkj > y∗

j .

Proof. See “Proof of Proposition 3” in Appendix.

Finally, we need to prove that the last step of themethod,
i.e., the dual projection in (14), is able to find an update of
the global price μ from the list {λ̆kj } such that μk k→∞−→ μ∗.
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Since we have assumed that primal and dual subproblems
are reciprocal in the sense that they agree on the values
of the dual variables λ̂kj and λkj when ykj = ŷkj (see Section
3.1, step 3), a consequence is that λ̆kj (y∗

j ) computed in (13)
equals λ∗

j = μ∗ as well as ykj (μ∗) = y∗
j in (10). Note that

we have intentionally written λ̆kj instead of λ̂kj because our
focus is only on the primal subproblems with ŷkj /∈ bd Yj,
which ensures λj = μ according to (18). Additionally, the
following two claims can be made: (i) all the values in {λ̆kj }
satisfy λ̆kj ≥ μk and (ii) at least one value in the list veri-
fies λ̆kj ≤ μ∗. The first statement uses Proposition 1 and in

particular that λ̂kj (or λ̆kj equivalently) is a non-increasing

function of ŷkj in the primal subproblems. Recalling that
pj(ykj ) in (13) would produce λkj as inner Lagrange multi-
plier and that λkj = μk according to (11), it is true that

λ̆kj ≥ μk since ŷkj ≤ ykj (as a result of the primal projec-
tion). The second statement is verified in a similar manner
taking into account that at least one value in {ŷkj } veri-
fies ŷkj /∈ bd Yj and also ŷkj > y∗

j (see Proposition 3).
Since λ̆kj (y∗

j ) = λ∗
j = μ∗ in the jth primal subproblem,

Proposition 1 establishes that λ̆kj ≤ μ∗.
Figure 2a explains the effects of the three steps of the

CDM graphically from the dual domain point of view.
Each bar represents an entity (J in total) and a point in that
bar indicates the value of the dual variable λkj or λ̂kj . The
highest the point the highest the value. At the beginning of
the kth iteration, the dual subproblems enforce λkj = μk ∀j
and translate these dual values to the primal variables in
yk . Immediately after the primal projection, the corrected
values in ŷk are converted again to dual variables, i.e., {λ̂kj }.
In the figure, we appreciate the effect of the primal projec-
tion on the Lagrange multipliers of interest. In short, we
notice that (i) all values increase and (ii) there is at least
one value below μ∗.
The role of the dual projection in (14) is then to update

to μk+1 by selecting the closest value to μk from the list

{λ̆kj }, that is, μk+1 = min{λ̆kj } if μk < μ∗, as depicted in
Figure 2b. Together with the previous results, i.e., λ̆kj ≥ μk

and λ̆kj ≤ μ∗, the new update verifies μk+1 ∈[μk ,μ∗] and
thus our initial hypothesis (μk < μ∗) is also satisfied for
the next iteration unlessμk+1 = μ∗. Therefore, successive
iterations confirm μk k→∞−→ μ∗ and, accordingly, ŷk k→∞−→
y∗
j ∀j. This concludes the proof of the proposed method.

4 Convergence rate analysis and stopping
criterion

This section provides additional insights into the pro-
posed CDMbymeans of the following particularization of
(1),

min{xj},y
∑J

j=1 fj(xj)

s.t. xj ∈ Xj, j = 1, . . . , J
hj(xj) ≤ yj, j = 1, . . . , J∑J
j=1 yj ≤ C
y ∈ Y , Y = Y1 × . . . × YJ

(19)

where the variables in {xj} as well as the subsets in {Xj} are
uni-dimensional. To be precise, not all the problems that
can be formulated as in (19) are considered in the follow-
ing convergence analysis but only those with the following
dependance between the primal variable yj and the dual
variable λj in the subproblems of the CDM, still interest-
ing as far as usual problems in the literature exhibit that
relationship (see some examples in Section 5),

yj = aj
(
λj

)−α + bj, for a certain value of α > 0,
aj > 0 and bj ∈ R

(20)

In the general case, the relationship between yj and λj
can be established again, thanks to the KKT optimality
conditions of the problem. Therefore, let us construct the
Lagrangian of (19), that is,

1 5 J

k

*

ˆ k
j

PRIMAL
PROJECTION

(a) (b)

k

*

1k

DUAL
PROJECTION

k
j
k

2 3 4 1 5 J2 3 4

Figure 2 Primal and dual projections lead the updates of μ towards μ∗.



Morell et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:41 Page 8 of 18
http://asp.eurasipjournals.com/content/2013/1/41

L({xj}, y, {λj},μ, {ξ j}) =
∑J

j=1
fj(xj) + μ (

∑J

j=1
yj − C)

+
∑J

j=1
λj

(
hj(xj) − yj

)
+

∑J

j=1
ξTj (gj(xj)) +

∑J

j=1
ψT

j qj(yj)

(21)

and consider the following optimality condition,

∂L
∂xj

= ḟj(xj) + λjḣj(xj) + ξTj
∂

∂xj
gj(xj) = 0 (22)

where ḟ and ḣ stand for the first derivatives of the func-
tions f and h, respectively. Note that if xj /∈ bd Xj then
ξ j = 0 due to complementary slackness and

λj = − ḟj(xj)
ḣj(xj)

(23)

Moreover, if the constraint h(xj) ≤ yj is satisfied with
equality (the usual case as we consider coupled problems)
then xj = h−1

j (yj) and the relationship between λj and yj is
established.
Finally, as we show in Section 5, (20) is found for com-

mon functions f and h appearing in usual problems. Fur-
thermore, the convergence rate of the proposed method
can be derived assuming (20) and a stopping criterion that
enhances the performance of the CDM can be designed.
These two issues are developed in the following subsec-
tions.

4.1 Convergence rate analysis
In order to find out the convergence rate of the proposed
method, let us compare the value of |(μk)−α − (μ∗)−α| in
two successive iterations, i.e., k and k+1. First, let us clas-
sify the optimal primal variables {y∗

j } into three groups: I∗
includes the indexes j corresponding to the variables that
satisfy y∗

j = infYj, S∗ embraces the indexes where y∗
j =

supYj and finally,A∗ contains the remaining indexes, i.e.,
those associated to yj /∈ bd Yj. Using (20) and recalling the
optimality condition λ∗

j = μ∗ seen in (11), it is true that

y∗
j =

⎧⎨
⎩
aj (μ∗)−α + bj j ∈ A∗

mj j ∈ I∗
dj j ∈ S∗

(24)

where mj = infYj and dj = supYj. Assuming that∑J
j=1 y

∗
j = C is fulfilled, we get

(
μ∗)−α = C − ∑

j∈A∗ bj − ∑
j∈I∗ mj − ∑

j∈S∗ dj∑
j∈A∗ aj

(25)

For any other value μk 
= μ∗ we define

ykj =
⎧⎨
⎩
aj

(
μk)−α + bj j ∈ Ak

mj j ∈ Ik

dj j ∈ Sk
(26)

where the subsetsAk , Ik , and Sk are defined likewiseA∗,
I∗, and S∗ but refer to the indexes of the variables in {ykj }.
Let us assume μk < μ∗ and let us obtain {ykj } from (26).

Clearly, since
(
μk)−α

> (μ∗)−α , it holds that ykj ≥ y∗
j ∀j.

As a result of the primal projection in (12), now with the
objective value modified by the weighting matrix W =
[ 1/a1, . . . , 1/aJ ]T , i.e., W 1/2||yk − ŷk||2, the corrected ŷkj
values can be expressed as

ŷkj =
⎧⎨
⎩
aj

(
μk)−α + bj − ajK j ∈ Ak

mj j ∈ Ik

dj − ajK j ∈ Sk
(27)

for the value of K > 0 to be determined. The proof is
very similar to the case W = I in “Proof of Proposition
1” in Appendix and the convergence of the method is not
affected. We use this projection in this particularized ver-
sion simply because it offers better performance and we
did not use it before just because we had no means to find
a better weighting matrix than the identity matrix.
At the third step of the method, i.e., the dual subprob-

lems, the reduced list {λ̆kj } is obtained from the values ŷkj
in (27) with j ∈ Ak ∪Sk . In other words, reversing (20) we
find

(
λ̆kj

)−α = ŷkj − bj
aj

=
⎧⎨
⎩

(
μk)−α − K , ∀j ∈ Ak

dj−bj
aj − K , ∀j ∈ Sk

(28)

Finally, in the dual projection we select the minimum
value in {λ̆kj }, which is in this case the closest to μk given
μk < μ∗ because μk+1 ∈[μk ,μ∗] (see Section 3.3),

μk+1 = min {λ̆kj } (29)

or equivalently,

(
μk+1

)−α = max {λ̆kj } =
(
μk

)−α − K (30)

since dj−bj
aj is always lower than

(
μk)−α or otherwise

dj−bj
aj − K would belong to Ak . Note in (27) that the defi-

nition of the subsets Ak and Sk implies dj < aj(μk)−α +
bj.
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Using the previous results, we can state that

|
(
μk+1

)−α −(
μ∗)−α | = |

(
μk

)−α −(
μ∗)−α −K | (31)

This can be further refined if K is developed using (27)
and

∑J
j=1 ŷ

k
j = C,

K =
(
μk)−α ∑

j∈Ak aj+∑
j∈Ak bj+∑

j∈Ik mj + ∑
j∈Sk dj−C∑

j∈Ak∪Sk aj

=
∑

j∈Ak aj∑
j∈Ak∪Sk aj

(
μk

)−α −
∑

j∈Ak aj∑
j∈Ak∪Sk aj

×
[
C − ∑

j∈Ak bj − ∑
j∈Ik mj − ∑

j∈Sk dj∑
j∈Ak aj

]

(32)

Particularly, note that the expression within brackets in
(32) is exactly (μ∗)−α when the subsets Ak , Ik and Sk

coincide with the optimal ones. We say that the algorithm
is in the optimal zone when the sets (Ak , Ik ,Sk) coincide
with (A∗, I∗,S∗).
Finally, we can conclude that the speed of convergence

within the optimal zone obeys the following rule, which is
obtained by plugging (32) into (31),

|(μk+1)−α − (μ∗)−α| = |(μk)−α − (μ∗)−α|

×
(
1 −

∑
j∈A∗ aj∑

j∈A∗∪S∗ aj

)
(33)

In other words, (μk)−α converges linearly to (μ∗)−α

except when S∗ = {∅}, showing superlinear convergence.
Alternatively, if the initial hypothesis is μ0 > μ∗, the con-
vergence is also linear expect for I∗ = {∅}, in which case
it is superlinear. Note in both cases that since (1) and (19)
are assumed coupled problems,A∗ 
= {∅}.

4.2 Stopping criterion
The previous convergence rule in (33) can be used to
define a stopping criterion for the CDM. It is based on
the particular evolution followed by μk inside the optimal
zone. For that purpose, let us take three consecutive val-
ues ofμ, i.e.,μk ,μk+1, andμk+2, all of them in the optimal
zone. The successive application of (33) leads to

|(μk+l)−α − (μ∗)−α| = |(μk)−α − (μ∗)−α|

×
(
1 −

∑
j∈A∗ aj∑

j∈A∗∪S∗ aj

)l

l = {0, 1, 2}

(34)

From (34) it is verified that
(
μk+2)−α − (

μk+1)−α(
μk+1)−α − (

μk)−α
= 1 −

∑
j∈A∗ aj∑

j∈A∗∪S∗ aj
(35)

and therefore, in the optimal zone, the left side of (35)
is a constant number regardless of k. From the practical
point of view and thanks to this result, we can monitor the
evolution of

SCk =
(
μk+2)−α − (

μk+1)−α(
μk+1)−α − (

μk)−α
, ∀k (36)

and stop the iterations when SCk stabilizes to a constant
value. Afterwards, the optimal solution is readily obtained
since at that point we know which allocations saturate to
eithermj or dj and the exact value of μ∗ can be computed
by means of (25).

4.3 Graphical comparison among decomposition
techniques

In the sequel, we include a graphical comparison among
decomposition techniques and the goal is to highlight
the manner in which the different methods operate in
essence. We do this with the support of the following toy
optimization problem

min
x1,x2,y1,y2

a1(x1 − c1)2 + a2(x2 − c2)2

xi ≤ yi, i = 1, 2
s.t. y1 + y2 ≤ C

0 ≤ xi ≤ xmax
i , i = 1, 2

0 ≤ yi ≤ xmax
i , i = 1, 2

(37)

where we have included the variables yi to match the
formulation of the proposed CDM and a primal decom-
position as well. In Figure 3, we compare our proposed
method to the classical decomposition techniques. In all
the cases, the feasibility region of the problem in terms
of the variables y1, y2 is marked in grey. Also, the contour
lines of the objective function (centered at c =[ c1, c2]T )
are represented in the plots (even we know that the depen-
dance of the objective function is on x1, x2 instead of
y1, y2).
As depicted in the figure, a primal decomposition

approach updates yk by adding the subgradient to the
point and, if the result is not feasible, a projection corrects
the situation by finding the closest point in the feasible
set. In the figure, note that arrows represent subgradients
and dashed lines projections. In this way, the successive
projections tend to the optimal solution, i.e., y∗. Next, let
us consider a dual decomposition approach. In order to
analyze it from the perspective of the primal variables, we
need to establish first the relationship between yj and λj
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Figure 3 Comparison among decomposition techniques. Toy example.

and also between λj and μ. For that purpose, we consider
again the Lagrangian of the problem, that is

L(x, y,λ,μ, ξ1, ξ2,ψ1,ψ2)

= a1(x1 − c1)2 + a2(x2 − c2)2 + λT (x − y)
+ μ(y1 + y2 − C)

−
∑2

i=1
ξ1,ixi +

∑2

i=1
ξ1,i(xi − xmax

i )

−
∑2

i=1
ψ1,iyi +

∑2

i=1
ψ1,i(yi − ymax

i )

(38)

For the case xi ∈ (0, xmax
i ), i = 1, 2 and yi = xi, the dual

variables in ψ i and ξ i satisfy ψ i = ξ i = 0, i = 1, 2 due
to slackness (note that ymax

i = xmax
i , i = 1, 2). In that con-

ditions, the KKT optimality condition ∂L/∂xi = 0 forces

xi = ci − λi
ai

(39)

Furthermore, if we take into account that yi = xi in the
case of interest and λi = μ due to the KKT optimality
condition ∂L/∂yi = 0, then we verify that

yi(μ) = ci − μ

ai
(40)

The dashed line in Figure 3 shows all the points that can
be obtained by changing the value of μ in (40). Note in

particular that for μ = 0 the optimum of the uncon-
strained version of (38) is achieved. Using the dual decom-
position technique (in the figure we start withμ0 = 0), the
successive updates move along this line (the orientation
and module defined by the subgradient) until the optimal
solution is achieved.
In the two classical decomposition approaches, primal

and dual decomposition, a good election of the step-size
that modifies the length of the subgradient plays a cen-
tral role and it is recommended to choose a value that
diminishes with the iteration number in order to prevent
the successive updates from moving indefinitely around
the optimal solution without reaching it. This issue is
in fact an important practical impairment of both solu-
tions. Notwithstanding, the method we propose in this
article avoids the usage of a user-defined step-size. As the
reader can appreciate in the figure, once the initial guess
y0 derived from μ0 = 0 is projected to the feasible sub-
set, the proposed method finds out several candidates to
update μ0 to μ1 (two in this case, i.e., λ̆11 and λ̆12). These
two candidates provide the possible updates y1(λ̆11) and
y1(λ̆12) and the method always chooses the dual candidate
that provides the smallest possible update. This opera-
tion guarantees that the primal update, i.e., y1 in this case,
remains in the same half-space (with respect to the fron-
tier y1 + y2 = C). Note with this simple example the
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interesting feature of the proposed method in comparison
with the other techniques, that is, the step is automatically
controlled.

5 Applications and numerical results
In the sequel, we present three different applications of
the proposed method, the first two are related to power
allocation problems and the third one deals with DBA in
satellite networks. In the first problem, a decentralized
solution is required to reduce the amount of signaling
information. In the second one, a centralized implemen-
tation of the CDM is used to solve a time-varying water-
filling problem and the aim is to show the benefits of
having an unsupervised method in that changing con-
ditions. Finally, the third example shows the advantages
of the proposed technique when a small allocation time
is required in order to accommodate a large number of
users.

5.1 Decentralized power allocation for cognitive radios
Let us consider a communication device that is able to
establish simultaneous communication links by joining
several networks or using multiple channels within the
same system (e.g., this is possible in IEEE 802.11n). To
do so, the device integrates multiple radio transceivers
[23,24] which, at their turn, operate over multiple sub-
channels or subcarriers in order to combat the multipath
fading (see Figure 4). We assume that the device can
sense the wireless channel and determine the non-used
subcarriers in each subsystem, as it is usual in cogni-
tive scenarios. Furthermore, each transceiver is able to
optimally allocate the available power among its subcarri-
ers using the water-filling solution. This is advantageous
from the system design point of view because we can
employ off-the-shelf radio transceivers and simply balance
the device power among them. Finally, there is a central
controller that performs the distribution task, being the
global objective to maximize the total sum rate capacity.
Note that, depending on the signal strength and capacity
in each subsystem, some of the transceivers may remain
temporarily idle.

Controller

TX/RX 1

TX/RX 2

TX/RX M

Figure 4 Example of a cognitive device.

The problem can be formulated forM radio transceivers
as

max{Pi}
∑M

i=1 ri(Pi)

s.t.
∑M

i=1 Pi ≤ PT
Pi ≥ 0, i = 1, . . . ,M

(41)

where ri(Pi) is the transmission rate of the ith transceiver
when power Pi is allocated to it and PT is the total avail-
able power. Each of the transmission rates is actually the
result of another optimization problem, that is,

ri(Pi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
max
{pij}

∑Ni
s

j=1 BWi log
(
1 + pij H

i
j

N0 BWi

)
s.t. pij ≥ 0∑Ni

s
j=1 p

i
j ≤ Pi

(42)

whereNi
s is the number of subcarriers of the ith radio, BWi

stands for subcarrier bandwidth, N0 is the noise power
spectral density, and Hi

j is the channel gain at the jth
subcarrier of the ith transceiver.
Note that given the separability of the problem, i.e.,

there are many independent transceivers coupled by
a total power constraint, a decentralized optimization
method is adequate both from a mathematical and a prac-
tical point of view. In this approach, the controller decides
the total power per transceiver and each subsystem com-
putes its own optimal allocation. The application of the
CDM to solve (41) is briefly detailed next.
Given μk < μ∗, each transceiver computes the follow-

ing dual subproblem,

max
{pi,j},Pki

∑Ni
s

j=1 BWi log
(
1 + pi,j Hi,j

N0 BWi

)
− μk Pki

s.t.
∑Ni

s
j=1 pi,j ≤ Pki
pi,j ≥ 0

(43)

and the application of the KKT conditions gives the
solution

pi,j = BWi
(

1
μk − N0

Hi,j

)+

Pki = ∑Ni
s

j=1 pi,j
(44)

As a result of the dual subproblems we obtain Pk =
[Pk1, . . . ,P

k
M]T and we use it as the input for the primal

projection, that is,

min
{P̂ki }

||P̂k − Pk||2

s.t.
∑M

i=1 P̂ki = PT
P̂ki ≥ 0

(45)

where P̂k =[ P̂k1, . . . , P̂
k
M]T .

The corrected values P̂ki are then used in the primal sub-
problems defined in (42) and each transceiver computes
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the optimal allocation by its own. As a result of the pri-
mal subproblems, the Lagrange multipliers associated to
the constraints

∑Ni
s

j=1 pi,j ≤ P̂ki at the kth iteration, i.e.,
λ̂ki , are obtained. Discarding the values that result from
P̂ki = 0, we obtain the reduced list {λ̆ki } and finally, the dual
projection updates μk from {λ̆ki } by doing

μk+1 = min{λ̆ki } (46)

A completely different approach is to gather all the
information at the controller and to compute there the
optimal power allocation. Afterwards, the result is sent
back to the transceivers. Note that this centralized solu-
tion has an important drawback in terms of signaling
because the powers in all the subcarriers and all the
transceivers need to be exchanged. On the contrary,
decentralized solutions benefit from transceiver-level sig-
naling. In the numerical results below, we compare the
CDM to other approaches.

5.1.1 Numerical results
We consider a device with three different OFDM trans-
mitters. The first transmitter employs 256 subcarriers
spanning a total bandwidth of 1.536MHz (6 kHz per sub-
channel), the second one has 256 subcarriers as well and
3.072MHz of bandwidth (12 kHz per subchannel) and the
third one manages 128 subcarriers in 1.28MHz of band-
width (10 kHz per subchannel), so that a total of 640 sub-
carriers and 5.888MHz have to be controlled (see Table 1).
We assume frequency selective Rayleigh-fading channels
in all three systems with a channel length of 20 taps and
an exponential power delay profile where the delay spread
is 1ms. Mean channel gain is 0 dB in system 1, −10 dB in
system 2, and −5 dB in system 3. Moreover, we assume
that the noise power spectral density is flat over frequency
with N0 = σ 2

n /BW1, being BW1 the subcarrier bandwidth
in system 1. Initially, we set up a uniform power allocation
in all the methods and the total available power is always
PT (dB) = σ 2

n (dB) + 10 log10 (640) + 5.
Figure 5 shows a multi-system water-filling allocation

example. The plot at the top depicts one channel realiza-
tion for the three systems whereas the plot at the bottom
shows the optimal power allocation. As expected, most

Table 1 Description of the subsystems

Subsystem
number

Number of
subcarriers

Subcarrier
bandwidth
(BWi)

Subsystem
bandwidth

1 256 6 kHz 1.536MHz

2 256 12 kHz 3.072MHz

3 128 10 kHz 1.28MHz
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Figure 5 Distributed water-filling example. Top: channel gains.
Bottom: power allocation. In f1–f3 we have the initial band
frequencies of subsystems 1–3.

of the power is allocated to transceivers 1 and 3, which
are the ones that have the best channel condition. On
the contrary, subsystem 2 only allocates power to a few
subcarriers that have the highest channel gains. Notwith-
standing, in absolute terms, transceiver 2 receives quite a
large allocation in order to exploit the higher subcarrier
bandwidth.
Figure 6 shows the evolution of the Normalized Mean

Squared Error (NMSE) in the power allocation with
respect to the number of messages exchanged between
the transmission subsystems and the central controller.
The optimal power allocation is computed using the bisec-
tion method (relative error below 10−5). We compare the
proposed CDM to the classical primal and dual decom-
position techniques, the classical primal–dual algorithm
of Arrow et al. [16] and also to a centralized approach.
The classical decomposition techniques use αk = 1/

√
k

0 500 1000 1500 2000 2500 3000 3500 4000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Messages

N
or

m
al

iz
ed

 M
S

E

Normalized MSE vs number of messages

Decentralized, Coupled−Decomp.
Decentralized, Primal Decomp.
Decentralized, Dual Decomp.
Decentralized Arrow−Hurwicz
Centralized

Figure 6 NMSE versus number of signaling messages.
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as step-size and the Arrow–Hurwicz method initializes
the value in the dual variable μ to 0, the primal variables
with a uniform power allocation and the step-size is fixed
to 0.1. On the one hand, results show that the proposed
CDM is the best option, whereas the remaining alterna-
tives require at least to double the amount of signaling in
order to achieve the same allocation error. On the other
hand, note that the classical decomposition techniques as
well as the primal–dual approach are penalized in terms
of convergence speed even taking into account that we
have manually adjusted the step-size of each method in
order to achieve the best possible result. Finally, note also
that a centralized approach is not efficient at all as far
as the allocation error becomes small enough only when
the entire allocation has been transmitted. This requires
640 messages in our case to send the channel gains to the
controller and 640 messages more to return the optimal
power allocation values to the radios.

5.2 Power allocation in a conventional OFDM
transmission

In the following, we apply our method to a classical
water-filling problem where a decentralized solution is
not necessary. In this occasion, we are interested in the
adaptability of the method in time-varying scenarios.
Let us consider the well-known single-user water-filling

solution over parallel Gaussian channels ([25], Sec. 10.4),
which provides the optimal power allocation to the sub-
carriers of an OFDM-based system in order to maximize
the mutual information given a total power constraint.
Mathematically,

max{pi}
∑Ns

i=1 log
(
1 + pi

σ 2
ni

)
s.t. pi ≥ 0∑Ns

i=1 pi ≤ P

(47)

where Ns is the total number of subcarriers or paral-
lel channels in the system, P is the total transmission
power, σ 2

ni is the noise variance in the ith subcarrier and
pi stands for the allocated power. The application of the
KKT optimality conditions to (47) leads to the solution

pi =
(
1
μ

− σ 2
ni

)+
(48)

where (a)+ = max {0, a} and 1
μ
is denoted as the water-

level and shall be chosen in order to satisfy the total power
constraint. Typically, the bisection method is employed
to find μ∗. However, note that (47) can be rewritten in
the form of (2) and also (19). Therefore, we can apply
the proposed CDM as well. Indeed, (48) and the relation-
ship in (20) match if we identify pi with yi and μ with λi
(remember that the required relationship applies only to
yi /∈ bd Yi, that is, yi = pi > 0).

5.2.1 Numerical results
Let us assume Ns = 512 subcarriers. The channel is
time-varying and frequency selective; it has 20 taps. The
power delay profile is assumed exponential with a delay
spread of 1ms and the baseband sampling time is 1μs.
We compare now the proposed CDM to the bisection
method and also to the classical primal–dual algorithm in
[16]. It is remarkable that the CDM requires no modifi-
cation at all (it is completely unsupervised) and the same
holds for the primal–dual algorithm. On the contrary, the
bisection method requires a slight modification to be able
to track the time-varying scenario. For that purpose, we
introduce the updating factor αu. Initially, the method is
applied as usual, that is, having the initial hypothesis onμ0

l
and μ0

u (two values that are below and above μ∗, respec-
tively), we compute μ1 = 1/2(μ0

l + μ0
u) and we update

μ1
l to μ1 if

∑Ns
i=1 pi(μ1) > P or μ1

h to μ1 otherwise. In
the subsequent iterations, given that the channel is time-
varying, we need to check first if μk

l and μk
h are still valid.

If
∑Ns

i=1 pi(μ
k
l ) > P is not accomplished, we update μk

l to
μk
l

αu
and we repeat this while

∑Ns
i=1 pi(μ

k
l ) > P. Similarly, if∑Ns

i=1 pi(μk
u) < P is not attained, we modify μk

u to αu · μk
u

and we repeat this while
∑Ns

i=1 pi(μk
u) < P. Then, we com-

pute μk+1 = 1/2(μk
l + μk

u) and we update the hypothesis
accordingly, as in the normal version of the technique.
Figure 7 plots the NMSE of the power allocation for

both methods as a function of the mean SNR. As in
the previous application example, we compute the opti-
mal power allocation using the bisection method (relative
error below 10−5). Moreover, all the algorithms are ini-
tialized to the optimal solution for the current channel
condition, αu = 1.05 in the bisection technique, the
step-size is fixed to 0.001 in the Arrow–Hurwicz method
and we have considered three different channel velocities,
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namely, (i) T1
c = 10 · TCDM, (ii) T2

c = 100 · TCDM, and
(iii) T3

c = 1000 · TCDM, where TCDM is the time taken by
one complete iteration of the CDM and Ti

c is the coher-
ence time of the channel at the ith scenario. Note that
we have manually adjusted αu in the bisection method
and the step-size in the primal–dual algorithm in order to
achieve the best possible performance at the worst chan-
nel condition, that is, when the channel coherence time is
the smallest one, i.e., T1

c .
Results show that the CDM usually outperforms the

bisection method and it is far better than the primal–dual
algorithm. Indeed, it performs worse than the bisection
only for T1

c and at low SNR. Note that since the CDM has
no user-defined parameter, it automatically adapts to the
different channel velocities. On the contrary, this adap-
tation does not occur in the other two methods. This is
reflected in Figure 7, where, for example, the bisection
method saturates to an NMSE around 10−4 for T1

c , T2
c ,

and T3
c as the SNR grows.

5.3 Fair DBA
The fair DBA problem arises in many-to-one communica-
tion systems [26,27] and the goal is to fairly distribute the
available bandwidth. In many cases and specially in sys-
tems with a huge number of users [28], the computational
cost of the techniques plays an important role. Addition-
ally, let us remark that recent works on the topic aim at
providing mechanisms for QoS differentiation [4,29] to
modify a plain fair allocation. Therefore, we consider the
following network utility maximization (NUM) formula-
tion to solve a fair DBA problem,

max{rj}
∑N

j=1Uj(rj; pj)

s.t. mj ≤ rj ≤ dj, j = 1, . . . ,N∑N
j=1 rj ≤ B

, (49)

where B is the available bandwidth, rj is the rate allo-
cated to the jth flow, and Uj is the jth utility function (the
terms bandwidth and rate are used interchangeably). The
parameters mj, dj (with 0 ≤ mj < dj), and pj > 0 are
used to define the QoS requirements for each ongoing
connection and they represent the minimum necessary
rate, the required (maximum) bandwidth and the prior-
ity of the jth flow, respectively. Furthermore, we assume
that

∑
j mj < B <

∑
j dj, i.e., the problem is coupled.

As argued before, the utility functions can adequately be
chosen in order to achieve a fair distribution of resources
in different degrees. The following family of functions
parameterized by γ

Uj(rj; pj, γ ) =
{ pj log (rj), γ = 1

pj
r(1−γ )
j
1−γ

, γ 
= 1
(50)

define different types of fairness, being γ → ∞ (max–
min fairness) and γ = 1 (proportional fairness) the most
relevant ones [29].
Note that (49) can be rewritten in the form of (19) and

in particular, the problem is strictly convex and we assume
that strong duality holds, i.e., there is at least one strictly
feasible point. Therefore, we can apply the KKT optimality
conditions to solve (49) semi-analytically. In this case, the
optimal rates must verifye

r∗j (μ) =
[(pj

μ

) 1
γ

]dj

mj

(51)

and the optimal value of μ is such that
∑N

j=1 r∗j (μ∗) = B.
The bisection method is a classical technique widely used
in the literature in order to approximate μ∗ but, alterna-
tively, we can also apply the enhanced version of the CDM.
Specifically, by adding the new variables {yj} and identify-
ing fj(rj) with −Uj(rj) and hj(rj) = rj, (23) together with
rj = h−1

j (yj), (51) turns into

yj =
(pj

λj

) 1
γ

(52)

when mj < yj < dj and has the required form in (20).
Therefore, once the subsets S∗, I∗, andA∗ are known, the
optimal value of μ is readily found according to (25) as

μ∗ =
[ ∑

i∈A∗ γ
√pi

B − ∑
i∈I∗ mi − ∑

i∈I∗ di

]γ

. (53)

5.3.1 Numerical results
Let us draw the values of mj from an integer uniform dis-
tribution between 0 and 10. Each request dj is obtained
summing mj and an integer random number between 0
and 100. The priority values pj are drawn from a uni-
form distribution that takes values between 0.25 and 5
in steps of 0.25 and γ = 1. Figure 8 plots the mean
allocation time, i.e., execution time, of the CDM when
centrally computed in combination with the stopping cri-
terion defined in Section 4.2. The algorithm has been
executed in a Intel© Core 2 Duo CPU running at 2.2GHz
and programmed in Matlab©. We have considered three
different values for the total available bandwidth, namely
B1 = ∑

j mj + 0.25
∑

j dj, B2 = ∑
j mj + 0.5

∑
j dj, and

B3 = ∑
j mj + 0.75

∑
j dj. The results of the CDM have

been compared to the classical bisection method and to
the hypothesis testing method [30]. Since the allocation
time is not sensitive to the available capacity for the latter
methods, in Figure 8 we distinguish among B1, B2, and B3
only for the CDM.
In order to provide a fair comparison among the meth-

ods, it is necessary to take into account the accuracy
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with respect to the optimal solution. The hypothesis test-
ing strategy always achieves the exact optimal solution
(see the details in [30]). The bisection method has been
adjusted to achieve a relative error in the allocation lower
than 10−6, or in other words,

||rBI − r∗||
||r∗|| ≤ 10−6, (54)

where r∗ is the optimal allocation (which can be obtained
with the hypothesis testing method) and rBI is the alloca-
tion achieved by the bisection method. Initially, the two
hypothesis for the values of μ are 0 and 10. In the CDM
we stop the iterations when

|SCk+1 − SCk|
|SCk+1| ≤ 10−2. (55)

Note that as the number of users grows, the difference
in time between the proposed method and the others also
grows, specially when the system is more restricted in
terms of capacity, i.e., for B1. In this case, the CDM is
able to compute the allocation in half the time required
by classical methods. In terms of accuracy in the solu-
tion, (55) gives the exact optimal solution for B1, B2 and
a relative allocation error lower than 10−4 for B3. Overall,
the solution is good in practice; it is optimal in capacity-
constrained scenarios and nearly optimal in less critical
situations. In order to illustrate the selection of the thresh-
old for the stopping criterion, we plot in Figure 9 the
evolution of the relative error and allocation time as a
function of the accuracy in the stopping criterion. Note
that a threshold of 10−2 provides a good trade-off between
both performance metrics for the worst scenario, i.e., for
B3. Finally, if we consider a higher available bandwidth,
e.g., 99% of the whole system demand, this threshold value
keeps the allocation time small as in B3 at the expenses of
a higher allocation error (around 5%). However, the accu-
racy degradation appears only in this extreme case and it

is not critical in practice as far as all the users nearly reach
their demands.

6 Conclusions and future work
This article has contributed with novel decomposition
ideas that efficiently intertwine the classical primal and
dual decomposition approaches in a single iteration of
a new technique, called the CDM. It solves generic
convex optimization problems that have one coupling
constraint with the known advantages of decomposition-
based approaches, that is, the implementation of decen-
tralized solutions. However, it reduces the number of
iterations by more than one order of magnitude with
respect to the classical primal and dual decomposition
solutions and furthermore, it is completely unsupervised,
that is, there is no parameter that requires a manual
adjustment. Moreover, when the problem is particu-
larized (but still of interest), additional results regard-
ing the convergence rate of the proposed technique are
achieved and an stopping criterion that enhances the
performance of the method (in terms of the number of
iterations required to achieve the optimal solution) is
derived.
The proposed method has been tested in three different

problems, two dealing with power allocation in OFDM-
based systems and a third one dealing with DBA. In the
first two cases, the goal is to find the well-known water-
filling solution in power. In one case, we benefit from
a decentralized approach that suits the system architec-
ture whereas in the other case, the proposed method is
applied to a conventional OFDM transmission that deals
with a time-varying channel. In both examples, we have
compared our solution to other decomposition strate-
gies and our approach performs significantly better than
the available alternatives when a decentralized solution is
required. In particular, our results show that the signal-
ing requirements can be reduced at least by a factor 2.
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Moreover, in the centralized application of the method,
that is, the conventional OFDM transmission, the pro-
posed method benefits from being unsupervised and the
channel variability does not compromise the performance
as classical methods do. In particular, and at the high SNR
regime, the difference in the NMSE of the power alloca-
tion between the proposed method and the bisection is
more than two orders of magnitude in all the explored
scenarios.
Finally, when applied to a NUM problem and thanks

to the enhanced version of the method, the proposed
technique reduces the computational time by a factor 2
with respect to well-established techniques such as the
bisection method. This reduction is very important in
systems having a large number of users (as it happens
in satellite communication networks), where the band-
width allocation has to be computed in a short-time
interval.

Appendix
Proof of Proposition 1
For the sake of simplicity, in what follows we obviate
the iteration index k as well as the modifier ˆ(·) in ŷkj ,
λ̂kj , and μk . Let us consider first the dependance of λj
on yj in the primal subproblems. Interestingly, the func-
tion pj in (13) has already been studied in the convex
literature and it is known as the primal function ([15],
Sec. 5.4.4). We recall here two main results related to
the primal function: (i) pj defines a convex function
over the set Pj defined as Pj = {yj | pj(yj) < ∞} and
(ii) the optimal value of the dual variable associated to
the constraint hj(xj) ≤ yj and with opposite sign, say
−λ∗

j (yj), is a subgradient of pj at yj. In our case, note
that Yj ⊆ Pj ∀j and thus, these results can be applied
to (13). Furthermore, since pj is convex in the region
of interest, it is guaranteed to be continuous although
not necessarily differentiable. However, given that the
objective function as well as all the constraints in the
problem (finite number of them) are differentiable, then
for each singular value in Yj we can find an open inter-
val that includes it where pj is differentiable (except of
course at the singular point). Then, taking into account
that the first derivative of a convex function is non-
decreasing by definition and noting that the subgradient
equals to the gradient where the function is differentiable,
we obtain the desired result. In other words, −λ∗

j (yj)
is non-decreasing in the intervals where pj is differen-
tiable just because the subgradient and the first derivative
coincide whereas it takes a value in-between the right
and left derivatives at the singular points, thus preserv-
ing the non-decreasing property. Finally, by removing the
minus sign we can state that λ∗

j (yj) is non-increasing
on yj.

Second, we prove that yj(μ) is non-increasing on μ in
(10). Let us first rewrite (10) as

dj(μ) = min
yj

{
pj(yj) + μyj

}
(56)

Then take any two values of μ, say μ1 and μ2, that accom-
plish: (i) 0 ≤ μ1 < μ2 and (ii) there exist two values in
Yj, y∗

j,1 and y∗
j,2, such that dj(μ1) = pj(y∗

j,1) + μ1y∗
j,1 and

dj(μ2) = pj(y∗
j,2) + μ2y∗

j,2. In other words, y∗
j,1 and y∗

j,2
are minimizers of dj(μ1) and dj(μ2), respectively. Now,
since y∗

j,1 is not necessarily a minimizer of dj(μ2), we can
establish the following inequality,

dj(μ2) = pj(y∗
j,2) + μ1y∗

j,2 + (μ2 − μ1)y∗
j,2 (57)

≤ pj(y∗
j,1) + μ1y∗

j,1 + (μ2 − μ1)y∗
j,1

Next, we prove by contradiction assuming y∗
j,2 > y∗

j,1. In
this case, it is true that (i) (μ2 − μ1)y∗

j,2 > (μ2 − μ1)y∗
j,1

sinceμ2−μ1 > 0 and (ii) pj(y∗
j,2)+μ1y∗

j,2 ≥ pj(y∗
j,1)+μ1y∗

j,1
since y∗

j,1 is a minimizer of dj(μ1). Finally, observations
(i) and (ii) together contradict the inequality in (57) and
therefore y∗

j,2 must necessarily satisfy y∗
j,2 ≤ y∗

j,1. This
proves our second statement.

Proof of Proposition 2
Let us apply the KKT optimality conditions corresponding
to (12). The Lagrangian is

L
(
ŷk ,μ,α,β

)
=

J∑
j=1

(
ykj − ŷkj

)2 + μ

⎛
⎝ J∑

j=1
ŷkj − C

⎞
⎠

+ αT (ymin − ŷ) + βT (ŷ − ymax)

(58)

where ymin =[minY1, . . . , minYJ ] and ymax =
[maxY1, . . . , maxYJ ] and, if we look at the optimality
condition ∂L/∂ ŷkj = 0, we get

ŷkj = ykj − μ − βj + αj, j = 1, . . . , J (59)

Therefore, assuming that the jth optimal primal value, i.e.,
ŷk,∗j , lies inside the interval (minYj, maxYj), then βj =
αj = 0 due to slackness and ŷkj = ykj − μ (with μ ∈
R). If this is not the case, then either ŷk,∗j = minYj or
ŷk,∗j = maxYj. In both cases, note that we can choose an
adequate value of the free dual multipliers αj or βj, respec-
tively, in order to satisfy (59). Finally, taking these results
into account, we can conclude that the solution to the
primal projection is

ŷkj =
[
ykj − μ

]max Yj

min Yj
(60)
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where μ is adjusted to accomplish
∑J

j=1 ŷ
k
j = C. Since

yk 	 y∗ (
∑

ykj > C unless ykj = y∗
j ∀j) and ∑J

j=1 y
∗
j = C, it

is necessary that μ > 0.

Proof of Proposition 3
From Proposition 2 it is verified that non-optimal values
y that attain

∑J
j=1 yj > C diminish its value in the pri-

mal projection in order to achieve
∑J

j=1 ŷj = C unless
yj = minYj, in which case ŷj = yj. Let us distinguish two
subsets of variables: I includes the indexes of the values yj
that attain yj = minYj and Ī the rest. Note that Ī exactly
contains the indexes of the {λ̆j} candidates used in the dual
projection. Then it is true that

ŷj ≤ y∗
j ,∀j ∈ I =⇒

∑
j∈I

ŷj ≤
∑
j∈I

y∗
j , (61)

and therefore,∑
j∈Ī

ŷj >
∑
j∈Ī

y∗
j (62)

since the equality constraints
∑J

j=1 ŷj = ∑J
j=1 y

∗
j = C are

always fulfilled. This fact assures that there is at least one
value ŷj with j ∈ Ī that attains ŷj > y∗

j unless all the values
are optimal yet.

Endnotes
aNotation: �, ≺, 	, and � stand for component-wise
inequalities.
bThe vector s is a subgradient of the function f : Rn → R

at x ∈ R
n if f (y) ≥ f (x) + (y − x)T s, ∀y ∈ R

n. If f is dif-
ferentiable at x, the subgradient s and the gradient ∇f (x)
coincide. Otherwise, there exist many subgradients.
cThe notation x∗

j
(
μk) stands for the optimal solution of

the jth subproblem given μk .
dNotation: � stands for vector element-wise product. If
a =[ a1, a2, . . . , aN ]T and b =[ b1, b2, . . . , bN ]T , then a �
b =[ a1 · b1, a2 · b2, . . . , aN · bN ]T .
eNotation: [a]djmj equals a ifmj < a < dj,mj if a ≤ mj and
dj if a ≥ dj.
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