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Abstract

This article considers uni- and bidirectional communication in the half-duplex Gaussian multiple-input multiple-output

(MIMO) relay channel. Assuming perfect channel state information at all nodes and the use of time division duplex

communications protocol to separate transmissions and receptions at all nodes, we propose a dual decomposition

approach to efficiently determine upper and lower bounds on the capacity and the capacity region of the half-duplex

relay channel and the restricted half-duplex two-way relay channel, respectively. Our approach allows to quantify the

fundamental limits of the considered relay networks, and the obtained results may serve as benchmarks when

studying different and/or suboptimal relay strategies or the impact of channel estimation errors. Furthermore, we

discuss how our dual decomposition approach may be used for designing optimal resource allocation protocols.

Keywords: Relay channel, Two-way relay channel, MIMO, Half-duplex, Fundamental limits, Cut-set outer bound,
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1 Introduction
A central aspect of today’s and future wireless network

standards is the question of how to provide high-speed

and high-quality service to a steadily growing number of

mobile users without an increase of available bandwidth.

One means to improve throughput, spectral efficiency,

and reliability is to equip the communication devices with

multiple antennas as it is well-known that multi-antenna

systems offer substantial gains over single-antenna sys-

tems [1,2]. Another means to achieve above goals and to

extend coverage is the use of relays, which support the

communication between source(s) and destination(s) but

usually do not have own information to transmit. The con-

cept of relaying goes back as far as 1971 when van der

Meulen introduced the relay channel model [3]. In con-

trast to point-to-point channels, the capacity of the relay

channel remains unknown in general, but upper and lower

bounds have of course been derived [4].

In this study, we consider the combination of multiple-

antenna systems and the concept of relaying. In par-

ticular, we determine upper and lower bounds on the

capacity and the capacity region of the Gaussian multiple-

input multiple-output (MIMO) relay channel and the
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GaussianMIMO two-way relay channel with a half-duplex

constrainta. While this topic is interesting and relevant

in itself, note also that both the relay channel and the

two-way relay channel are elementary building blocks

of general multi-hop wireless networks. A fundamental

understanding of these two small networks and their per-

formance limits can thus help to determine the limits on

the performances of larger communication networks, e.g.,

by decomposing a larger network into subgraphs whose

performances can be more easily specified.

In their pioneering study on the relay channel, Cover

and El Gamal derived a capacity upper bound and

achievable rates based on a then new cut-set bound

(CSB) and two coding schemes that are now referred to

as decode-and-forward (DF) and compress-and-forward

(CF), respectively. In [5,6], the cut-set bound and the DF

scheme are used to derive bounds on the capacity of the

half-duplex relay channel. For Gaussian single-antenna

channels, corresponding bounds are presented in [7,8].

A (generally loose) upper bound to the CSB of the full-

duplex Gaussian MIMO relay channel is provided in [9].

Achievable rates for this channel based on point-to-point

transmission, the cascaded relay channel, and a subopti-

mal DF scheme are given, too. In [10], it is shown that

the cut-set bound and the maximum achievable DF rate
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for this MIMO relay channel can be obtained as the solu-

tions of convex optimization problems, which also holds

if a half-duplex constraint is imposed and frequency divi-

sion duplex (FDD) with an average power constraint is

considered. For the full-duplex case, the same result was

later independently derived in [11] and then extended to

the half-duplex relay channel with a time division duplex

(TDD) protocol and per protocol phase transmit power

constraints imposed on source and relay [12]. A similar

study for both the full-duplex and the half-duplex case

with TDD is presented in [13]. However, it can be verified

that the expressions resulting from those derivations are

only upper bounds to the optimal solutions.

The two-way relay channel models the more common

and important scenario where two terminals want to

exchange information with the aid of a relay. It was intro-

duced in [14], where the authors showed that a significant

portion of the loss in spectral efficiency suffered in the

one-way relay channel due to the half-duplex constraint

can be compensated when bidirectional communication

is considered. Most scientific articles have analyzed the

half-duplex two-way relay channel in combination with a

communication protocol consisting of two phases, a mul-

tiple access (MAC) phase and a broadcast (BC) phase

[14-18]. In the MAC phase, the terminals transmit their

messages to the relay, and subsequently, in the BC phase,

the relay broadcasts its message to the terminals. With

this protocol, however, all information is sent via the relay

since the terminals cannot overhear each other’s trans-

missions due to the half-duplex constraint. As a result,

protocols composed of more than two phases that uti-

lize the direct link between the terminals can yield larger

achievable rate regions in general [19-21].

The contributions of this article are as follows. We

present a dual decomposition approach that allows to

evaluate upper and lower bounds on the capacity and the

capacity region of the half-duplex Gaussian MIMO relay

channel and the restricted half-duplex Gaussian MIMO

two-way relay channel, respectively. To this end, perfect

channel state information (CSI) at all nodes and the use

of TDD protocols to separate transmissions and recep-

tions at all nodes are assumed.We show how the proposed

dual decomposition approach can be applied to efficiently

tackle the joint optimization of input signals and time

allocation that needs to be solved in order to obtain the

desired results. In the dual domain, the problem decom-

poses into subproblems that are easier to solve and for

which standard convex optimization tools can be used.

With our optimization approach, it is hence possible to

efficiently obtain numerical results that quantify the fun-

damental limits of uni- and bidirectional communication

in the half-duplex Gaussian MIMO relay channel. These

results can then serve as benchmarks when studying dif-

ferent and/or suboptimal relay strategies or the impact

of channel estimation errors on the performance of the

considered relay networks. Moreover, our dual decom-

position approach may be used for designing optimal

resource allocation protocols, as discussed later in this

article.

The approach proposed here is a nontrivial extension of

a similar dual decomposition approach presented in [21].

There, we considered bounds on achievable rate regions

for the same relay networks, but the transmit powers of all

nodes were assumed to be bounded above by some finite

value for every protocol phase. In this study, we modify

this approach such that it can handle the average transmit

power constraints under which the information theoretic

capacity bounds (cut-set bound and achievable DF rate)

we are interested in here were derived. We remark that

the problems we need to solve become considerably more

difficult due to the average transmit power constraints,

both from a theoretical and practical point of view. This

is because we need to introduce more dual variables and

because the constraint sets of the subproblems encoun-

tered in the dual domain become unbounded. The latter

means that several additional mathematical details have

to be taken into account in order to ensure correctness

of the optimization strategy. What is more, the power

constraints considered in [21] can easily be incorporated

into the optimization framework presented in this article,

which is not the case vice versa. In this sense, the opti-

mization approach presented here is more general than

that of [21].

The remainder of this article is organized as follows.

Section 2 introduces the system model for the restricted

half-duplex Gaussian MIMO two-way relay channel. It

should be mentioned here that our analysis focuses on the

half-duplex two-way relay channel since it includes the

half-duplex relay channel as a special case. In Section 3,

we derive an outer bound on the capacity region of

the restricted half-duplex Gaussian MIMO two-way relay

channel and show how it can numerically be evalu-

ated by means of the aforementioned dual decomposition

approach. An inner bound on the capacity region is given

by the rate region that can be achieved when the relay

uses the decode-and-forward scheme. This achievable

rate region and how it can be evaluated is discussed in

Section 4. Numerical results for both uni- and bidirec-

tional communication in the half-duplex GaussianMIMO

relay channel are presented in Section 5, and Section 6

concludes the article.

Notation:R+ stands for the set of nonnegative real num-

bers. Matrices are denoted by bold capital letters, vectors

by bold lowercase characters. The identity matrix, the

zero matrix/vector, and the all-ones vector are specified

by I, 0, and 1, respectively, where the dimensions are indi-

cated by subscripts if necessary. A−1, A†, AT, AH, and

tr(A) denote the inverse, Moore-Penrose pseudoinverse,



Gerdes et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:43 Page 3 of 17

http://asp.eurasipjournals.com/content/2013/1/43

transpose, conjugate transpose, and trace of a matrix A,

while A � B means that A − B is positive semidefinite.

E[ ·] is the expectation operator and x ∼ NC(µ,C) means

that x is a circularly symmetric complex Gaussian ran-

dom vector with meanµ and covariance matrixC. Finally,

I(X;Y |Z) denotes the conditional mutual information of

random variables X and Y given Z and h(X|Y ) is the

differential entropy of X given Y .

2 Systemmodel
In the one-way relay channel, one source transmits infor-

mation to one destination with the help of a relay. This

simple unidirectional relay network is obviously only a

special case of the two-way relay channel, where two ter-

minals exchange information with the aid of the relay.

Therefore, our analysis focuses on the half-duplex Gaus-

sian MIMO two-way relay channel. More specifically, we

consider the restricted two-way relay channel, i.e., the

bidirectional communication is restricted in the sense that

the encoders at the two terminals can neither cooperate,

nor are they able to use previously decoded information

to encode their messages. The most general communica-

tion protocol for this channel model is composed of all

six phases (network states) where either one or two nodes

transmit, as first noted in [22]. Evidently, no information

can be conveyed when all nodes are silent or when all

nodes transmit at the same time, where the latter is due to

the half-duplex constraint imposed on all nodes. The six

different phases are illustrated in Figure 1, where nodes 1

and 2 represent the two terminals and R is the relay.

LetNA andNB be the number of antennas at node A and

node B, let x
(i)
A ∈ C

NA and y
(i)
B ∈ C

NB denote the transmit

signal of node A and the receive signal of node B during

phase i, respectively, and let HAB ∈ C
NB×NA denote the

channel gain matrix between nodes A and B for all i ∈

{1, . . . , 6}. Then, the phases are characterized as follows:

(1) Node 1 transmits to node 2 and the relay:

y
(1)
R = H1Rx

(1)
1 + n

(1)
R , n

(1)
R ∼ NC(0, INR),

y
(1)
2 = H12x

(1)
1 + n

(1)
2 , n

(1)
2 ∼ NC(0, IN2).

(2) Node 2 transmits to node 1 and the relay:

y
(2)
R = H2Rx

(2)
2 + n

(2)
R , n

(2)
R ∼ NC(0, INR),

y
(2)
1 = H21x

(2)
2 + n

(2)
1 , n

(2)
1 ∼ NC(0, IN1).

(3) Node 1 and node 2 transmit to the relay:

y
(3)
R = H1Rx

(3)
1 + H2Rx

(3)
2 + n

(3)
R , n

(3)
R ∼ NC(0, INR).

(4) The relay transmits to node 1 and node 2:

y
(4)
1 = HR1x

(4)
R + n

(4)
1 , n

(4)
1 ∼ NC(0, IN1),

y
(4)
2 = HR2x

(4)
R + n

(4)
2 , n

(4)
2 ∼ NC(0, IN2).

(5) The relay and node 2 transmit to node 1:

y
(5)
1 = HR1x

(5)
R + H21x

(5)
2 + n

(5)
1 , n

(5)
1 ∼ NC(0, IN1).

(6) The relay and node 1 transmit to node 2:

y
(6)
2 = HR2x

(6)
R + H12x

(6)
1 + n

(6)
2 , n

(6)
2 ∼ NC(0, IN2).

Here, we have assumed that the channels are the same

for all network states in order to simplify the notation.

This is without loss of generality, however, since we any-

how require all channels to be perfectly known at all nodes

for the discussions below. Moreover, the additive white

Gaussian noise n
(i)
A received at node A during phase i is

assumed to be independent of the noise n
(j)
B received at

another node B for all phases j ∈ {1, . . . , 6} and indepen-

dent of n
(j)
A for all j 6= i.

With each node A that transmits in the ith phase a

transmit covariance matrix

R
(i)
A = E

[

x
(i)
A x

(i),H
A

]

(1)

is associated, and the average transmit power consumed

by the node during this phase is given by p
(i)
A = tr

(

R
(i)
A

)

.

Furthermore, if the two nodes A and B transmit simulta-

neously during phase i, we have a joint transmit covari-

ance matrix

R(i) = E





[

x
(i)
A

x
(i)
B

] [

x
(i)
A

x
(i)
B

]H


 =

[

R
(i)
A R

(i)
AB

R
(i),H
AB R

(i)
B

]

(2)

for this phase. By defining the selection matrices

D
(i)
A =

[

INA 0NA×NB

]

, D
(i)
B =

[

0NB×NA INB

]

, (3)

the transmit covariance matrices R
(i)
A and R

(i)
B of the two

transmitting nodes can be expressed as linear functions of

the joint transmit covariance matrix R(i):

R
(i)
A = D

(i)
A R(i)D

(i),H
A , R

(i)
B = D

(i)
B R(i)D

(i),H
B . (4)

3 Outer bound on capacity region
In this section, we establish an outer bound on the

capacity region of the restricted half-duplex Gaussian

MIMO two-way relay channel and, as our main contri-

bution, propose an efficient method to evaluate it. The

outer bound region is obtained by applying the cut-set

bound, which was originally derived for the one-way relay

channel in [4], to the information flow from node 1 to

node 2 as well as to the information flow from node 2

to node 1. In particular, we first consider the cut-set

outer bound for the general half-duplex two-way relay

channel and then show that, for Gaussian channels, it is

equivalent to the cut-set outer bound for the restricted

half-duplex two-way relay channel. While it is not known
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Figure 1 Half-duplex MIMO two-way relay channel. (a) Phase 1: node 1 transmits to node 2 and relay. (b) Phase 2: node 2 transmits to node 1

and relay. (c) Phase 3: node 1 and node 2 transmit to relay. (d) Phase 4: relay transmits to node 1 and node 2. (e) Phase 5: relay and node 2 transmit

to node 1. (f) Phase 6: relay and node 1 transmit to node 2.

whether the cut-set bound is tight in general, there is no

known tighter bound for the relay channel. What is more,

it is tight for all classes of relay channels for which the

capacity is known. These include the physically degraded

and the reversely degraded relay channel [4], the semide-

terministic relay channel [23], and the relay channel with

orthogonal components [24].

Theorem 1. Suppose (R1,R2) is an achievable rate pair

for the half-duplex two-way relay channel, where R1 is

associated with the rate of the information sent from node 1

to node 2 and R2 with that of the reverse direction. Then,

where X
(i)
A and Y

(i)
B represent the channel input of node A

and the channel output of node B during phase i, respec-

tively, and the duration of the ith phase is denoted

by τi.

Proof. The result directly follows from ([5], Thm. 1)

by considering all six network states (TDD phases) and

both directions of data transmission. In particular, the

rate bounds originate from the four cut-sets depicted in

Figure 2; the first two cut-sets (shown in Figures 2a,b)

yield the upper bounds on R1, whereas the bounds on

R2 are determined by the third (Figure 2c) and fourth

(R1,R2) ∈ COB =
⋃

∏6
i=1 pX(i)

1 X
(i)
2 X

(i)
R

{

(C1,C2) ∈ R
2
+ : τi ≥ 0,∀i ∈ {1, . . . , 6},

6
∑

i=1

τi = 1,

C1 ≤ τ1I(X
(1)
1 ;Y

(1)
R Y

(1)
2 ) + τ3I(X

(3)
1 ;Y

(3)
R |X

(3)
2 ) + τ6I(X

(6)
1 ;Y

(6)
2 |X

(6)
R ),

C1 ≤ τ1I(X
(1)
1 ;Y

(1)
2 ) + τ4I(X

(4)
R ;Y

(4)
2 ) + τ6I(X

(6)
1 X

(6)
R ;Y

(6)
2 ),

C2 ≤ τ2I(X
(2)
2 ;Y

(2)
R Y

(2)
1 ) + τ3I(X

(3)
2 ;Y

(3)
R |X

(3)
1 ) + τ5I(X

(5)
2 ;Y

(5)
1 |X

(5)
R ),

C2 ≤ τ2I(X
(2)
2 ;Y

(2)
1 ) + τ4I(X

(4)
R ;Y

(4)
1 ) + τ5I(X

(5)
2 X

(5)
R ;Y

(5)
1 )

}

,

(5)
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Figure 2 Cut-sets that determine the outer bound region COB. (a) Cut-set 1 (bounding rate of information transmitted by node 1): node 1 →

relay, node 2. (b) Cut-set 2 (bounding rate of information received by node 2): node 1, relay → node 2. (c) Cut-set 3 (bounding rate of information

transmitted by node 2): node 2 → relay, node 1. (d) Cut-set 4 (bounding rate of information received by node 1): node 2, relay → node 1.

(Figure 2d) cut-sets. After having identified which of the

six protocol phases need to be considered for which cut-

set, e.g., phases 1, 3, 6 for the first one, straightforward

application of ([5], Thm. 1) gives the constraints specified

in (5).

We remark that the order of the phases in the transmis-

sion protocol is irrelevant if we only consider this outer

bound region COB; only the portion of the time τi that

phase i is used matters. While it is clear that the opti-

mal joint input distribution factors as
∏6

i=1 pX(i)
1 X

(i)
2 X

(i)
R
, the

following proposition additionally shows that p
X

(3)
1 X

(3)
2

=

p
X

(3)
1
p
X

(3)
2

maximizes COB for the Gaussian relay channel.

Proposition 2. The input distribution for phase 3 that

maximizes COB for the half-duplex Gaussian two-way

relay channel factors as p
X

(3)
1 X

(3)
2

= p
X

(3)
1
p
X

(3)
2
.

Proof. In the third phase, both node 1 and node 2 trans-

mit to the relay so that the input-output characteristic

for the Gaussian relay channel is generally specified by

Y
(3)
R = f1(X

(3)
1 ) + f2(X

(3)
2 ) + N

(3)
R , where f1 and f2 are

deterministic functions that represent the transforma-

tions of the input signals induced by the channel gains,

and where N
(3)
R denotes the Gaussian noise received at

the relay, which is independent of the signals X
(3)
1 and

X
(3)
2 . There are two mutual information terms associated

with phase 3 in (5): I(X
(3)
1 ;Y

(3)
R |X

(3)
2 ) in the first condition

and I(X
(3)
2 ;Y

(3)
R |X

(3)
1 ) in the third one. Both of them are

maximized if X
(3)
1 and X

(3)
2 are independent, as shown by

the following chain of inequalities:

I(X
(3)
1 ;Y

(3)
R |X

(3)
2 ) = h(Y

(3)
R |X

(3)
2 ) − h(Y

(3)
R |X

(3)
1 X

(3)
2 )

= h(f1(X
(3)
1 ) + N

(3)
R |X

(3)
2 ) − h(N

(3)
R )

≤ h(f1(X
(3)
1 ) + N

(3)
R ) − h(N

(3)
R ),

with equality if and only if X
(3)
1 and X

(3)
2 are indepen-

dent ([25], Cor. to Thm. 8.6.1). The same of course holds

if the roles of X
(3)
1 and X

(3)
2 are reversed, which proves the

proposition.

Proposition 2 hence implies that COB is also the cut-

set outer bound for the restricted half-duplex Gaussian

two-way relay channel, which requires that p
X

(3)
1 X

(3)
2

=

p
X

(3)
1
p
X

(3)
2

as the terminals must not cooperate in encoding

their messages. Moreover, it can be shown that Gaus-

sian inputs are optimal for each phase ([26], Prop. 2).

Since a Gaussian distribution is completely determined

by its mean and covariance, the optimal zero mean input

for phase i is specified by R(i), where R
(3)
12 = 0N1×N2

holds for the optimal R(3) as a consequence of Proposi-

tion 2. Note also that the cut-set bound was derived under

the assumption of average transmit power constraints on

every node, i.e.,
∑6

i=1 τiE
[

x
(i),H
A x

(i)
A

]

=
∑6

i=1 τitr
(

R
(i)
A

)

≤

PA if PA denotes the available transmit power node A may

consume on average.

Now, let us turn to the main subject of this section

and the entire article, which is to evaluate the outer

bound region COB for the Gaussian MIMO relay channel.
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One way of achieving this, and the one we choose here,

is to determine its boundary by solving weighted sum

rate (WSR) maximization problems over COB for differ-

ent weight vectors w ∈ R
2
+. In particular, the boundary of

COB can be determined with arbitrary precision by vary-

ing the ratio of the weights w1
w2

from zero to infinityb. For a

given weight vector, the weighted sum rate maximization

we then need to solve reads as

max
r

wTr s. t. r ∈ COB. (6)

We remark that the maximum of problem (6) is well-

defined and that a maximizer r? ∈ COB exists. This is

because COB is closed and bounded (and thus compact) if

the transmit powers P1, P2, and PR the nodes may con-

sume on average are finite, which we of course assume

below. Hence, Weierstrass’ theorem ([27], Thm. 2.3.1)

guarantees that problem (6) attains its maximum.

For the purpose of solving such a WSR maximization

problem, we take an approach that is similar to that cho-

sen in [21] and which can be summarized as follows. Since

the formulation of (6) is not very convenient if we actually

want to perform the optimization, we seek a parameter-

ization that is more suitable to the problem. As a first

step towards this end, we find a convex parameteriza-

tion of the outer bound region COB in Section 3.1. Since

the objective function is linear, we obtain a convex opti-

mization problem for which strong duality holds so that it

can equivalently be solved in the dual domain. The corre-

sponding dual problem is derived in Section 3.2. We then

choose to solve this dual problem by means of the cut-

ting plane algorithm, which is discussed in Section 3.3.

Finally, we need to recover the optimal primal solution

from the optimal solution to the dual problem. How this

so-called primal reconstruction works for the considered

weighted sum rate maximization problem is explained in

Section 3.4.

3.1 Convex parameterization of outer bound region COB

As a first step towards a convex parameterization of the
outer bound region COB, we define six rate-power regions
S1, . . . ,S6, one for each phase of the transmission pro-
tocol. Basically, Si specifies the contribution of protocol
phase i to the outer bound region, both in terms of rates
and power consumption. For the Gaussian MIMO relay
channel with the optimal Gaussian inputs, the mutual
information terms specifying the rates boil down to the
well-known log-det expressions. Consequently, the six
rate-power regions are given byc

S1 =
{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

IN2+NR + H1R
(1)HH

1

)

,

r2 ≤ log det
(

IN2 + H12R
(1)HH

12

)

,

p1 = tr
(

R(1)
)

, p2 = 0, p3 = 0,

R(1) � 0
}

, (7)

S2 =
{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

IN1+NR + H2R
(2)HH

2

)

,

r2 ≤ log det
(

IN1 + H21R
(2)HH

21

)

,

p1 = 0, p2 = tr
(

R(2)
)

, p3 = 0,

R(2) � 0
}

, (8)

S3 =
{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

INR + H1RR
(3)
1 HH

1R

)

,

r2 ≤ log det
(

INR + H2RR
(3)
2 HH

2R

)

,

p1 = tr
(

R
(3)
1

)

, p2 = tr
(

R
(3)
2

)

, p3 = 0,

R
(3)
1 � 0, R

(3)
2 � 0

}

, (9)

S4 =
{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

IN2 + HR2R
(4)HH

R2

)

,

r2 ≤ log det
(

IN1 + HR1R
(4)HH

R1

)

,

p1 = 0, p2 = 0, p3 = tr
(

R(4)
)

,

R(4) � 0
}

, (10)

S5 =
{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

IN1 + H21Q
(5)HH

21

)

,

r2 ≤ log det
(

IN1 + H5R
(5)HH

5

)

,

p1 = 0, p2 = tr
(

D
(5)
2 R(5)D

(5),H
2

)

,

p3 = tr
(

D
(5)
R R(5)D

(5),H
R

)

,

Q(5) � 0,R(5) − D
(5),H
2 Q(5)D

(5)
2 �0

}

(11)

S6 =
{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

IN2 + H12Q
(6)HH

12

)

,

r2 ≤ log det
(

IN2 + H6R
(6)HH

6

)

,

p1 = tr
(

D
(6)
1 R(6)D

(6),H
1

)

, p2 = 0,

p3 = tr
(

D
(6)
R R(6)D

(6),H
R

)

,

Q(6) �0,R(6) − D
(6),H
1 Q(6)D

(6)
1 �0

}

,

(12)

with H1 =
[

HH
1R HH

12

]H
, H2 =

[

HH
2R HH

21

]H
, H5 =

[

H21 HR1

]

, H6 =
[

H12 HR2

]

and D
(5)
2 , D

(5)
R , D

(6)
1 , D

(6)
R

being appropriate selection matrices as defined in (3). It

is straightforward to verify that S1, . . . ,S6 are convex sets

which are parameterized by means of the (joint) transmit

covariance matrices R(1), . . . ,R(6), respectively. They are

not compact, however, because neither the rates nor the

transmit powers are bounded above. In fact, this is the

main difference to the problem considered in [21], where

the average transmit powers for each phase and thus also
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the rate regions associated with each phase are bounded.

As a result, the derivation of the dual problem and its

solution by means of the cutting plane algorithm become

considerably more difficult, as discussed in Sections 3.2

and 3.3.

Remark 1. In order to arrive at above formulations

for S5 and S6, the corresponding constraints on r1
have to be reformulated. This is done by introducing

the auxiliary variables Q(5) and Q(6) to relax the equal-

ity constraints on the conditional covariance matrices

R
(5)
2|R = R

(5)
2 − R

(5)
2RR

(5),†
R R

(5),H
2R and R

(6)
1|R = R

(6)
1 −

R
(6)
1RR

(6),†
R R

(6),H
1R , respectively, before applying the (gener-

alized) Schur complement condition. For more details,

we refer the reader to [10], where this reformulation was

first presented assuming that R
(5),−1
R exists, or to [11],

where the same result was later independently derived

for the more general case when R
(5)
R need not have full

rank.

Suppose that P1, P2, and PR denote the finite trans-
mit powers that terminal 1, terminal 2, and the relay
may consume on average, respectively, and let pTx =
[

P1 P2 PR
]T
. Having defined the six rate-power regions

and the vector pTx, we can now rewrite problem (6) as
follows:

max
r,τi ,ri ,pi

wTr s. t. Ar ≤

6
∑

i=1

τiBiri,

6
∑

i=1

τipi ≤ pTx,

6
∑

i=1

τi = 1,

τi ≥ 0, (ri,pi) ∈ Si, ∀i ∈ {1, . . . , 6}.

(13)

Like in [21], each row of A =
[

1 1 0 0
0 0 1 1

]T
selects one of

the four rate constraints as defined in the outer bound

region COB (cf. (5)), and the corresponding rows of the

matrices Bi ∈ {0, 1}4×2 specify the structures of these

constraints with regard to the sets Si: B1 = B6 =
[

1 0 0 0
0 1 0 0

]T
, B2 = B5 =

[

0 0 1 0
0 0 0 1

]T
, B3 =

[

1 0 0 0
0 0 1 0

]T
,

B4 =
[

0 1 0 0
0 0 0 1

]T
. Furthermore, the fact that the three

nodes are subject to average transmit power constraints

is reflected in the term
∑6

i=1 τipi ≤ pTx, where pi =
[

p
(i)
1 p

(i)
2 p

(i)
R

]T
is the vector of average transmit powers

consumed by the three nodes during phase i.

Remark 2. The optimization problem (13) would be

convex for fixed τ1, . . . , τ6. The reason it is a nonconvex

parameterization of (6) if the time shares are optimiza-

tion variables is that the functions τiBiri and τipi are

not jointly concave in τi, ri and jointly convex in τi,pi,

respectively.

Consequently, another reformulation step is required,
and for this purpose, we define the set

S =

{

(y, z) ∈ R
4
+ × R

3
+ : y =

6
∑

i=1

τiBiri, z =

6
∑

i=1

τipi,

6
∑

i=1

τi=1,

τi ≥ 0, (ri,pi) ∈ Si, ∀i ∈ {1, . . . , 6}

}

.

(14)

Proposition 3. S is a convex set.

Proof. See Appendix 1.

Using this definition of S , the weighted sum rate maxi-

mization problem (6) is equivalently expressed as

max
r,y,z

wTr s. t. Ar ≤ y, z ≤ pTx, (y, z) ∈ S . (15)

Because S is a convex set with nonempty relative inte-

rior, (15) is a convex optimization problem for which

strong duality holds ([28], Sec. 5.3.2). In particular, the

constraints of problem (15) specify a convex set, which

means that a convex parameterization of the outer bound

region COB is given by

COB =
{

r ∈ R
2
+ : Ar ≤ y, z ≤ pTx, (y, z) ∈ S

}

. (16)

3.2 Derivation of the dual function

Since we have strong duality for problem (15), we can

equivalently solve it in the dual domain. In the approach

considered here, the constraints Ar ≤ y and z ≤

pTx are incorporated into the objective function using

the Lagrangian multipliers λ ∈ R
4 and µ ∈ R

3.

This leads to a dual problem where the six phases are

decoupled. In particular, it will show that this approach

allows to solve (15) without explicitly optimizing the time

allocation parameters τ1, . . . τ6. The Lagrangian function

reads as

L(r, y, z,λ,µ) = wTr − λT(Ar − y) − µT(z − pTx),

(17)

and the resulting dual function is given by

2(λ,µ) = sup
r,(y,z)∈S

L(r, y, z,λ,µ)

=

{

µTpTx + sup(y,z)∈S

{

λTy − µTz
}

if ATλ = w,

+∞ otherwise.

(18)
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Applying the definition of S yields

sup
(y,z)∈S

{

λTy − µTz
}

= max
i=1,...,6

(

sup
(ri ,pi)∈Si

{

λTBiri − µTpi

}

)

.

(19)

If none of the channel gain matrices between the two

terminals or between one of the terminals and the relay is

a zero matrix, we have the following propositiond.

Proposition 4. For any µ ≥ 0 and any λ ≥ 0 that sat-

isfies ATλ = w, the value of the dual function 2(λ,µ) is

finite if and only if the following three conditions hold:

1. µ1 > 0 or µ1 = 0, λ1 = λ2 = 0,
2. µ2 > 0 or µ2 = 0, λ3 = λ4 = 0,
3. µ3 > 0 or µ3 = 0, λ2 = λ4 = 0.

Proof. See Appendix 2.

The meaning of Proposition 4 is as follows. For the

subproblems

sup
(ri,pi)∈Si

{

λTBiri − µTpi

}

, i ∈ {1, . . . , 6}, (20)

the Lagrangian multipliers µ1, µ2, and µ3 can be under-

stood as prices associated with the powers p1, p2, and

pR consumed by node 1, node 2, and the relay, respec-

tively. If all prices are positive, each of the subproblems

is guaranteed to have a finite optimal solution because

the cost of power µTpi is a linear function of p
(i)
1 , p

(i)
2 ,

p
(i)
R , whereas λTBiri increases only logarithmically with

the powers. If one of the prices is zero, however, the trans-

mit power of the corresponding node and the associated

transmit data rates can be increased to infinity without

incurring any costs. Consequently, the subproblems for all

phases i ∈ {1, . . . , 6} in which this node transmits take

the value infinity unless all the entries of the ri’s to which

transmissions by the node contribute are weighted with

zero.

Remark 3. Note that λ3 = λ4 = 0 (λ1 = λ2 = 0)

may result in 2(λ,µ) < ∞ only if w2 = 0 (w1 = 0)

because otherwise ATλ 6= w. If w2 = 0 (w1 = 0), however,

the WSR maximization over COB (6) reduces to maximiz-

ing the cut-set bound for the one-way relay channel with

terminal 1 (terminal 2) being the source and terminal 2

(terminal 1) being the destination. In particular, w2 = 0

yields λ?
3 = λ?

4 = 0, which in turn implies µ?
2 = 0 and

max
i=1,...,6

max
(ri,pi)∈Si

{

λTBiri − µTpi

}

= max
i=1,6

max
(ri,pi)∈Si

{

λTBiri − µTpi

}

(21)

That is, only phases 1 and 6 of our 6-phase protocol

need to be considered for the optimal solution, which is

equivalent to setting τ2 = τ3 = τ4 = τ5 = 0 in (13). The

de facto communication protocol for this case is therefore

consistent with that used for the half-duplex one-way relay

channel if terminal 1 is the source and terminal 2 is the

destination [12,21]. Similarly,w1 = 0 implies λ?
1 = λ?

2 = 0,

µ?
1 = 0, and the optimal solution involves only phases 2

and 5. If w > 0, on the other hand, we can conclude from

Proposition 4 that 2(λ,µ) < ∞ requires µ1 > 0 and

µ2 > 0.

Remark 4. For µ3 = 0, it follows from Proposition 4

that 2(λ,µ) < ∞ only if λ2 = λ4 = 0. But λ2 = λ4 = 0

means that transmissions by the relay have no effect on

the dual function since the corresponding rates are all

weighted with zero. This is independent of PR and the

channel gain matrices, and as a result, we have

max
i=1,...,6

max
(ri,pi)∈Si

{

λTBiri − µTpi

}

= max
i=1,2,3

max
(ri,pi)∈Si

{

λTBiri − µTpi

}

(22)

in this case. Moreover, it is clear that phase 3 contributes

nothing to the bidirectional communication if the relay

cannot forward the information it previously received.

Hence, the optimal solution could only involve phases 1

and 2 if µ3 = 0, meaning that only the direct link between

the terminals would be utilized, and λ =
[

w1 0 w2 0
]T

would be the optimizer of the dual problem. But for this

λ the primal feasibility and complementary slackness con-

ditions of the primal problem (15) would only be satisfied

simultaneously if X
(2)
2 −Y

(2)
1 −Y

(2)
R and X

(1)
1 −Y

(1)
2 −Y

(1)
R

formed Markov chains. This is an academic special case

that our system model does not permit. Consequently,

µ3 > 0 if λ ≥ 0 and 2(λ,µ) < ∞.

From Proposition 4 and the two subsequent remarks, it

follows that for λ ≥ 0 and positive weight vectors w > 0

the dual function is equal to

2(λ,µ) =

{

µTpTx + maxi=1,...,6

(

max(ri,pi)∈Si

{

λTBiri − µTpi
})

if ATλ = w, µ > 0,

+∞ otherwise.
(23)
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In order to determine an optimal solution to the origi-
nal weighted sum rate maximization problem (6), we thus
have to solve the dual problem

min
λ,µ

µTpTx + max
i=1,...,6

max
(ri ,pi)∈Si

{

λTBiri − µTpi

}

s.t. λ ≥ 0, ATλ = w,µ > 0. (24)

Remark 5. Because µ > 0, the constraint set of this

dual problem is not closed so that the existence of a min-

imizing solution cannot be guaranteed by Weierstrass’

theorem. However, since the maximum of (6) is well-

defined and strong duality holds, the minimum of (24) is

also well-defined.

3.3 Solution by means of cutting plane algorithm

A simple yet efficient algorithm that can be used to solve

the dual problem (24) is the cutting plane algorithm ([27],

Sec. 6.4), an outer-approximationmethod where the feasi-

ble set of the problem is approximated by a finite number

of feasible points and iteratively refined by a set of linear

inequalities. In each iteration of the cutting plane algo-

rithm, a linear program, the so-called master program,

must be solved and the dual function 2(λ,µ) must be

evaluated. In the `th iteration, the master program reads

as

min
α,λ,µ

α s.t. α ≥ µT
(

pTx − p(k)
)

+ λTv(k),∀k ∈ {1, . . . , `},

λ ≥ 0, ATλ = w,µ > 0, (25)

where, for all k ∈ {1, . . . , `}, we have (r(k),p(k)) ∈ Si

for some i ∈ {1, . . . , 6} and v(k) = Bir
(k). As can be

seen from (23), evaluating the dual function requires to

solve six independent convex optimization problems, one

over each of the sets Si associated with the six phases of

the communication protocol. For this purpose, standard

semidefinite program (SDP) solvers like SDPT3 [29] that

are capable of dealing with the weighted sum of log-det

terms in the objective function can be applied. For a con-

vergence analysis and more details on the cutting plane

method, we refer the reader to ([27], Sec. 6.4).

Remark 6. In order for the cutting plane algorithm to

work in practice, we replace the constraint µ > 0 by

µ ≥ 0. This does not change the optimal solution of the

dual problem (24) because we know that the optimizer

satisfies µ? > 0. However, proper initialization of the cut-

ting plane method then has to be ensured. In particular, if

α(1),λ(1),µ(1) are the optimizers of the master program in

the first iteration, we actually have to choose several ini-

tial points (r(k),p(k)) ∈ Si for some i ∈ {1, . . . , 6} such

that α(1) is finite and µ(1) > 0 is guaranteed. Otherwise,

the algorithm runs into problems when the dual function

is evaluated.

Remark 7. Since µ? > 0 for w > 0, it follows from the

complimentary slackness condition of the primal prob-

lem (15) that z? = pTx, which means that the three nodes

use all their available transmit power. This in turn implies

r? > 0 whenever w > 0, i.e., the tangents to the boundary

of COB at the optimal unidirectional points (C1,max, 0) and

(0,C2,max) are orthogonal to the axes.

3.4 Primal reconstruction

As previously mentioned, the proposed dual decomposi-

tion approach allows to determine the optimal value of (6)

without explicitly optimizing the time shares allocated to

the six phases of the communication protocol. On the one

hand, the decoupling of the phases considerably simpli-

fies the optimization, but on the other, we want to know

the optimal rate vector r? and possibly the optimal time

shares τ ?
i , e.g., for the purpose of designing resource allo-

cation protocols. To this end, we need to generate the

optimal primal solution from the optimal solution to the

dual problem, a process that is generally referred to as pri-

mal reconstruction or primal recovery. Since we apply the

cutting plane algorithm to solve the dual problem, the pri-

mal recovery scheme to obtain the optimal rate vector r?

and the optimal time shares τ ?
i is fairly simple. Assume

the cutting plane algorithm has converged to the opti-

mal solution of the dual problem after L iterations, and

consider the dual problem of the corresponding master

program (25) given by

max
x,u

wTx s.t. Ax ≤

L
∑

k=1

ukv
(k),

L
∑

k=1

ukp
(k) ≤ pTx,

L
∑

k=1

uk = 1, uk ≥ 0,∀k ∈ {1, . . . , L}.

(26)

We remark that this problem is an approxima-

tion of the primal problem (15) where the set S is

replaced by a convex combination of feasible points
{

(v(1),p(1)), . . . , (v(L),p(L))
}

⊂ S and where x ∈ R
2

and uk denote the Lagrangian multipliers associated with

the constraints ATλ = w and α ≥ µT
(

pTx − p(k)
)

+

λTv(k) of the master program, respectively. Letting Ki =
{

k : (r(k),p(k)) ∈ Si, v
(k) = Bir

(k)
}

e, we can rewrite (26) as

max
x,u

wTx s.t. Ax ≤

6
∑

i=1

∑

k∈Ki

ukBir
(k),

6
∑

i=1

∑

k∈Ki

ukp
(k) ≤ pTx,

L
∑

k=1

uk = 1, uk ≥ 0, ∀k ∈ {1, . . . , L}.

(27)

Furthermore, it can be shown that
∑

k∈Ki
ukBir

(k) =
(
∑

k∈Ki
uk

)

Bir̃i and
∑

k∈Ki
ukp

(k) =
(
∑

k∈Ki
uk

)

p̃i for
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some (r̃i, p̃i) ∈ Si since Si is a convex set for all i ∈

{1, . . . , 6}. If we insert these expressions in (26) and com-

pare the result to (13), we can conclude that

τ ?
i =

∑

k∈Ki

u?
k , ∀i ∈ {1, . . . , 6}. (28)

The optimal time shares τ ?
i are therefore easily obtained

from the optimal Lagrangian dual variables u?
k , k ∈

{1, . . . , L}, that correspond to the constraints α ≥

µT
(

pTx − p(k)
)

+ λTv(k) in the master program. More-

over, it is clear that x?, which denotes the vector of optimal

dual variables corresponding to the equality constraints

ATλ = w, yields the optimal rate vector r?.

Remark 8. Since all Si are convex, time sharing within

any of the six phases of the communication protocol is not

necessary. As a result, there will be no more than one k ∈

Ki with u?
k > 0 for every i ∈ {1, . . . , 6}.

4 An achievable rate region using the DF scheme
To obtain an inner bound on the capacity region of

the restricted half-duplex Gaussian MIMO two-way relay

channel, we consider the rate region that is achiev-

able with the decode-and-forward coding scheme in this

section. Like the cut-set bound, the DF coding scheme

is due to Cover and El Gamal [4]. Requiring the relay to

decode the source message can be a severe constraint so

that other relaying strategies like compress-and-forward

or amplify-and-forward can achieve higher rates for cer-

tain channel conditions. For single-antenna nodes, this is

for example illustrated in [8,26]. Nevertheless, we consider

only the DF strategy in this article because the corre-

sponding achievable rate region RDF is very similar in

structure to COB and can thus be evaluated using the same

methodology as described in the previous section.

Theorem 5. If the relay uses the decode-and-forward

coding scheme, the following rate region is achievable for

the restricted half-duplex two-way relay channel:

Proof. This result is derived in [22] by adapting the DF

coding scheme to the 6-phase communication protocol

introduced in Section 2 (with the phases performed in

exactly that order) and applying it to both directions of

information transfer. A brief outline of the coding scheme

that achievesRDF is given in Appendix 3.

In theory, a different ordering of the phases may

increase the achievable rate region RDF. To the best of

our knowledge, however, the 6-phase protocol we use is

the most general protocol for the half-duplex two-way

relay channel that has been considered in the literature so

far. In particular, it includes the 2-phase multiple access

broadcast protocol (MABC: consisting of phases 3, 4), the

3-phase time division broadcast protocol (TDBC: 1, 2, 4),

and the 4-phase hybrid broadcast protocol (HBC: 1, 2, 3, 4)

used in [14-20], for examplef. In addition, it also covers

the approach of using time sharing between the one-way

relay channels in both directions to exchange information

between the terminals, which we termed one-way time

sharing (OWTS: 1, 2, 5, 6) in [21].

Like for the outer bound region COB, the optimal

joint input distribution factors as
∏6

i=1 pX(i)
1 X

(i)
2 X

(i)
R
, where

p
X

(3)
1 X

(3)
2

= p
X

(3)
1
p
X

(3)
2

must be fulfilled due to the assump-

tion of the restricted half-duplex two-way relay channel,

which prohibits the nodes from cooperating in encoding

their messages. Furthermore, the optimal input distribu-

tion for each phase i ∈ {1, . . . , 6} can be shown to be

Gaussian again.

Note that, as in Section 3, our main objective is again

to evaluate the achievable rate region RDF for the Gaus-

sian MIMO relay channel. Clearly, the boundary of the

achievable rate region RDF can also be determined by

means of solving WSR maximization problems with dif-

ferent weight vectors. AsRDF and COB are very similar in

structure, the approach we use to solve one such problem

is essentially the same as for the outer bound region. First,

we find a convex parameterization forRDF. Subsequently,

RDF =
⋃

∏6
i=1 pX(i)

1 X
(i)
2 X

(i)
R

{

(R1,R2) ∈ R
2
+ : τi ≥ 0,∀i ∈ {1, . . . , 6},

6
∑

i=1

τi = 1,

R1 ≤ τ1I(X
(1)
1 ;Y

(1)
R ) + τ3I(X

(3)
1 ;Y

(3)
R |X

(3)
2 ) + τ6I(X

(6)
1 ;Y

(6)
2 |X

(6)
R ),

R1 ≤ τ1I(X
(1)
1 ;Y

(1)
2 ) + τ4I(X

(4)
R ;Y

(4)
2 ) + τ6I(X

(6)
1 X

(6)
R ;Y

(6)
2 ),

R2 ≤ τ2I(X
(2)
2 ;Y

(2)
R ) + τ3I(X

(3)
2 ;Y

(3)
R |X

(3)
1 ) + τ5I(X

(5)
2 ;Y

(5)
1 |X

(5)
R ),

R2 ≤ τ2I(X
(2)
2 ;Y

(2)
1 ) + τ4I(X

(4)
R ;Y

(4)
1 ) + τ5I(X

(5)
2 X

(5)
R ;Y

(5)
1 ),

R1 + R2 ≤ τ1I(X
(1)
1 ;Y

(1)
R ) + τ2I(X

(2)
2 ;Y

(2)
R ) + τ3I(X

(3)
1 X

(3)
2 ;Y

(3)
R )

+ τ5I(X
(5)
2 ;Y

(5)
1 |X

(5)
R ) + τ6I(X

(6)
1 ;Y

(6)
2 |X

(6)
R )

}

.

(29)
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we solve the problem in the dual domain by means of

the cutting plane algorithm, and finally, we perform the

primal reconstruction.
For the purpose of deriving a convex parameterization

forRDF, let

S
′
1 =

{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

INR + H1RR
(1)HH

1R

)

,

r2 ≤ log det
(

IN2 + H12R
(1)HH

12

)

,

p1 = tr
(

R(1)
)

, p2 = 0, p3 = 0,

R(1) � 0
}

, (30)

S
′
2 =

{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

INR + H2RR
(2)HH

2R

)

,

r2 ≤ log det
(

IN1 + H21R
(2)HH

21

)

,

p1 = 0, p2 = tr
(

R(2)
)

, p3 = 0,

R(2) � 0
}

, (31)

S
′
3 =

{

(r,p) ∈ R
2
+ × R

3
+ : r1 ≤ log det

(

INR + H1RR
(3)
1 HH

1R

)

,

r2 ≤ log det
(

INR + H2RR
(3)
2 HH

2R

)

,

r1 + r2 ≤ log det
(

INR + H1RR
(3)
1 HH

1R

+ H2RR
(3)
2 HH

2R

)

,

p1 = tr
(

R
(3)
1

)

, p2 = tr
(

R
(3)
2

)

, p3 = 0,

R
(3)
1 � 0, R

(3)
2 � 0

}

, (32)

and S ′
i = Si for i ∈ {4, 5, 6}. Like Si defined in the previ-

ous section, every S ′
i is a convex set that is parameterized

by means of the (joint) transmit covariance matrix R(i)

and that specifies the contribution of phase i toRDF. Hav-

ing defined these unbounded convex sets S ′
i , we can now

express the weighted sum rate maximization problem that

yields a point on the boundary ofRDF as follows:

max
r,τi ,ri ,pi

wTr s. t. A′r ≤

6
∑

i=1

τiB
′
iri,

6
∑

i=1

τipi ≤ pTx,

6
∑

i=1

τi = 1,

τi ≥ 0, (ri,pi) ∈ S
′
i , ∀i ∈ {1, . . . , 6}.

(33)

Observe that themain difference compared to (13) is the

additional constraint on the sum rate R1 + R2 in RDF so

that A′ =
[

1 1 0 0 1
0 0 1 1 1

]T
and B′

1 = B′
6 =

[

1 0 0 0 1
0 1 0 0 0

]T
, B′

2 =

B′
5 =

[

0 0 1 0 1
0 0 0 1 0

]T
, B′

3 =
[

1 0 0 0 1
0 0 1 0 1

]T
, B′

4 =
[

0 1 0 0 0
0 0 0 1 0

]T
.

This constraint comes from the third phase of the com-

munication protocol, a multiple access phase where both

terminals transmit to the relay. The sum rate constraint in

RDF occurs because the relay must decode the messages

from node 1 and node 2 when it uses DF.

Since all results from Section 3 apply here accordinglyg,

the remaining steps of the optimization follow along the

same lines as for the outer bound region COB. First, we

define the convex set

S ′ =

{

(y, z) ∈ R
5
+ × R

3
+ : y =

6
∑

i=1

τiB
′
iri, z =

6
∑

i=1

τipi,

6
∑

i=1

τi = 1, τi ≥ 0, (ri,pi) ∈ S ′
i , ∀i ∈ {1, . . . , 6}

}

(34)

and reformulate (33) as

max
r,y,z

wTr s.t. A′r ≤ y, z ≤ pTx, (y, z) ∈ S ′. (35)

Then, we use the dual decomposition approach in com-

bination with the cutting plane method to obtain an

optimal solution to this convex optimization problem.

Note that, after having obtained the solution, the opti-

mal time shares τ ?
i , i ∈ {1, . . . , 6}, i.e., the optimal

durations of the six protocol phases, tell us which of

these phases are part of the optimal transmission proto-

col for a given weight vector w. In particular, the optimal

protocol includes phase i if and only if τ ?
i > 0. Further-

more, our dual decomposition approach cannot only be

applied to WSR maximization problems, but to any con-

vex optimization problem for which strong duality holds.

As a result, this approach may be used for the design of

resource allocation protocols, e.g., by considering utility

maximization problems with concave utility functions.

5 Numerical results
In this section, numerical results yielding bounds on the

capacity of the half-duplex Gaussian relay channel as well

as numerical results giving bounds on the capacity region

of the restricted half-duplex Gaussian two-relay channel

are presented. More specifically, we evaluate and com-

pare the outer bound region COB and the rate regionRDF

that can be achieved with the relay using the decode-and-

forward scheme for different scenarios in the two-way

case. For unidirectional communication, these regions

reduce to the cut-set bound COB and the achievable rate

RDF, which give upper and lower bounds on the capacity

of the half-duplex Gaussian one-way relay channel.

As an example scenario, let us consider the line net-

work depicted in Figure 3. This is a simple but commonly

used geometry (cf. [20,26]) where the distance d12 =

1 between the terminals is fixed and the relay is posi-

tioned on the line connecting the two terminals such that

d1R = |d| and d2R = |1 − d|. Furthermore, it is assumed

that each node may consume the same transmit power
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Figure 3 Line network: the relay is positioned on the line

connecting the two terminals that want to exchange

information.

P1 = P2 = PR = 10 on average, which for instance is

a reasonable assumption in ad hoc networks. Finally, we

assume that the path loss exponent is equal to α = 4,

which is a typical value for urban macrocell environments

or multi-level office buildings (cf. [30], Table 2.2), and that

all channel coefficients are perfectly known at all nodes.

Within this framework, two different relay network con-

figurations are considered. In the first one, all nodes have

a single antenna and the real-valued scalar channel coef-

ficients are specified by hAB = d
−α/2
AB , which of course

implies hAB = hBA. Note that, due to the assumption of

real-valued channels, all rate vectors obtained with the

presented optimization framework have to be divided by

2 since the rates are specified by 1
2 log(·) in this case as

opposed to log(·) for complex-valued channels. In the

second configuration, all nodes are equipped with two

antennas. The channel gain matrices are then assumed to

be complex random and independent, where the entries of

HAB are independent and identically distributed complex

Gaussian random variables with zero mean and vari-

ance d−α
AB . In addition, we assume that the channels are

reciprocal, i.e., HAB = HT
BA.

For both the single- and the multi-antenna scenario,

Figure 4 shows the cut-set outer bound COB and the

achievable DF rate RDF for the half-duplex one-way relay

channel over the distance d = d1R between terminal 1

and the relay. Here, we have assumed that terminal 1

is the source and that terminal 2 is the destination of

the unidirectional communication, which means that only

phases 1 and 6 of the 6-phase communication protocol

are used.We remark that the results for the multi-antenna

case are averaged over 1000 independent channel realiza-

tions. For comparison, the best outer bound COB,PP and

the best achievable DF rate RDF,PP that can be obtained

if the source and the relay are subject to per protocol

phase transmit power constraints of the form tr
(

R
(i)
A

)

≤

PA, i ∈ {1, 6}, are plotted as well. Note that this condition

is more restrictive than the average transmit power con-

straint
∑

i=1,6 τitr
(

R
(i)
A

)

≤ PA with τ1, τ6 ≥ 0, τ1 + τ6 = 1

so that COB ≥ COB,PP and RDF ≥ RDF,PP.

It can be observed from Figure 4 that the decode-and-

forward strategy achieves capacity if the relay is close

enough to the source, which is a well-known fact that

has previously been noted for the full-duplex case, e.g.,

in [26]. We also see that the optimal relay positions lie in

the range 0.3 ≤ d ≤ 0.5, with the optimal values of d

being almost the same for both power constraints. These

observations are to be interpreted with caution, however,

as the optimal relay position heavily depends on the path

loss coefficient as well as the available transmit powers.

Another non-surprising observation is that, although a

factor of 2 is due to the fact that we use real-valued chan-

nels for the single-antenna configuration, substantial rate

gains can be achieved without increasing P1 or PR when

multiple antennas are used at each node. More interest-

ingly, the gap between COB and COB,PP as well as that

between RDF and RDF,PP vanishes when the relay is moved

closer to the destination. This can be explained as follows.

The source-relay link, and thus the phase in which the

relay listens to the source, increasingly becomes the bot-

tleneck of the information transfer with increasing d. As d

approaches d12 = 1, the optimal time share τ ?
1 of phase 1

also approaches 1. Hence, the relay power and the trans-

mit power constraint imposed on the relay have no effect

on the optimal solution. Furthermore, the average trans-

mit power constraint imposed on the source becomes

τ ?
1 tr

(

R
(1)
1

)

+ τ ?
6 tr

(

R
(6)
1

)

≈ tr
(

R
(1)
1

)

≤ P1, i.e., it basically

amounts to a per phase power constraint for phase 1.

For the bidirectional communication in the half-duplex

two-way relay channel, we consider three different relay

positions: (a) the relay is exactly in the middle between

the two terminals (d = 0.5); (b) the relay is placed near

terminal 1 (d = 0.25); (c) the relay is very close to ter-

minal 1 (d = 0.1). For each of these scenarios, Figures 5

(single-antenna) and 6 (multi-antenna, results for one par-

ticular random channel realization) show the achievable

DF rate regionsRDF and the outer bound regions COB. For

comparison, the best achievable DF rate regions RDF,PP

and the best outer bound regions COB,PP that can be

obtained with per phase power constraints imposed on

all nodes are also illustrated. Like for unidirectional trans-

mission, we observe that COB ⊃ COB,PP and RDF ⊃

RDF,PP for all scenarios since the average power constraint
∑6

i=1 τitr
(

R
(i)
A

)

≤ PA with τi ≥ 0,∀i ∈ {1, . . . , 6}, and
∑6

i=1 τi = 1 is less restrictive than the per phase power

constraint tr
(

R
(i)
A

)

≤ PA,∀i ∈ {1, . . . , 6}.

First of all, note that the results shown in Figures 5

and 6 allow to draw the same conclusions as for the one-

way case: If the relay is close enough to terminal 1, the

decode-and-forward scheme achieves the cut-set bound

for the unidirectional communication from terminal 1 to

terminal 2, i.e., R1,max = C1,max, regardless of whether we

consider average or per phase transmit power constraints.

Furthermore, the same R2,max (or C2,max) is obtained for

both types of power constraints when d2R approaches 1.

Beyond that, a noteworthy observation is that the great-

est benefit of the less restrictive average transmit power

constraints is obtained if we are interested in the sum rate
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a b

Figure 4 Bounds on the capacity of the half-duplex Gaussian relay channel for P1 = PR = 10 and α = 4. (a) N1 = N2 = NR = 1; real

deterministic channel coefficients: hAB = d
−α/2
AB . (b) N1 = N2 = NR = 2; complex random channel coefficients: [HAB]k,` ∼ NC(0, d−α

AB ) iid. (avgd.

over 1000 channel realizations).

R1 + R2, whereas the performance improvement is less

pronounced for asymmetric rate requirements. Finally,

observe that the gaps between the boundaries of COB and

COB,PP are like the gaps between the boundaries of RDF

and RDF,PP for all ratios R1
R2

and all scenarios considered

here.

In order to assess the complexity of determining the

achievable rate regions and outer bound regions, Table 1

illustrates the average number of iterations the cutting

plane algorithm needs per weighted sum rate maximiza-

tion problem until it converges for the different scenarios

in the multi-antenna caseh. Here, the parameter ε that

specifies the absolute accuracy of the optimal value was

set to 10−2. Note that the number of required iterations

is very small if we consider the per protocol phase trans-

mit power constraint. Unfortunately, the numbers roughly

triple with the average power constraint that yields the

information theoretic bounds on the capacity and the

capacity region of the half-duplex Gaussian relay chan-

nel and the half-duplex Gaussian two-way relay channel,

respectively. Themain reason for this is that we needmore

dual variables to formulate the dual problem in the latter

case. Since the number of required iterations remains rea-

sonably small, however, these results confirm that the pro-

posed dual decomposition approach indeed allows to effi-

ciently evaluate achievable rate regions and corresponding

outer bounds for the considered half-duplex Gaussian

relay networks. Assuming knowledge of all channel gain

a b c

Figure 5 Bounds on the capacity region of the restricted half-duplex Gaussian two-way relay channel forN1 = N2 = NR = 1,

P1 = P2 = PR = 10, and α = 4; real deterministic channel coefficients: hAB = d
−α/2
AB . (a) d1R = d = 0.5, d2R = 1 − d = 0.5. (b)

d1R = d = 0.25, d2R = 1 − d = 0.75. (c) d1R = d = 0.1, d2R = 1 − d = 0.9.
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a b c

Figure 6 Bounds on the capacity region of the restricted half-duplex Gaussian two-way relay channel forN1 = N2 = NR = 2,

P1 = P2 = PR = 10, and α = 4; complex random channel coefficients: [HAB]k,` ∼ NC(0,d−α
AB ) iid. (results for one particular channel

realization). (a) d1R = d = 0.5, d2R = 1 − d = 0.5. (b) d1R = d = 0.25, d2R = 1 − d = 0.75. (c) d1R = d = 0.1, d2R = 1 − d = 0.9.

matrices, it is hence possible to numerically evaluate their

fundamental limits.

6 Conclusion
In this article, we presented a generic method that allows

to determine the fundamental limits of uni- and bidi-

rectional communication in the half-duplex Gaussian

MIMO relay channel. More specifically, we proposed a

dual decomposition approach to evaluate upper and lower

bounds on the capacity or the capacity region of the con-

sidered MIMO relay channels, for which perfect channel

state information (CSI) was assumed. To this end, we

modified the approach that was previously proposed in

[21] such that the average transmit power constraints

under which the cut-set outer bound and the achievable

decode-and-forward (DF) rates were derived can be han-

dled. It was shown that the joint optimization of input

signals and time allocation decomposes into subproblems

that are easier to solve in the dual domain, and we gave

an example of how to solve the resulting dual problem

by means of the cutting plane algorithm. The beauty of

the proposed approach lies in the fact that the phases of

the respective communication protocol decouple in the

Table 1 Average number of cutting plane iterations

needed per weighted sum ratemaximization problem

(N1 = N2 = NR = 2 and ε = 10−2)

one-way two-way

COB 15.1 18.2

RDF 14.4 17.8

COB,PP 4.6 5.2

RDF,PP 4.6 5.3

dual problem. As a result, evaluating the dual function

only requires to solve one convex problem for each phase

of the communication protocol, which can be done by

applying standard semidefinite program (SDP) tools like

SDPT3. It is this property that makes dual decomposi-

tion so attractive here, especially since the cutting plane

algorithm converges after a reasonably small number of

iterations.

Furthermore, we remark that our results may be used

for protocol design with DF relays in the future. For the

one-way case, we can determine what fraction of time

the relay should listen to the source and how long it

should transmit. For the two-way case, the benefit of our

approach is even greater. By not restricting ourselves to

any specific protocol from the outset, we let an optimiza-

tion problem determine which protocol phases should be

used and for what fraction of time they should be active

to obtain the best performance. At the same time, the

approach allows to evaluate any specific communication

protocol. All we need to do is set the time shares of the

phases that shall not be part of the considered protocol

to zero.

Finally, note that average and per phase transmit power

constraints can easily be combined using the framework

presented in this article. For this purpose, we simply need

to add the per phase transmit power constraints to the

definitions of the sets Si and S ′
i that specify the con-

tributions of the different protocol phases to the outer

bound region and the achievable rate region, respectively.

Since the sets are then bounded, Proposition 4 becomes

obsolete as we do not need a condition on the dual

variables µ for the dual function to be finite. The per

phase power constraints considered in [21] can therefore

easily be incorporated into the optimization framework
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presented in this article. Since the converse is not true,

the optimization approach presented here generalizes that

of [21].

Endnotes
aIn contrast to full-duplex devices, half-duplex nodes

cannot transmit and receive simultaneously in the same

frequency band, which means that they require orthog-

onal resources (time, frequency) for transmission and

reception.
bAnother option to determine points on the boundary

of the outer bound region would be to solve rate bal-

ancing problems over COB for different ratios of the two

rates.
cNote that r1 and r2 only denote two entries of the sets

S1, . . . ,S6. They are not to be confused with R1 and R2,

which specify the rates of the information exchanged by

nodes 1 and 2.
dNote that this assumption is not really a restriction.

If the relay is not connected to both terminals, it can-

not help the communication between the terminals. And

while the direct channel between the terminals may be

very weak, e.g., due to high path loss, it is still rea-

sonable to assume it supports rates strictly greater than

zero.
eIf there exists an (r(k),p(k)) such that (r(k),p(k)) ∈ Si and

v(k) = Bir
(k) for more than one i ∈ {1, . . . , 6}, we assign

the index k to only one setKi so thatKi ∩Kj = ∅ for i 6= j.
fThe protocol names are due to [19,20], which are the only

two articles among references [14-20] that do not only

consider the multiple access broadcast (MABC) protocol.
gThe reasoning why µ3 > 0 must hold for 2(λ,µ) < ∞

is more complicated in this case since λ2 = λ4 = 0 does

not imply (22). However, the final conclusion remains the

same.
hIn order to obtain the results for the one-way case, we

simply let w =
[

1
0

]

and considered only phases 1 and

6 in the evaluation of the dual function as explained in

Remark 3.

Appendix 1
Proof of Proposition 3

Let (y, z), (y′, z′) ∈ S and λ ∈[ 0, 1]. Moreover, define αi =
λτi and βi = (1 − λ)τ ′

i . Then,

λy + (1 − λ)y′ = λ

6
∑

i=1

τiBiri + (1 − λ)

6
∑

i=1

τ ′
iBir

′
i

=

6
∑

i=1

Bi

(

αiri + βir
′
i

)

=

6
∑

i=1

(αi + βi)Bi

(

αi

αi + βi
ri +

βi

αi + βi
r′
i

)

and

λz + (1 − λ)z′ = λ

6
∑

i=1

τipi + (1 − λ)

6
∑

i=1

τ ′
ip

′
i =

6
∑

i=1

αipi + βip
′
i

=

6
∑

i=1

(αi + βi)

(

αi

αi + βi
pi +

βi

αi + βi
p′
i

)

.

Since αi,βi ≥ 0, (ri,pi), (r
′
i,p

′
i) ∈ Si, and Si is convex, it

follows that αi
αi+βi

(ri,pi) +
βi

αi+βi
(r′

i,p
′
i) ∈ Si, i.e.,

λy + (1 − λ)y′ =

6
∑

i=1

(αi + βi)Bir̃i,

λz + (1 − λ)z′ =

6
∑

i=1

(αi + βi)p̃i, where (r̃i, p̃i) ∈ Si.

Furthermore, 0 ≤ αi + βi ≤ 1, ∀i ∈ {1, . . . , 6}, and
∑6

i=1 αi + βi =
∑6

i=1

(

λτi + (1 − λ)τ ′
i

)

= 1, which

means that λ(y, z) + (1 − λ)(y′, z′) ∈ S . This proves the

proposition.

Appendix 2
Proof of Proposition 4

For any λ ≥ 0 such thatATλ =
[

λ1+λ2
λ3+λ4

]

=
[

w1
w2

]

= w, note

that 2(λ,µ) < ∞ is equivalent to sup(ri,pi)∈Si

{

λTBiri −

µTpi
}

= max(ri,pi)∈Si

{

λTBiri − µTpi
}

< ∞ for all

i ∈ {1, . . . , 6}. For µ > 0, we hence prove the “if”

part of the proposition by exemplarily showing that

sup(ri,pi)∈Si

{

λTBiri − µTpi
}

< ∞ for i = 1 as corre-

sponding statements for i = 2, . . . , 6 follow along the same

lines.

With B1 =
[

1 0 0 0
0 1 0 0

]T
and only terminal 1 transmitting

during phase 1, we have

max
(r,p)∈S1

{

λTB1r − µTp
}

= max
(r,p)∈S1

{λ1r1+λ2r2 − µ1p1}≤ max
(r,p)∈S1

{(λ1+λ2)r1−µ1p1}

= max
R(1)�0

{

(λ1+λ2) log det
(

IN2+NR +H1R
(1)HH

1

)

−µ1tr
(

R(1)
)}

= max
R(1)�0

{

(λ1+λ2) log det
(

IN1 +HH
1 H1R

(1)
)

−µ1tr
(

R(1)
)}

,

where the inequality is due to the fact that

I(X
(1)
1 ;Y

(1)
R Y

(1)
2 ) = I(X

(1)
1 ;Y

(1)
2 ) + I(X

(1)
1 ;Y

(1)
R |Y

(1)
2 ) ≥

I(X
(1)
1 ;Y

(1)
2 ), which follows from the nonnegativity of and

the chain rule formutual information ([25], Chap. 2). Now,
suppose HH

1 H1 = V8VH with 8 = diag(ϕ1, . . . ,ϕN1) is

the eigenvalue decomposition of HH
1 H1, and let us also

express R(1) by means of its eigenvalue decomposition

R(1) = U6UH . Then, the trace of R(1) is independent
of the modal matrix U and equal to the sum of its non-
negative eigenvalues σ1, . . . , σN1 . Moreover, Hadamard’s
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inequality ([25], Thm. 17.9.2) can be used to show that,
with U = V ,

max
R(1)�0

{

(λ1 + λ2) log det
(

IN1 + HH
1 H1R

(1)
)

− µ1tr
(

R(1)
)

}

= max
σk≥0

N1
∑

k=1

(λ1 + λ2) log (1 + ϕkσk) − µ1σk .

For µ1 > 0, the right-hand side of above equality has a

waterfilling type solution given by

σ ?
k = max

{

λ1 + λ2

µ1
−

1

ϕk
, 0

}

,

which implies that 0 ≤ σ ?
k ≤ λ1+λ2

µ1
< ∞ for all k ∈

{1, . . . ,N1}, and consequently,

max
(r,p)∈S1

{

λTB1r − µTp
}

≤

N1
∑

k=1

(λ1 + λ2) log
(

1 + ϕkσ
?
k

)

− µ1σ
?
k < ∞.

The proofs of the converse and the “if” part of the

proposition for µ 6> 0 are omitted because they directly

follow from the necessary and sufficient conditions for

2(λ,µ) < ∞ if µk = 0, k ∈ {1, 2, 3}.

Appendix 3
Outline of coding scheme that achievesRDF

The achievability of RDF is proved in [22] for a dis-

crete memoryless channel (DMC) without feedback. The

coding scheme uses random encoding and jointly typi-

cal decoding on the nth extension of the DMC (see [25],

Sec. 7.5 for a definition), meaning that the data trans-

mission is performed with n channel uses. Furthermore,

it is assumed that TDD phase i is used ni times, where
ni
n → τi ∈[ 0, 1] as n grows large.

The message W1 ∈ {1, . . . , 2nR1} is to be transmit-

ted from node 1 to node 2, whereas W2 ∈ {1, . . . , 2nR2}

denotes the message to be sent from terminal 2 to ter-

minal 1 that is independent of W1. Both messages are

split into six parts: W1 = (W11, . . . ,W16) and W2 =

(W21, . . . ,W26) such thatW1a ∈ {1, . . . , 2nR1a} andW2b ∈

{1, . . . , 2nR2b}, a, b ∈ {1, . . . , 6}. The messages are then

conveyed to the other terminal as follows:

Phase 1: Node 1 transmits a codeword

X
(1)
1 (W11,W12,W13).

Phase 2: Node 2 transmits a codeword

X
(2)
2 (W21,W22,W23).

Phase 3: Node 1 transmits a codeword X
(3)
1 (W14,W15)

and node 2 sends X
(3)
2 (W24,W25). The two

codewords are independent!

After phase 3, the relay reliably decodes the messages

(W11, . . . ,W15) and (W21, . . . ,W25), which requires

R11 + R12 + R13 < τ1I(X
(1)
1 ;Y

(1)
R ),

R21 + R22 + R23 < τ2I(X
(2)
2 ;Y

(2)
R ),

R14 + R15 < τ3I(X
(3)
1 ;Y

(3)
R |X

(3)
2 ),

R24 + R25 < τ3I(X
(3)
2 ;Y

(3)
R |X

(3)
1 ),

R14 + R15 + R24 + R25 < τ3I(X
(3)
1 X

(3)
2 ;Y

(3)
R ).

Phase 4: The relay transmits a codeword

X
(4)
R (W11,W14,W21,W24).

Phase 5: The relay sends a codeword X
(5)
R (W22,W25),

whereas node 2 transmits X
(5)
2 (W22,W25,W26). Note

that the two codewords are not independent, but

correlated by design in general!

Phase 6: The relay sends a codeword X
(6)
R (W12,W15)

and node 1 transmits X
(6)
1 (W12,W15,W16). Again,

note that the two codewords are not independent,

but correlated by design in general!

After phase 6, each terminal reliably decodes all parts of

the message transmitted by the respective other terminal.

Reliable decoding at terminal 1 imposes the conditions

R21 + R24 < τ4I(X
(4)
R ;Y

(4)
1 ),

R22 + R25 < τ5I(X
(5)
R ;Y

(5)
1 ),

R26 < τ5I(X
(5)
2 ;Y

(5)
1 |X

(5)
R ),

R23 < τ2I(X
(2)
2 ;Y

(2)
1 ),

whereas reliable decoding at terminal 2 requires

R11 + R14 < τ4I(X
(4)
R ;Y

(4)
2 ),

R12 + R15 < τ6I(X
(6)
R ;Y

(6)
2 ),

R16 < τ6I(X
(6)
1 ;Y

(6)
2 |X

(6)
R ),

R13 < τ1I(X
(1)
1 ;Y

(1)
2 ).

Noting that R1 =
∑6

a=1 R1a, R2 =
∑6

b=1 R2b, putting

all constraints together, and taking the closure of the

resulting achievable rate region yieldsRDF.

While the achievable rate region RDF was derived for

a DMC, we remark that Theorem 5 remains valid for

channel models with continuous random variables. This is

because the decode-and-forward strategy can be derived

by means of weakly typical sequences and since the con-

cept of weak typicality applies to continuous random

variables as well (cf. [26], Rem. 28).
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