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Abstract

In this article, we address the problem of robust waveform optimization for improving the worst-case detection
performance of multi-input multi-output (MIMO) space–time adaptive processing (STAP) in the presence of colored
Gaussian disturbance. A novel diagonal loading-based method is proposed to optimize the waveform covariance
matrix for maximizing the worst-case output signal-interference-noise ratio (SINR) over the convex uncertainty set
such that the worst-case detection performance of MIMO–STAP can be maximized. The resultant nonlinear
optimization problem is reformulated as a semidefinite programming problem, which can be solved very efficiently.
Numerical examples show that the worst-case output SINR of MIMO–STAP can be improved considerably by the
proposed method compared to that of uncorrelated waveforms.

Keywords: Multi-Input Multi-Output (MIMO) radar, Waveform optimization, Space–Time Adaptive Processing (STAP),
Diagonal Loading (DL), SemiDefinite Programming (SDP)

1. Introduction
In recent years, multiple-input multiple-output (MIMO)
techniques have received more and more attention from
both the communication and radar communities [1-13].
MIMO radar can employ multiple transmitting elements
to transmit arbitrary waveforms other than coherent wave-
forms in traditional phased-array radars. Two categories
of MIMO radar systems can be classified by the configur-
ation of the transmitting and receiving antennas: (1)
MIMO radar with widely separated antennas (see e.g., [1]),
and (2) MIMO radar with colocated antennas (see e.g.,
[2]). For MIMO radar with widely separated antennas, the
transmitting and receiving elements are widely spaced
such that each views a different aspect of the target. Simi-
lar to the multipath diversity concept in wireless commu-
nication over fading channels [13], this type of MIMO
radar can exploit the spatial diversity to overcome the per-
formance degradation caused by target scintillations [1].
In contrast, MIMO radar with colocated antennas, whose
elements in transmitting and receiving arrays are close
enough such that the target radar cross sections (RCSs)

observed by MIMO radar are identical, can utilize the
waveform diversity to increase the virtual aperture of the
receiving array [2]. Accordingly, it has several advantages
including improved parameter identifiability [3,4], and
more flexibility for transmit beampattern design [5-7].
To improve the detection performance of MIMO radar,

one way is detector design which was investigated in [8,9].
Chong et al. [8] proposed the constant false alarm rate
generalized likelihood ratio test-linear quadratic (GLRT-
LQ) detector for MIMO radar in the scenario of non-
Gaussian clutter. He et al. [9] derived GLRT moving target
detectors for centralized MIMO and distributed MIMO.
Another way to improve the detection performance of

MIMO radar is waveform optimization, which has been
studied in [6,7]. In [6], a gradient-based method is proposed
to maximize the output signal-to-interference-plus-noise
ratio (SINR) for improving the detection performance for ex-
tended target; unfortunately, it cannot guarantee nonde-
creasing SINR in each iteration step. In order to guarantee
convergence, a new iterative algorithm is proposed in [7].
It is known that waveform optimization for improving

the performance of MIMO radar usually depends on the
initial parameter estimate (i.e., some prior information on
the target of interest and scenario) [5-7]. In practice, these
parameters are estimated with errors and hence must have
uncertain. Therefore, the resultant performance of MIMO
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radar may be sensitive to the estimation errors and uncer-
tainty in parameters (see e.g., [5]). It means that the opti-
mized waveforms based on a certain parameter estimate
can give a very poor performance for another reasonable
estimate.
Space–time adaptive processing (STAP) technique plays

an important role in numerous civilian and military appli-
cations such as surveillance, airborne moving target indica-
tion (MTI), and ground MTI [14]. The basic theory of
STAP for traditional phased-array radar has been well de-
veloped [15]. The concept of MIMO–STAP is proposed in
[10]. A new algorithm for MIMO–STAP with orthogonal
waveforms is proposed in [11], which can significantly
lower the computational complexity compared to fully
adaptive methods. Under the general waveform assump-
tion, the relationship between the clutter rank of MIMO–
STAP and the transmitted waveforms has profoundly been
studied in [12].
In this article, we consider the problem of robust wave-

form design in the presence of colored Gaussian disturb-
ance (including clutter, jamming, and thermal noise),
which maximizes the worst-case detection performance of
MIMO–STAP. Because maximization of the output SINR
is tantamount to maximization of the detection perform-
ance in the case of Gaussian noise (see e.g., [6,7] and the
references therein for more details), here the waveform co-
variance matrix (WCM) is optimized to maximize the
worst-case output SINR of MIMO–STAP over the convex
uncertainty set such that the worst-case detection per-
formance can be maximized. The waveform design is
formulated in terms of a rather complicated nonlinear
optimization problem. Consequently, this problem can-
not be easily solved by convex optimization method. A
novel diagonal loading (DL)-based method [16] is pro-
posed to formulate the resultant optimization problem as
a semidefinite programming (SDP) problem [17], which
can be solved very efficiently.
The remainder of this article is organized as follows.

The MIMO–STAP model is introduced, and the robust
optimization problem is formulated in Section 2. A novel
DL-based method is proposed to formulate the resultant
nonlinear optimization problem as an SDP in Section 3.
The effectiveness of the proposed method is verified via
numerical examples in Section 4. Finally, conclusions are
given in Section 5.
Throughout the article, matrices and vectors are de-

noted by boldface uppercase and lowercase letters, re-
spectively. The character I denotes the identity matrix,
tr(∙) indicates the trace of a matrix, and⊗ indicates the
Kronecker product. vec(∙) is the vectorization operator
stacking the columns of a matrix on top of each other. We
use (∙)T, (∙)*, and (∙)H to denote, respectively, the transpose,
conjugate, and conjugate transpose. The notation A ≼ B
means that B-A is positive semidefinite.

2. Problem formulation
The MIMO–STAP signal model adopted in this article
is similar to that developed in [11]. The only difference
is that the transmitted waveforms other than the receiv-
ing weight vector are considered here. For the MIMO
radar exploited here, there are M isotropic transmitting
elements with uniform space dT, and N receiving ele-
ments with uniform space dR. At each transmitting
element, a coherent processing interval (CPI) consists of
a burst of L pulses with a constant pulse repetition inter-
val (PRI) T. For the nth receiving element, the received
signal in the lth PRI can be expressed as

yn;l ¼
XM�1

m¼0

ρts
T
me

j2πλ sinθt dRnþdTmþ2vTlð Þþ2vtTlð Þ

þ
Z 2π

θ¼0

XM�1

m¼0

ρ θð ÞsTmej
2π
λ sinθ dRnþdTmþ2vTlð Þð Þdθ

þ zn;l; ð1Þ

where sm ∈ CK×1 is the discrete version of the complex
baseband signal with K snapshots transmitted by the mth
transmitting element in each PRI. ρt and θt represent, re-
spectively, the complex amplitude and location of the tar-
get at the considered range bin. v and vt denote the speed
of the radar station and the target speed toward MIMO
radar, respectively. ρ(θ) is the reflect coefficient of clutter
patch at θ, and λ is the operation wavelength. The term zn,
l denotes the interference plus noise received by the nth
receiving element in the lth PRI.
Based on the signal model shown in (1), the output

SINR is derived in Appendix 1 and given by

SINR ¼ ρt
�� ��2vHt IMNL þ RTSRCð Þ�1RTSvt ; ð2Þ

where vt, RC, RTS are given in (24) and (25), respectively.
Obviously, the calculation of the SINR in (2) requires

the specification of vt, the clutter covariance matrix, and
the noise plus interference term, i.e., θt, fD, RC, and Q. As
a sequence, waveform optimization for maximizing the
SINR explicitly depends on these pre-assigned values. In
practice, these parameters are estimated with errors and
so they are uncertain. Therefore, the resultant detection
performance of MIMO–STAP via waveform optimization
may be sensitive to estimation errors and uncertainty in
parameters. In this article, we only consider the effect on
the output SINR performance of the estimation error of
the spatial-temporal vector, i.e., vt.
We assume that vt is uncertain, but known to belong to

a convex compact set, which is modeled in Appendix 2,
and can be illustrated as
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V ¼ evt η ≤ evtk kj g;f ð3Þ

where evt ¼ vt þ σ, in which evt and vt are, respectively, the
actual and corresponding presumed spatial-temporal vec-
tors. σ denotes the unknown complex vectors describing
errors of evt , and η is the lower bound of the norm of evt ,
which is shown in (34).
The robust waveform optimization for improving the

worst-case detection performance of MIMO–STAP can
now be briefly stated as follows: Optimize the WCM to
maximize the worst-case output SINR over the convex
set V under the total power constraint on RS, which can
be formulated as

max
RS

minevt evHt IMNL þ RTSRCð Þ�1RTSevt
s:t: evt ∈ V ;

tr RSð Þ ¼ KP
RS � 0

ð4Þ

where P denotes the total transmitted power.
The worst-case will happen when evt is in the direction

of eigenvector corresponding to the smallest eigenvalue
of (IMNL + RTSRC)

−1RTS. Therefore, with (3), (4) can be
written as

max
RS

η2λmin IMNL þ RTSRCð Þ�1RTS
� �

s:t: tr RSð Þ ¼ KP ;
RS � 0

ð5Þ

where λmin(·) denotes the smallest eigenvalue of a
matrix.
It can be seen that the problem in (5) is a rather com-

plicated nonlinear function of RS due to RTS ≽ 0 and
RC ≽ 0. Hence, the problem is difficult to be solved by
convex optimization method [17].

3. Solution to the optimization problem
In this section, we demonstrate how to obtain an optimal
solution of the nonlinear optimization problem in (5). For
this purpose, the DL approach, which has commonly been
exploited in the robust beamforming (see e.g., [16]), is
employed to RS such that

eRS ¼ RS þ ρI � 0; ð6Þ

where ρ≪ λmax(RS), λmax(·) is the largest eigenvalue of a

matrix. Note that eRTS ¼ IL⊗eRT
S ⊗Q�1 � 0 due to eRS � 0

[18]. By replacing RTS in (5) with eRTS, we can obtain

max
RS

η2λmin IMNL þ eRTSRC

� ��1eRTS

� �
s:t: tr RSð Þ ¼ KP :

RS � 0

ð7Þ

Because eRTS � 0, (7) can be reformulated as [18]

max
RS

η2λmin eR�1
TS þ RC

� ��1
� �

s:t: tr RSð Þ ¼ KP :
RS � 0

ð8Þ

By using the matrix inversion lemma [18], (8) can be
reshaped as

max
RS

η2λmax eR�1
TS þ RC

� �
s:t: tr RSð Þ ¼ KP :

RS � 0

ð9Þ

According to [19], (9) can be represented as a solution
to the problem

min
RS ;t

η2t

s:t: eR�1
TS þ RC ≼ tI ;

tr RSð Þ ¼ KP
RS � 0

ð10Þ

where t is an auxiliary variable.
The problem (10) can be recast as an SDP relying on

the following lemma [20, pp. 472].

Lemma 1 (Schur’s complement): Let Z ¼ A BH

B C

	 

be

a Hermitian matrix with C� 0, then Z ≽ 0 if and only if
ΔC ≽ 0, where ΔC is the Schur complement of C in Z
and is given by ΔC = A – BHC−1B.
By using Lemma 1, (10) can readily be reformulated as

an SDP

min
RS ;t

η2t

s:t:
tI� RC I

I eRTS

	 

≽ 0:

tr RSð Þ ¼ KP
RS � 0

ð11Þ

3.1. Remark
As illustrated in [21], the main shortcoming of the DL
approach is that it is not clear how to obtain the optimal
value of the DL factor ρ. Hence, this problem is still an
open problem required to be investigated in the future.
In the following, we choose ρ = KP/1000 by numerical
examples.
Using many well-known algorithms for solving SDP

problems [17], (11) can be solved very efficiently. In the
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following examples, the optimization toolbox in [22] is
used for the problem. Note that we only obtain the WCM
other than the ultimate transmitted waveforms in this art-
icle. In practice, the ultimate waveforms can asymptotic-
ally be synthesized by using the method in [23].

4. Numerical examples
In this section, we assess the SINR performance of the pro-
posed method compared to that of uncorrelated waveforms
which can be generated by using Hadamard codes [13].
The basic parameters for the following examples are

M = 3, N = 3, L = 3, β = 1, v = 200 m/s, fD = 0.0649, and
K = 256. The altitude is 9 km, and the range of interest
is 12.728 km. We use the following two MIMO radar
systems with various antenna configurations: MIMO
radar (0.5, 0.5), i.e., γ = 1, and MIMO radar (1.5, 0.5), i.e.,
γ = 3, where the parameters specifying each radar system
are the inter-element spacing of the transmitter and re-
ceiver (in units of wavelengths), respectively. The array
signal-to-noise ratio (ASNR) varying from 10 to 50 dB
in the following examples is defined as PMN/σW

2 , where
σW
2 denotes the variance of the additive white thermal
noise. One target with unit amplitude at −4° is consid-
ered. The clutter is modeled using discrete points, the
RCSs for which are modeled as identical independent
Gaussian random variables with mean zero and variance
σi
2, i = 1, . . ., NC, and assumed to be fixed in the CPI.
The sample points are equally spaced on the range bin,
and the number of clutter points NC is 10,000. The
clutter-to-noise ratio (CNR) varies from 10 to 50 dB.
There are two jammers located at 15° and −20°. The
jammer-to-noise ratio for each jammer is 60 dB. The

jammers are modeled as point sources which transmit
independent white Gaussian signals uncorrelated with
the signals transmitted by MIMO radar.
In the following examples, we assume that the initial

angle and normalized Doppler frequency estimate errors
have uncertainties Δθ = [−3°, 3°] and ΔfD = [−0.04, 0.04],
respectively. It means that θ ˝ belongs to [−7°, –1°] and
f ˝D belongs to [0.0249, 0.1049], where θ ˝ and f ˝D denote,
respectively, the estimate of θ and fD. After calculating,
we can obtain σ = 4.1477 and η = 1.0484 for MIMO
radar (0.5, 0.5), as well as σ = 5.1398 and η = 0.9436 for
the other case.
Figure 1 shows the optimal transmit beampatterns op-

timized by the proposed method in the case of ASNR =
30 dB and CNR = 30 dB. One can observe that the pro-
posed method places a peak around the target location,
that is, the worst-case detection performance in the con-
vex uncertainty may be improved. Moreover, we can see
grating lobes of the peak in the case of MIMO radar
(1.5, 0.5) shown in Figure 1b, which is due to the sparse
transmitting array.
The worst-case output SINRs obtained by using our

method and uncorrelated waveforms are compared in
Figure 2 as a function of ASNR or CNR. It can be seen
that the worst-case SINR obtained by the proposed
method or uncorrelated waveform increases as the in-
creasing of ASNR, while decreases as the increasing of
CNR. Moreover, the proposed method can significantly
improve the worst-case SINR performance compared to
uncorrelated waveforms, regardless of ASNR or CNR.
Furthermore, comparing Figure 2a with b or c with d,
one can see that the SINR for MIMO radar (1.5, 0.5) is
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Figure 1 Optimal transmit beampatterns obtained by the proposed method with ASNR = 30 dB and CNR = 30 dB. (a) Optimal transmit
beampatterns for MIMO radar (0.5, 0.5). (b) Optimal transmit beampatterns for MIMO radar (1.5, 0.5).
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larger than that of MIMO radar (0.5, 0.5), which is due
to that the virtual receiving array aperture for the former
is much larger than that for the latter [11].

5. Conclusions
In this article, we have investigated the problem of robust
waveform optimization for improving the worst-case de-
tection performance of MIMO–STAP by explicitly in-
corporating the parameter estimate uncertainty into the
optimization model. A novel DL-based method has been
proposed to maximize the worst-case output SINR of
MIMO–STAP such that the worst-case detection perform-
ance can be maximized. The proposed method can refor-
mulate the resultant nonlinear optimization problem as an
SDP problem, which can be solved very efficiently. Numer-
ical examples have shown that the proposed method can
significantly improve the worst-case output SINR com-
pared to uncorrelated waveforms.

Appendix 1
If the isorange ring is divided in the cross-range dimen-
sion into NC (NC≫NML) clutter patches, then (1) can
be rewritten as

yn;l ¼
XM�1

m¼0

ρts
T
me

j2πλ sinθt dRnþdTmþ2vTlð Þþ2vtTlð Þ

þ
XNC�1

i¼0

XM�1

m¼0

ρ θið ÞsTmej
2π
λ sinθi dRnþdTmþ2vTlð Þð Þ

þ zn;l: ð12Þ

Define fs ¼ dR sinθt
λ , fD ¼ 2 v sinθtþvtð ÞT

λ , fs;i ¼ dR sinθi
λ , γ ¼ dT

dR
,

and β ¼ 2vT
dR
, then (12) can be rewritten as

yn;l ¼
XM�1

m¼0

ρts
T
me

j2π nfsþmγfsþfDlð Þ

þ
XNC�1

i¼0

XM�1

m¼0

ρis
T
me

j2π nfs;iþmγfs;iþβfs;ilð Þ þ zn;l

¼ ρte
j2π nfsþfDlð ÞbTSþ

XNC�1

i¼0

ρie
j2π nfs;iþβfs;i lð ÞbTi S

þ zn;l ; ð13Þ

where b ¼ 1; ej2πγfs ; . . . ; ej2π M�1ð Þγfs� �T
and bi ¼ 1; ej2πγfs;i ;

�
. . . ; ej2π M�1ð Þγfs;i �T denote, respectively, the transmit-
ting steering vectors for the target and the clutter
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Figure 2 The worst-case output SINR obtained by the proposed method as a function of ASNR or CNR, as well as that of uncorrelated
waveforms. (a) SINR versus ASNR with CNR = 30 dB for MIMO radar (0.5, 0.5). (b) SINR versus ASNR with CNR = 30 dB for MIMO radar (1.5, 0.5).
(c) SINR versus CNR with ASNR = 30 dB for MIMO radar (0.5, 0.5). (d) SINR versus CNR with ASNR = 30 dB for MIMO radar (1.5, 0.5).
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patch at θi. S = [s1, s2, . . ., sM]
T represents the wave-

form matrix in each PRI. For the lth PRI, the data
received by all the receiving elements can be
expressed as

Yl ¼ ρte
j2πfDlabTSþ

XNC�1

i¼0

ρie
j2πβfs;i laib

T
i Sþ Zl; ð14Þ

where Zl ¼ zT1;l; z
T
2;l; . . . ; z

T
N ;l

h iT
∈CN�K , a ¼ 1; ej2πfs ; . . . ;

�
ej2π N�1ð Þfs �T , and ai ¼ 1; ej2πfs;i ; . . . ; ej2π N�1ð Þfs;i� �T

denote
the receiving steering vectors for the target and the clutter
patch at θi, respectively. According to [5], we can assume
that the columns of Zl are independent and identically dis-
tributed circularly symmetric complex Gaussian random
vectors with mean zero and an unknown covariance
Q∈CN�N .
To obtain the sufficient statistics for STAP signal pro-

cessing, we can employ SH SSHð Þ�1
2= as the matched filter

bank [5], the output of which can be illustrated as

eYl ¼ ρte
j2πfDlabTR

1=2
s þ

XNC�1

i¼0

ρie
j2πβf s;ilaib

T
i R

1=2
s þ eZl;

ð15Þ

where eYl ¼ YlSH SSH
� ��1

2= , eZl ¼ ZlSH SSH
� ��1

2= , RS =
SSH denotes the WCM, and (·)1/2 represents the square
root of a certain matrix [20]. The output of the matched
filter can be stacked in a MN × 1 vector as

eyl ¼ ρte
j2πfDl RT 1=2

S ⊗IN
� �

b⊗að Þ

þ
XNC�1

i¼0

ρie
j2πβfs;il RT 1=2

S ⊗IN
� �

bi⊗aið Þ

þ vec eZl

� �
; ð16Þ

where eyl ¼ vec eYl

� �
, IN denotes the N × N identity matrix.

Now we can obtain the total space–time snapshots as

XC ¼ eyT1 ;eyT1 ; . . . ;eyTL� �T
∈ CNML�1: ð17Þ

Substituting (16) into (17) results in

XC ¼ ρtuD⊗ RT 1=2
S ⊗IN

� �
b⊗að Þ

� �
þ

XNC�1

i¼0

ρiuD;i⊗ RT 1=2
S ⊗IN

� �
bi⊗aið Þ

� �
þ 1L⊗ vec eZl

� �
; ð18Þ

where uD ¼ 1; ej2πfD ; . . . ; ej2π L�1ð ÞfD� �T
and uD;i ¼ 1; ej2πfD;

�
i; . . . ; ej2π L�1ð ÞfD;i �T denote the Doppler steering vectors for
the target and the clutter patch at θi, respectively. 1L rep-
resents the L × 1 vector with all elements being ones.
Based on the fact that (AB)⨂ (CD) = (A⨂ B)(C⨂D), (18)
can be recast as

XC ¼ ρt IL⊗RT 1=2
S ⊗ IN

� �
uD ⊗ b ⊗ að Þ

þ
XNC�1

i¼0

ρi IL ⊗ RT 1=2
S ⊗ IN

� �
uD;i ⊗ bi ⊗ ai
� �

þ1L⊗ vec eZl

� �
¼ ρt IL ⊗ RT 1=2

S ⊗ IN
� �

uD ⊗ b ⊗ að Þ

þ IL ⊗ RT 1=2
S ⊗ IN

� �XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� �

þ1L⊗ vec eZl

� �
: ð19Þ

For the optimum MIMO–STAP processor, the output
SINR can be expressed as (see e.g., [15])

SINR ¼ ρt
�� ��2 IL ⊗ RT 1=2

S ⊗ IN
� �

uD ⊗ b ⊗ að Þ
h iH

� R�1
iþn IL ⊗ RT 1=2

S ⊗ IN
� �

uD ⊗ b ⊗ að Þ
h i

;

ð20Þ

where

Riþn ¼ E iþ nð Þ iþ nð ÞH
h i

¼ E

"�
IL ⊗ RT 1=2

S ⊗ IN
� �XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� �

þ1L⊗ vec eZl

� ��
�
�

IL⊗RT 1=2
S ⊗ IN

� �XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� �

þ1L⊗ vec eZl

� ��H
#

ð21Þ

in which i denotes the clutter, and n the interference-
plus-noise term. Under the assumption that the clutter
is uncorrelated with the interference-plus-noise term,
(21) can be rewritten as
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Riþn ¼ E iþ nð Þ iþ nð ÞH
h i

¼ E

"�
IL ⊗ RT 1=2

S ⊗ IN
� �XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� ��

�
��

IL ⊗ RT 1=2
S ⊗ IN

�XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� ��H

#

þ E 1L⊗ vec eZl

� �� �
1L⊗ vec eZl

� �� �H
	 


¼ IL ⊗ RT 1=2
S ⊗ IN

� �
E

"�XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� ��

�
�XNC�1

i¼0

ρi uD;i ⊗ bi ⊗ ai
� ��H

#
IL ⊗ RT 1=2

S ⊗ IN
� �H

þ IL ⊗ IM ⊗ Q ð22Þ

According to [14], ρi can be assumed to be identical in-
dependent Gaussian random variable with mean zero and
variance denoting by σi

2. Hence, (22) can be rewritten as

Riþn ¼ IL ⊗ RT 1=2
S ⊗ IN

� �
VΞVH IL ⊗ RT 1=2

S ⊗ IN
� �H

þ IL ⊗ IM ⊗ Q; ð23Þ
where V = [v1,v2, vNc], vi = uD,i⨂ bi⨂ ai, i = 1, 2, . . ., NC,

and Ξ ¼ diag σ21; σ
2
2; . . . ; σ

2
NC

� �
. Substituting (23) into (20)

yields

SINR ¼ ρt
�� ��2 RCSvtð ÞH RCSRCRH

CS þQC

� ��1
RCSvtð Þ

¼ ρt
�� ��2vHt IMNL þ RH

CSQ
�1
C RCSRC

� ��1
RH
CSQ

�1
C RCSvt ;

ð24Þ

where vt = (uD⨂ b⨂ a), RCS ¼ IL⊗R
T
1
2

S ⊗IN

� �
, RC =

VΞVH, and QC = IL⨂ IM⨂Q. Note that RC ≽ 0 [11], QC =
IL⨂ IM⨂Q⨂ 0 due to Q⨂ 0, and RCS ≽ 0 due to that the
WCM RS is positive semidefinite generally [5]. With
QC
−1 = IL⨂ IM⨂Q−1, we can obtain

RH
CSQ

�1
C RCS ¼ IL ⊗ RT 1=2

S ⊗ IN
� �H

IL ⊗ IM⊗Q�1
� �

� IL⊗RT 1=2
S ⊗IN

� �
;

¼ RTS ð25Þ
where RTS = IL⨂ RS

T⨂Q−1. Note that RTS ≽ 0 because
QC⨂ 0 and RCS ≽ 0 [18].
By substituting (25) into (24), (2) follows immediately.

Appendix 2
The uncertainty model
Similar to [21], the actual transmitting and receiving
array steering vectors, as well as the Doppler vector, can
be modeled as

eb ¼ bþ σ1; ea ¼ aþ σ2; euD ¼ uD þ σ3; ð26Þ

where b, a, and uD are, respectively, the corresponding
presumed signal steering vectors, which are usually nor-
malized so that bHb =M, aHa =N, and uD

HuD = L. σ1, σ2,
and σ3 are, respectively, unknown complex vectors de-
scribing errors of the transmitting and receiving array
steering vectors, as well as the Doppler vector. The
norms of these errors are assumed to be bounded, i.e.,
these vectors should belong to the following different
uncertainty sets

B ε1ð Þ ¼ febjeb ¼ bþ σ1; σ1k k ≤ ε1g
A ε2ð Þ ¼ eaf jea ¼ aþ σ2; σ2k k ≤ ε2g;
U ε3ð Þ ¼ euDf jeuD ¼ uD þ σ3; σ3k k ≤ ε3g

ð27Þ

where ‖·‖ denotes the Euclidean norm. Following (26)
and (27), the actual spatial-temporal vector ν ˝t can be
constructed as

evt ¼ euD ⊗ eb ⊗ ea
¼ uD þ σ3ð Þ ⊗ bþ σ1ð Þ ⊗ aþ σ2ð Þ
¼ uD þ σ3ð Þ ⊗ b ⊗ aþ b ⊗ σ2 þ σ1⊗ aþ σ1⊗ σ2ð Þ :
¼ uD ⊗ b ⊗ aþ uD ⊗ b ⊗ σ2 þ uD ⊗ σ1⊗ a
þuD ⊗ σ1⊗ σ2 þ σ3 ⊗ b ⊗ aþ σ3 ⊗ b ⊗ σ2
þσ3 ⊗ σ1⊗ aþ σ3 ⊗ σ1⊗ σ2

ð28Þ

With vt = (uD⨂ b⨂ a) and (28), the spatial-temporal
vector error, denoting by σ, can be described as

σ ¼ uD ⊗ b ⊗ σ2 þ uD ⊗ σ1⊗aþ uD ⊗ σ1⊗ σ2

þ σ3 ⊗ b ⊗ aþ σ3 ⊗ b ⊗ σ2 þ σ3 ⊗ σ1⊗ a
þσ3 ⊗ σ1⊗ σ2:

ð29Þ

Following (27), the bound of the norm of σ can be
obtained by

σk k ≤ uD ⊗ b ⊗ σ2k k þ uD ⊗ σ1⊗ ak k þ uD ⊗ σ1 ⊗ σ2k k
þ σ3 ⊗ b ⊗ ak k þ σ3 ⊗ b ⊗ σ2k k þ σ3 ⊗ σ1⊗ ak k
þ σ3 ⊗ σ1 ⊗ σ2k k :

≤
ffiffiffiffiffi
M

p
ε2ε3 þ

ffiffiffiffi
N

p
ε1ε3 þ

ffiffiffi
L

p
ε1ε2 þ

ffiffiffiffiffiffiffiffiffi
MN

p
ε3 þ

ffiffiffiffiffiffiffiffi
LM

p
ε2

þ
ffiffiffiffiffiffiffi
LN

p
ε1 þ ε1ε2ε3

ð30Þ

With (28) to (30), the uncertainty set of ν ˝t can be
formulated as
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V ¼ evt evt ¼ vt þ σ; σk k≤ εj g;f ð31Þ

where

ε ¼
ffiffiffiffiffi
M

p
ε2ε3 þ

ffiffiffiffi
N

p
ε1ε3 þ

ffiffiffi
L

p
ε1ε2 þ

ffiffiffiffiffiffiffiffiffi
MN

p
ε3

þ
ffiffiffiffiffiffiffiffi
LM

p
ε2 þ

ffiffiffiffiffiffiffi
LN

p
ε1 þ ε1ε2ε3: ð32Þ

Because |‖A‖ − ‖B‖| ≤ ‖A + B‖ [20], (31) can equiva-
lently be represented as

V ¼ evt η ≤ evtk kj g;f ð33Þ

where

η ¼
ffiffiffiffiffiffiffiffiffiffiffi
MNL

p
� ε

��� ���: ð34Þ

We make an assumption

η ≠ 0: ð35Þ

In other words, we rule out the possibility that the
norm of the worst-case spatial-temporal vector is zero.
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