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Abstract

Cognitive radio network with multiple-input multiple-output is an effective method to improve not only spectrum
efficiency, but also energy efficiency. In this article, a linear precoding matrix optimization algorithm, named
gradient-aided mutual information optimization (GAMIO), is designed to maximize the secondary users’ spectrum
efficiency. Unlike the previous algorithms which were developed under a specific input assumption, the GAMIO
algorithm can work without imposing any input assumption. Furthermore, a framework is also proposed to develop
the energy-efficient algorithm which can work with arbitrary spectrum-efficient algorithm. In this way, an
energy-efficient algorithm, which can work under arbitrary input assumption, be developed based on the GAMIO
algorithm (EEGAMIO). Numerical results indicate that either the GAMIO algorithm or the EEGAMIO algorithm shows
the best performance at the present time.

1 Introduction
Fixed spectrum allocation is a traditional spectrum allo-
cation methodology for wireless communication systems.
This method causes less spectrum efficiency due to the
fact that most of the available spectrum is forbidden for
the users except for the licensed user (primary user).
Besides the spectrum efficiency, we also need an energy-
efficient system in order to protect our environment and
avoid the green house effect because, in recent years,
the using and production of information and communi-
cation technology (ICT) contribute an increasing share
to the global green house gas emissions. ICT, especially
mobile telecommunication network, shows exponentially
increasing energy consumption and will no doubt become
a major part of energy consumption in the future. For-
tunately, with the development of cognitive radio (CR)
[1] network and multiple-input multiple-output (MIMO),
people find new opportunities to simultaneously improve
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spectrum efficiency and energy efficiency. Besides the tra-
ditional radio resource allocation research of CR network
which focused on time or frequency domains, MIMO CR
network can allocate the resources of space domain and
offers the secondary user more freedom degrees to trade
off between maximizing the spectrum/energy efficiency
and minimizing the interference at the primary user.
Among all of the new technologies for MIMO CR net-

work, linear precoding [2-6] is the most popular research
topic. There are several contributions in this field: Haykin
[7] gives an overview of the green wireless communica-
tion via cognitive dimension but it mainly focuses on the
concept and pays less attention to the concrete applica-
tion. Huang et al. [8] and Xing et al. [9] utilize game
theory to maximize the sum of secondary users’ util-
ity functions under the interference-power constraint.
In [10,11], resource allocation of the secondary users is
studied by applying the graph-theoretic models. Zhang
and Liang [12] research the sub-space algorithm perfor-
mance in CR network by singular-value decomposition
(SVD) theory. However, all of the aforementioned works
rely on the impractical Gaussian input assumption, which
often leads to substantial performance degradation in
real application. In order to overcome this shortage, a
parameterized iterative algorithm [13], which can work
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under equip-probable discrete input assumption, was
proposed. Though the parameterized iterative algorithm
cannot directly be used in CR network because of the
interference constraint, an algorithm, named branch and
bound-aided mutual information optimization (BAMIO),
was proposed in [14,15] to optimize the precoding matrix
in CR network. However, these algorithms can work only
under the equip-probable finite alphabet inputs assump-
tion. Thanks to the contribution of [16-18], a fundamental
relation between the mutual information and the min-
imum mean square error (MMSE) in Gaussian channel
was unveiled. Furthermore, an algorithm named mercury
water filling (M/WF) [19] was proposed to maximize the
mutual information over parallel channel under arbitrary
inputs assumption. But M/WF can work only when the
channel matrix is diagonal and cannot be used in the CR
network. This constraint limited its application. All of the
above-mentioned drawbacks motivate the research of this
article. Our goal is to address a linear precoding algorithm
of spectrum/energy efficiency which can be used in CR
network without imposing any input assumption.
The main contributions of this article are summarized

as follows: First, this article formulates the spectrum
and energy-efficient problem for CR network. Second, in
the case of spectrum efficiency, a new algorithm based
on the gradient-aided mutual information optimization
(GAMIO) is proposed. Different from the previous works,
the GAMIO algorithm does not limit any input assump-
tion. It is more realistic than the previous algorithm
which developed under the Gaussian or any other specific
input assumption. Third, in the case of energy efficiency,
this article proposes a framework to develop the energy-
efficient algorithm which can work with any spectrum-
efficient algorithm. In this way, it is easy to develop an
energy-efficient algorithm (EEGAMIO) which can inherit
the advantage of GAMIO algorithm and work under arbi-
trary input assumption.
The remainder of this article is organized as follows:

In Section 2, the MIMO CR network system model
is proposed. Based on this model, we formulate the
spectrum- and energy-efficient optimization problems.
Two typical channel capacity expressions are also pro-
posed to examine the algorithm performance in simu-
lation. Linear precoding algorithm is given in Section 3
to solve the proposed optimization problem. The perfor-
mance evaluation is shown in Section 4. Finally, conclu-
sions are drawn in Section 5.
Notation: Bold face uppercase letters denote matrices,

bold face lower case letters denote vectors. The super-
script (.)† and (.)∗ stand for the conjugate transpose
operator and the conjugate operator, respectively. The
operator diag(a) denotes a diagonal matrix with elements
given by a. Trace(A) denotes the trace operation of matrix
A. The operator E(.) denotes the statistical expectation

and Ea(.) denotes the statistical expectation with respect
to a. The operator ‖.‖ and |.| denote the l2 norm and the
matrices determinant, respectively.

2 Systemmodel and problem formulation
As shown in Figure 1, a MIMO CR network with K pri-
mary receivers and a single pair of secondary user is
considered. All of the primary users and secondary users
share the same spectrum for transmission. We consider
the scenario where each user is equipped with multiple
antennas. The channel state information (CSI) from the
secondary transmitter to every receiver is perfectly known
at the secondary transmitter. Under such assumptions, the
secondary transmitter is able to adapt linear precoding
matrix to optimize spectrum/energy efficiency.
In practice, the CSI between primary transmitter and

secondary receiver can be obtained at the secondary
transmitter by sensing the primary transmitter-emitted
signal. On the other hand, the CSI between the secondary
transmitter and secondary receiver can be obtained
by periodical training when the time-division-duplexing
model is employed. Of course, it is difficult to get the
perfect CSI for the secondary transmitter. Hence, the
achieved spectrum/energy efficiency is an upper bounder.
Based on the model which we mentioned above, we

further assume that a Gaussian channel composed Nt
transmitted antennas and Nr received antennas is con-
sidered. Then, the MIMO signal can be formulated as

y′ = H′Bx + z′. (1)

In (1), y′ and x denote the received and transmitted sig-
nal vectors, respectively, and H′ ∈ CNr×Nt denotes the
secondary users channel (in this article, we always assume
that the channel matrix is full rank). z′ is the Gaussian
additive noise vector. It is assumed that z′ ∼ CN(0, σ 2). B
is the linear precoding matrix which we want to optimize.
We denote the transmit covariance matrix of secondary
users signal as Rxx† , Rxx† = E

[
xx†

]
, where the expecta-

tion E[ .] can be referenced from the codebook. In order
to simplify the representation, we normalize y′ and H′
with the noise vector z′. So the equivalent signal can be
represented as

y = HBx + z. (2)

The variables y, H, and z are y = R−0.5
z′z′ y′, H = R−0.5

z′z′ H′,
and z = R−0.5

z′z′ z′, respectively. Rz′z′ is the covariance
matrix of z′. It is clear that z ∼ CN(0, 1). And the
covariance matrix of z is an identity matrix I. The total
transmitted power for secondary transmitter is denoted as
Pt . So the power constraint must be held as

Trace(BRxx†B†) ≤ Pt . (3)
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Figure 1 CR network where the secondary user shares the same transmit spectrumwith primary.

Just like we mentioned above, we assume that there
are K primary receivers in the CR network and each pri-
mary receiver is equipped with Nr antennas. For every
primary receiver, there must be an interference power
constraint over all received antennas. The interference
power constraint can be represented as

Trace(GkBRxx†B†G†
k) ≤ �k , k = 1, . . . ,K . (4)

Gk represents the channel matrix between secondary
transmitter and kth primary receiver. From [7], it is clear
that the obtained upper bound for the capacity loss of pri-
mary user is a function of the interference power �k . So
the capacity loss of any primary user due to the secondary
transmission can arbitrarily be small by controlling the
interference power �k .
Now, it is time to formulate the efficient problem. The

first goal is to design the linear precoding matrix of sec-
ondary user to maximize its spectrum efficiency under
its own transmit power constraint together with a set
of interference power constraints at primary users. The
problem can be represented as (Pr1)

maximize: C = I(x, y)

subject to :
Trace(BRxx†B†) ≤ Pt

Trace(GkBRxx†B†G†
k) ≤ �k ,

k = 1, . . . ,K .

(5)

We notice that many researchers usually develop their
algorithm based on the Gaussian input assumption even
though the input signal is not always a Gaussian signal,
because it has a very simple and elegant expression (6) and
can be solved effectively by convex optimization algorithm
[20,21].

I(x, y) = log2
∣∣∣I + HBRxx†B†H†

∣∣∣ (6)

Actually, the channel capacity has different expressions
in different situations. For example, when we consider the
equip-probable discrete signaling constellations, such as
M-ary PSK, PAM, and QAM, the channel capacity is more
likely to be represented as [12,20,21]

I(X,Y ) = Nt log2M − 1
MNt

MNt∑
m=1

× E

⎧⎨
⎩log2

MNt∑
k=1

e−(‖HB(xm−xk)‖2−‖z‖2)
⎫⎬
⎭ .

(7)

where M is the number of points in the signal constel-
lation. Of course, there are many other channel capacity
expressions in practical scenarios (e.g., TCM). Due to
the limited space, we do not further enumerate them. It
will obviously result in performance loss if we ignore the
real input signal distribution. Thus, a spectrum-efficient
optimization algorithm which can adapt to various input
signals is needed. In Section 4, we will examine GAMIO
algorithm under the Gaussian input assumption and 2-
symbol equip-probable discrete input assumption. The
simulation results show a consistent conclusion.
The second goal is to design the linear precoding matrix

of secondary user to maximize its energy efficiency under
not only its own transmit power constraint, but also a set
of interference power constraints at primary users. The
problem can be represented as (Pr2)

maximize: C/P = I(x, y)/Trace(BRxx†B†)

subject to :
Trace(BRxx†B†) ≤ Pt

I(x, y) ≥ Ct
Trace(GkBRxx†B†G†

k) ≤ �k , k = 1, . . . ,K .
(8)
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where Ct represents the minimal channel capacity for
the quality of service. The energy-efficient problem has
a close relationship with the spectrum-efficient problem.
The algorithm for Pr1 can be modified to deal with Pr2
directly.

3 Efficient optimization algorithm under
arbitrary input assumption

In this section, we present the linear precoding opti-
mization algorithm. First, we give the gradient of mutual
information with respect to precoding matrix B.

3.1 Gradient of mutual information with respect to the
precodingmatrix B

To start with, we give the gradient of mutual information
with respect to the linear precoding matrix B, which was
initially proposed in [17]. Since the channel is AWGN, the
conditional output of y can be represented as

py|x(y) = 1
πn e

(−‖y−HBx‖2
). (9)

where n represents the dimension of x. The mutual infor-
mation is

I(x; y) = E
[
log

py|x(y)
py(y)

]
= −n log(πe) − E

[
log py(y)

]

= −n log(πe) −
∫

py(y) logpy(y)dy.

(10)

Then the derivation of (10) is

∂I(x; y)
∂(HB)∗

= −
∫

(1 + log py(y))
∂py(y)
∂(HB)∗

dy

= −
∫

(1 + log py(y))Ex

[
∂py|x(y)
∂(HB)∗

]
dy.

(11)

From (9), we know that the derivation of py|x(y) is

∂py|x(y)
∂(HB)∗

= −py|x(y)
∂

∂(HB)∗
((y − HBx)†(y − HBx))

= py|x(y)(y − HBx)x† = −∇ypy|x(y)x†.
(12)

Therefore, (11) can be rewritten as

∂I(x; y)
∂(HB)∗

=
∫

(1 + log py(y))Ex
[
∇ypy|x(y)x†

]
dy

= Ex

[
(

∫
(1 + log py(y))∇ypy|x(y)dy)x†

]
.

(13)

Notice that∫
(1 + logepy(y))

∂py|x(y)
∂y

dy = [
(1+logepy(y))py|x(y)

]|y=∞
y=−∞

−
∫ 1

py(y)
∂py(y)

∂y
py|x(y)dy,

(14)

py|x(y)(1 + log py(y)) → 0,
∥∥y∥∥ → ∞. (15)

Then (13) can be represented as
∂I(x; y)
∂(HB)∗

= E
[(

−
∫ py|x(y)

py(y)
∇ypy(y)dy

)
x†

]
. (16)

We also notice that px|y << px for almost every y.
Based on this condition and ∂px|y

∂px (x, y) = py|x(y|x)
py(y) (Radon-

Nikodym derivative), we can rewrite (16) as

∂I(x; y)
∂(HB)∗

= −
∫

∇ypy(y)Ex

[py|x(y)
py(y)

x†
]
dy

= −
∫

∇ypy(y)E
[
x†|y

]
dy.

(17)

Now, using

∇ypy(y) = ∇yEx
[
py|x(y)

] = Ex
[∇ypy|x(y)

]
= −Ex

[
py|x(y)(y − HBx)

]
= −E

[
py(y)(y − HBx)|y]

= −py(y)(y − HBE [x|y]),

(18)

we can get

∂I(x; y)
∂(HB)∗

=
∫ [

py(y)(y − HBE [x|y])]E [
x†|y

]
dy.

(19)

From the definition of conditional expectation E
[
x|y] =∫

xp(x|y)dx, we have
∫ [

ypy(y)
]
E

[
x†|y

]
dy =

∫ [
ypy(y)

]∫
x†p(x†|y)dx†dy

=
∫ ∫

x†yp(x†, y)dx†dy.

(20)

Because y = HBx + z, (20) can be represented as
∫∫

x†(HBx+z)p(x†, y)dx†dy = HBE
[
x†x

]
+E

[
x†z

]

= HBE
[
x†x

]
.

(21)
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Similarly, we also have
∫
py(y)HBE [x|y]E

[
x†|y

]
dy = HBE

[
E [x|y]E

[
x†|y

]]

= HBE [x|y]E
[
x†|y

]
.

(22)

From (19), (21), and (22), we can get

∂I(x; y)
∂(HB)∗

= HB(E
[
xx†

]
− E[E[ x|y]E[ x†|y] ]). (23)

We also notice that

E
[
(x − E[ x|y] )(x − E[ x|y] )†

]
= E

[
xx†

]
− E [E[ x|y]

× E [ x†| y]].
(24)

We denote (24) as T which represents the MMSE
matrix. From (23), (24), and the chain rule of derivation,
we know that

∂I(x; y)
∂B

= H†HBT. (25)

Of course, MMSE matrix have different expressions
under different input assumptions. Under the Gaussian
input assumption, we have [14]

T = E
[
(x − E[ x|y] )(x − E[ x|y] )†

]

= Rxx†H†(I + HRxx†H†)−1.
(26)

If we assume that the signal follows the finite equip-
probable discrete distribution, the MMSE matrix is repre-
sented as

T = E
[
(x − E[ x|y] )(x − E[ x|y] )†

]
= 1

MNt (2π)
M
2

∫ MNt∑
i=1

(xi − E[ x|y])(xi − E[ x|y])†e− (y−xi)(y−xi)†
2 dy.

(27)

3.2 Optimization algorithm of Pr1
In this section, we propose an iterative algorithm to solve
Pr1. The linear precoding matrix B is updated by the
cutting-plane method. The idea is proposed in [22,23].
First, the algorithm localizes a set of candidate B in a
closed set. Second, half of the closed set will be eliminated
from the candidate set by choosing appropriate direction.
The iteration will not stop until the candidate set is small
enough. Usually, a common choice of the update direction

is the gradient of objective function which we want to
optimized. So, from (25), We know it is

d1 = ∂I(x; y)
∂B

= H†HBT. (28)

Unfortunately, we cannot promise that the whole candi-
date set satisfies the constraint condition. So, we have to
examine them and choose the right direction in order to
eliminate the bad candidates which does not satisfy the
constraint. The feasible update direction is (29) which is
the derivation of (3) and (4) [24]. If the constraint (3) or
(4) cannot be satisfied, the GAMIO algorithm should take
(29) instead of (28) for good candidates which satisfy the
constraint condition.{

d2 = BRxx†
d3,k = G†

kGkBRxx† , k = 1, . . . ,K (29)

Beside the update direction, how to choose the initial
candidate set is also an important element of GAMIO
algorithm. A reasonable choice is the minimal size ellip-
soid contained the optimal precoding matrix B∗. So, we
should take the initial setA and center B0 as (30) based on
the transmitted power constraint (3).

A = diag([Pt ,Pt , . . . ,Pt] ),

B0 = diag
([

P
1
2
t ,P

1
2
t , . . . ,P

1
2
t

])
.

(30)

According to the property of gradient, the GAMIO algo-
rithmwill converge to the global optimal value if the Pr1 is
a convex/concave problem. Of course, not all of input sig-
nal distribution promise Pr1 is a convex/concave problem.
The GAMIO algorithm performance will greatly depend
on the initial value if the Pr1 is not a convex/concave
problem. Usually, it will converge to a local optimal value.
By the way, it should be noted that the Gaussian input
assumption leads Pr1 to a concave problem. So, the
GAMIO algorithm can achieve the global optimal value.
It has the same performance as the interior-point algo-
rithm which is considered as the best algorithm under the
Gaussian input assumption.
From [25], we know that the GAMIO, being a kind of

cutting-plane algorithm, is a polynomial-time algorithm.
The iteration complexity is decided by the threshold ε1
and initial set A. Without loss of generality, we assume
that the channel capacity is Lipschitz. Then the itera-
tion complexity isO(2n2 ln(LR

ε1
)). L represent the Lipschitz

condition constant. R is decided by the initial set A and
represents the volume of ellipsoid. The most complex part
of GAMIO algorithm is to estimate the MMSE matrix
based on the current precoding matrix. In order to reduce
the time-consuming operations, we take the trick which
employed in [15] and update the MMSE matrix recur-
sively. Let s be the number of operations in the MMSE
matrix evaluation. Then the computational complexity of
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GAMIO algorithm isO(2sn2 ln(LR
ε

)). Of course, s is differ-
ent under different input assumption and can be adjusted
according to the algorithm precision. The GAMIO algo-
rithm is concluded as follows.

GAMIO algorithm under arbitrary input assumption
1. Initial the candidate set:

A = diag([Pt ,Pt , . . . ,Pt] ),

B0 = diag([P
1
2
t ,P

1
2
t , . . . ,P

1
2
t ] ),⎧⎨

⎩
d1 = H†HBT
d2 = BRxx†

d3,k = G†
kGkBRxx† , k = 1, . . . ,K ;

2. Repeat:

(a) If Trace(BRxx†B†) > Pt ,

d = d2.

Else if
Trace(GkBRxx†B†G†

k) > �k , k = 1, . . . ,K ,

d = d3,k , k = 1, . . . ,K .

Else

d = −d1;

(b) Update as

t = (Trace(d†Ad))
1
2

B0 = B0 − A
N+1

d
t

A = N2

N2−1 (A − 2
N+1A

d
t (

d
t )

TAT );

3. Until t < ε1, end.

3.3 Optimization algorithm of Pr2
Just as we mentioned before, Pr2 closely coupled with Pr1.
In general, Pr2 is not a concave problem. So, we cannot
solve it by traditional optimization method directly. Thus,
we try to find a sub-optimal solution instead. We notice
that the Pr2 decrease as its denominator value increases,
while it will increase with the raise of its numerator value.
So, we canminimize the denominator value andmaximize
the numerator value separately to optimize Pr2. It can be
done by combining arbitrary spectrum efficient optimiza-
tion algorithm with bi-section method. So, the Pr2 can be
separated into two parts. The first part can be represented
as (Pr3)

maximize: C = I(x, y)

subject to :
Trace(BRxx†B†) ≤ P∗

i
Trace(GkBRxx†B†G†

k) ≤ �k
k = 1, . . . ,K

. (31)

The only difference between Pr3 and Pr1 is the con-
straint power P∗

i which represents current power con-

straint during ith iteration. Obviously, Pt ≥ P∗
i . If we have

I(x∗, y∗) ≥ Ct , then

PMax = P∗
i , P∗

i+1 = PMin+PMax
2 . (32)

Otherwise, if I(x∗, y∗) < Ct , then

PMin = P∗
i , P∗

i+1 = PMin+PMax
2 . (33)

where I(x∗, y∗) represents the optimal value of Pr3. The
initial values of PMin and PMax are 0 and Pt , respectively.
The iteration will not stop until PMin and PMax are close
enough. The computational complexity of this new itera-
tive approach is tightly related with the spectrum-efficient
algorithm for Pr3. Without any doubt, although arbitrary
spectrum-efficient algorithm can work in this frame to
optimize the energy efficiency, the energy-efficient algo-
rithm which is developed based on the GAMIO algorithm
(EEGAMIO) is a better choice than any other algorithm
to deal with various input signal. From [23], we know that
the iteration complexity of bi-section method is

log2
PMax − PMin

ε2
= log2

Pt
ε2

(34)

where ε2 represents the threshold of bi-section method.
Based on the conclusion of Section 3.2, we can get the
iteration and computational complexity of EEGAMIO
energy-efficient algorithm are O(2n2 ln(LR

ε1
)log2

Pt
ε2

) and
O(2sn2 ln(LR

ε1
)log2

Pt
ε2

) respectively. Table 1 summarize the
complexity of the proposed algorithms and the framework
of the energy-efficient algorithm is concluded as follows.

The framework of energy-efficient algorithm
1. Initial the searching set:

Pmin = 0, Pmax = Pt , P∗
0 = Pmin+Pmax

2 ;

2. Repeat:

(a) Solve the problem

max : I(x, y)

s.t : Trace(BRxx†B†) ≤ P∗
i

Trace(GkBRxx†B†G†
k) ≤ �k , k = 1...K ;

Table 1 The complexity of the proposed algorithms

Case Iteration Computational
complexity complexity

Spectrum efficiency O(2n2 ln(LR/ε1)) O(2sn2 ln(LR/ε1))

Energy efficiency
O(2n2 ln(LR/ε1)

× log2(Pt/ε2))
O(2sn2 ln(LR/ε1)

× log2(Pt/ε2))
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Figure 2 Channel capacity versus SNR under the Gaussian input assumption.

(b) If I(x∗, y∗) ≥ Ct ,

Pmax = P∗
i , P∗

i+1 = Pmin+Pmax
2 ;

Else if I(x∗, y∗) < Ct ,

Pmin = P∗
i , P∗

i+1 = Pmin+Pmax
2 .

3. Until Pmax − Pmin ≤ ε2, end.

4 Simulation results
In this section, we demonstrate some simulation results.
The simulation is separated into two parts. For simplic-
ity, we assume that there is only one primary user in the
CR network.

4.1 Spectrum efficiency
In first part, we test the spectrum efficiency of GAMIO
algorithm. We take (6) and (7) as the channel capac-
ity for the Gaussian input assumption and the finite
equip-probable discrete input assumption, respectively.
The channel matrix from secondary transmitter to pri-

mary receiver is G =
[
2 1
3 4

]
and the channel matrix

between secondary user is H =
[
2 1
1 1

]
. The average

signal-noise-radio (SNR) of CR MIMO system is given
by SNR = Pt

σ 2 . The total transmit power Pt is 2W. The
interference-power constraint � is 1W.
In Figures 2 and 3, we test the achievable channel

capacity of secondary user under different situations. In
Figure 2, we assume that the input signal follows the
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Figure 3 Channel capacity versus SNR under the 2-symbol equip-probable discrete input assumption.
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Figure 4 Channel capacity versus iteration times under the 2-symbol equip-probable discrete input assumption.

Gaussian distribution. So, the channel capacity can be
expressed as (6). The line denoted with circle signs repre-
sents the performance of interior-point algorithm. It has
the best performance. The line with ’+’ represents the
performance of GAMIO algorithm. It has the same per-
formance as interior-point algorithm because the channel
capacity (6) is a concave problem under the Gaussian
input assumption. The line with ’∗’ represents the perfor-
mance of sub-space algorithm which is a well-known sub-
optimal algorithm [12]. The line with ’×’ represents the
performance of BAMIO algorithm and much lower than
the others because the BAMIO algorithm is developed
under equip-probable discrete input assumption.
In Figure 3, we assume that the input signal follows

the 2-symbol equip-probable discrete distribution (e.g.,
BPSK). So the channel capacity can be expression as (7)
with M = 2. Just as what Figure 2 shows, the first line
with ’+’ represents the performance of GAMIO algorithm
and the second line with ’×’ represents the performance
of BAMIO algorithm. They almost have the same perfor-
mance. Similarly, the third line denoted with circle signs
represents the performance of interior-point algorithm
and the fourth line with ’∗’ represents the performance
of sub-space algorithm. Figure 3 shows that the perfor-
mance of GAMIO and BAMIO algorithm is much better
than interior-point algorithm and sub-space algorithm. It
almost reaches the best capacity, 2 bit/s, when the SNR is
20 dB. On the other hand, the capacity of interior-point
and sub-space algorithm lower than 1 bit/s because they
intend to allocate toomuch energy to the best channel and
degrade the channel capacity.
Figures 2 and 3 show that, unlike the traditional

spectrum-efficient algorithm which developed under spe-
cific input assumption, the GAMIO algorithm considers
the specific input signal distribution and achieves the

best performance under various input assumption. This
result is consistent with our analysis and previous research
results [8,10].
Figure 4 gives the convergence performance results

of GAMIO algorithm with different SNR. As shown in
Figure 4, the algorithm converges to the optimal value
before the iteration ends. On the other hand, we can
also find that the convergence rate improves with SNR
increasing.
In order to unveil the meaning of different channel

capacity expression, we present a BPSK MIMO system
as Figure 5 shows. Figure 6 gives the BER of this sys-
tem with different SNR, Figure 6 indicates that the BER
of GAMIO and BAMIO algorithms is obviously lower
than the interior-point algorithm and SVD algorithm.
This result is consistent with Figure 3. And Figure 2 can-
not reflect this property. Figures 2, 3, and 6 show that
the input signal distribution affect the real performance

Figure 5 2 × 2MIMO systemwhich used to test the BER
performance.



Zhu et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:59 Page 9 of 11
http://asp.eurasipjournals.com/content/2013/1/59

0 2 4 6 8 10 12 14 16 18 20
10

−2

10
−1

10
0

SNR (dB)

B
E

R
 (

B
it)

GAMIO Algorithm
InterPoint Algorithm
SVD+PowerAllocation
BAMIO Algorithm

Figure 6 BER versus SNR when we use the precoding matrix which proposed by SVD+PowerAllocation, interior-Point, and GAMIO
algorithm, respectively.

greatly in practical scenarios. So, the GAMIO algorithm is
more useful than any other spectrum-efficient algorithm,
which can work only under specific input assumption, for
various practical system design.

4.2 Energy efficiency
In the second part, we simulate the energy efficiency
problem which is defined as Pr2. Just like the first part,

we also take into account two kinds of channel capac-
ity expression. The first one is based on the Gaussian
input assumption and the other one based on 2-symbol
finite equip-probable discrete input assumption respec-
tively. All of the assumptions are the same as the first part
except adding a minimum channel capacity constraint,
Ct = 1 bit/s.
In Figure 7, we test the achievable energy efficiency

under different situations. Under the Gaussian input
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Figure 7 Different energy-efficient algorithm performance versus SNR under the Gaussian input assumption and 2-symbol
equip-probable discrete input assumption, respectively.
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Figure 8 Energy efficiency versus SNR in the MIMO system as Figure 5.

assumption, we develop energy-efficient algorithm based
on the interior-point algorithm (EE-interior-point), sub-
space algorithm (EE-SVD), and GAMIO algorithm
(EEGAMIO), respectively. The results are noted with
plus, star, and circle, respectively. As Figure 7 shown, the
performances of EE-interior-point algorithm and EEGA-
MIO algorithm have no significant difference under
Gaussian input assumption. EE-SVD algorithm cannot
satisfy the capacity constraint when the SNR is less than
12 dB. But it is almost the same as the other algorithms
when SNR is beyond 12 dB. Similarly, we also develop
energy-efficient algorithm based on the BAMIO algo-
rithm and GAMIO algorithm under the 2-symbol equip-
probable discrete input assumption. The performance line
is annotated by diamond and inverted-triangle, respec-
tively. There are no performance results for EE-interior-
point algorithm and EE-SVD algorithm because they
cannot satisfy the capacity constraint under the 2-symbol
equip-probable discrete input assumption. Figure 7 shows
that, under either Gaussian or 2-symbol equip-probable
discrete input assumption, the EEGAMIO algorithm can
reach the best performance.
The last line denoted with square sign represents the

energy efficiency of traditional interior-point algorithm
under the Gaussian input assumption. It is much lower
than all of the others. This result shows that the proposed
framework of energy-efficiency is effective.
Figure 8 shows the energy efficiency of MIMO system

which Figure 5 figured. The lines which denoted with plus,
star, circle, diamond, and inverted-triangle sign are same
as Figure 7. As Figure 8 shown, although the Gaussian
input assumption can keep high energy efficiency, it brings
more loss in the BER performance. So the Gaussian input

assumption is more difficult to satisfy the channel capac-
ity constraint than the 2-symbol equip-probable discrete
input assumption in the MIMO system as Figure 5. It also
reveal that the input signal distribution affect the energy
efficiency greatly.

5 Conclusion
In this article, linear precoding matrix optimization for
the secondary user in a CR network is considered. We set
both spectrum and energy efficiency as our goals. Unlike
previous work, we do not limit the input signal following
specific distribution. Instead, we propose a spectrum-
efficient algorithm (GAMIO), which can work well under
not only the Gaussian input assumption but also any
other kind of input assumption. With this advantage, the
GAMIO algorithm is more practical than existing algo-
rithms, such as interior-point algorithm, SVD algorithm,
or BAMIO algorithm. In the case of energy efficiency, we
propose a framework to optimize the energy efficiency.
With this framework, we can get different energy-efficient
algorithms based on different spectrum-efficient algo-
rithms. In order to deal with various signal, the EEGAMIO
algorithm is a smart choice. The simulation results show
that these algorithms can significantly increase the energy
efficiency.
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