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Accurate three-dimensional tracking method
in bistatic forward scatter radar
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Abstract

Accurate three-dimensional (3D) tracking in bistatic forward scatter radar (BFSR) is a challenging problem because
of absent range resolution and poor measurements. In this article, an accurate 3D tracking method of BFSR is
proposed. Aiming to overcome the filter divergence caused by large initial state estimation error, firstly, an
accurate initial state estimation approach is presented based on analytic derivation and Levenberg–Marquardt
algorithm, which has the potential to improve the accuracy of initial state estimation. Furthermore, in order to
reduce the computation cost of filtering process and speed up the filtering convergence rate, the accurate initial
state estimation and extended Kalman filter algorithm in BFSR are combined to achieve a precise target 3D
tracking. Finally, the proposed accurate tracking method is verified through comparative analysis of the
simulation results.
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Introduction
Because of the gain in bistatic RCS (up to 20–40 dB
relative to monostatic RCS) in forward scatter region,
bistatic forward scatter radar (BFSR) can effectively
detect and track the target with low-speed or small RCS
(including the stealth target) [1,2]. Its target tracking
technology attracted more and more attention in recent
years. An existing challenge of BFSR is parameter
estimation of aerial [2–9] and ground [10–17] targets.
This article focuses on parameter estimation of aerial
target trajectory.
Systems using continuous quasi-harmonic probe signal

have been proved to be most promising amongst various
structures of BFSR [3–5]. In this case, measurements of
echo Doppler shift fd, angle of arrival θ, and elevation
angle β are usually used to obtain object parameter
estimations (i.e., target position and velocity denoted as
xk, yk, h, Vx, Vy). Due to the nonlinear relations between
fd, θ, β, and trajectory parameters,target parameter
estimation in BFSR is a nonlinear optimization problem.
To obtain five unknown variables (i.e.,xk, yk, h, Vx, and
Vy) using three known variables (i.e.,fd, θ, β), equations
composed by groups of observations are needed. Hence,
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object parameter estimation in BFSR is actually solving
over-determined nonlinear equations. The optimization
is achieved using nonlinear least squares algorithms, of
which Gauss–Newton method has widely been used.
In previous research [3–7], Gauss–Newton method is

adopted to solve the nonlinear equations. On this
basis, the classical methods of target tracking using
two-dimensional (2D) and three-dimensional (3D) BFSR
are proposed, respectively, in [4,6]. The major problem
is that Gauss–Newton method is not a “real-time”
algorithm, since we have to collect n measurements
to implement it. To achieve higher data update rate
and reduce computation in parameter estimation,
extended Kalman filter (EKF) algorithm [18] is used.
However, initial filtering value of EKF can only be
obtained by solving over-determined nonlinear equations,
which can never be avoided. In classical method, due to
the special geometry of FSR system, the initial value esti-
mation by Gauss–Newton method requires high-precision
Doppler shift measurement and angle measurement,
which are unavailable due to the limitation of antenna
size and accumulation time. Therefore, Gauss–Newton
method is easy to cause a large error of initial value
estimation and filtering divergence.
In this article, based on analytical derivation and

Levenberg–Marquardt (LM) [19,20] algorithm, a new
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approach of initial state estimation is presented, which
can improve the accuracy of initial state estimation
without high-precise target parameters measurement.
Hereafter, the accurate initial state estimation and
EKF algorithm are combined to achieve fast convergence
and high accuracy. Simulation results prove that
accurate target trajectory parameters estimation can
be obtained by this method before the target crossing
the baseline.
The remainder of this article is organized as follows:

Section 1 briefly describes the development of forward
scatter radar, pointing out the existing problems of air
target parameter estimation and focus of this article;
Section 2 defines the geometry of 3D forward scatter
radar, the target motion model and system observation
model; Section 3 introduces the proposed tracking
method for forward scatter radar in details; Section 4
verifies the validity of accurate tracking method through
comparative analysis of the simulation results; Conclu-
sions are drawn in Section 5.
System modeling
Geometry and system implementation of 3D BFSR
Geometry of 3D BFSR is shown in Figure 1. x, y, z
are Cartesian coordinates. Re, Tr, and Tg denote the
positions of receiver, transmitter, and target, respect-
ively. ψ is flight-path angle (the trajectory inclination
angle towards the baseline), θ is the target azimuth
angle, β is the target elevation angle, h is the target
altitude, b is the distance between transmitter and
receiver (i.e., the baseline length), AB is the target
trajectory, CD is the projection of target trajectory in
horizontal plane.
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Figure 1 Geometry of 3D-BFSR.
System settings meet the following principles:

1) In the transmitter position, there is a wide beam
antenna illuminating the whole forward scatter
region with a quasi-harmonic signal.

2) In the receiver position, there is a multi-beam
antenna to illuminate the forward scatter region.

3) There is no block in line of sight between the
transmitting and receiving antenna.

Target model
Assuming the target crosses the baseline near the mid-
point in a constant speed with linear trajectory, target
state equation can be written as

X k þ 1ð Þ ¼ ΦX kð Þ þ Gv kð Þ ð1Þ

Assuming the target flies in a constant altitude (i.e.,
the longitudinal velocity is zero), target’s state vector can
be denoted by X(k) = [xk, yk, hVx, Vy], where T means
sampling interval, v(k) is Gaussian white noise process
with zero mean. xk, yk, h, Vx, Vy are the values of target
Cartesian coordinates at kth discrete time instant and
their derivatives. State transition matrix Φ and noise dis-
tribution matrix G are, respectively, written as

Φ ¼

1 0 0 T 0
0 1 0 0 T
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 G ¼

T 2

2
0 0

0
T 2

2
0

0 0
T 2

2
T 0 0
0 T 0

2
6666666664

3
7777777775
ð2Þ

Observation model
Assuming observation vectors measured from first to
kth instant are

fd1; θ1; β1ð Þ; . . . ; fdk ; θk ; βk
� �� �T

where fdk, θ, βk are observations of the Doppler frequency
shift, echo azimuth angle, and elevation angle.
Measurement equation can be written as

→
Zk ¼ h

→
xk

� �
þ Δ

→
Zk

ð3Þ

where



2 3 2 3
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h
→
xk

� �
¼

fdk
θk
βk

4 5

¼

� 1
λ

xkVx þ ykVyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k þ h2

q þ ykVy � b� xkð ÞVxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� xkð Þ2 þ y2k þ h2

q
2
64

3
75

arctan
yk
xk

	 


arctan
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ y2k

q

2
66666666664

3
77777777775
ð4Þ

Z
→

k is the observation vector of kth instant, which is

denoted by (fdk, θ, βk). X
→

k is state vector of kth instant,
denoted by [xk, yk, hk, Vx, Vy]. The measurement noise

denoted by ΔZ
→

k is Gaussian white noise with zero mean,
whose noise variances are σf

2, σθ
2, σβ

2, respectively.

Accurate 3D tracking in forward scatter radar
Because of the special geometry of forward scatter radar,
parameters (i.e., Doppler shift, azimuth angle, elevation
angle) cannot directly be measured when the target
crosses the baseline, resulting in a large estimation error
and seriously decreasing the tracking precision. In
addition, the detection area of forward scatter radar is a
very narrow region near the baseline where bistatic angle
ranges from 135° to 180°, indicating that target tracking
is effectively implemented during a very short period of
time. Therefore, a stable tracking trajectory should be
obtained before the target crosses the baseline, which
requires fast convergence of filtering algorithm. However,
the large error of initial state estimation will decrease
the convergence speed, even lead to filtering divergence.
In summary, the initial state estimation is significant for
target tracking in forward scatter radar, which extremely
affects the filtering accuracy and convergence speed.
The classical method uses Gauss–Newton iteration to

estimate the initial state of target. Gauss–Newton iteration
is prone to singular matrix causing inaccurate computation
results. And if the first value of iteration deviates far away
from its true value, the results of iteration easily fall into
local minimum and then cause large error of initial
state estimation. To overcome these problems, based on
analytical derivation and LM algorithm, a novel method is
presented to obtain high-precise initial state estimation.
The basic principles of this new initial state estimation

method are as follows.
According to the system observation equations, the

observation vector (fdn, θn, βn) measured in nth discrete
time instant could be written as
fdn ¼ � 1
λ

xnVx þ ynVyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n þ y2n þ h2

p þ ynVy � b� xnð ÞVxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� xnð Þ2 þ y2n þ h2

q64 75
ð5Þ

θn ¼ arctan
yn
xn

ð6Þ

βn ¼ arctan
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n þ y2n
p ð7Þ

Based on the observation vectors (fd1, θ1, β1), (fd2, θ2,
β2),. . .(fdn, θn, βn) of previous time instants, the target
state vector (xn, yn, Vx, Vy, h) in nth time instant can be
obtained. The process is as follows:
From Equation (6), then

y1
x1

¼ tanθ1; . . . ;
yn
xn

¼ tanθn ð8Þ

The target motion model shows the relationship
between y1 and yn:

y1 ¼ yn � n� 1ð ÞTVy

x1 ¼ xn � n� 1ð ÞTVx

�
ð9Þ

Substituting Equation (9) into Equation(8), we have

yn � k � 1ð ÞTVy

xn � k � 1ð ÞTVx
¼ tanθ1 ð10Þ

Based on Equations (8) and(10), then

tanθn � tanθ1Þxn � n� 1ð ÞTVy þ tanθ1 n� 1ð ÞTVx ¼ 0
�

ð11Þ
Similarly, we have

tanθn � tanθ2ð Þxn � n� 2ð ÞTVy þ tanθ2 n� 2ð ÞTVx ¼ 0

ð12Þ
And the following simultaneous equations

tanθn � tanθ1ð Þxn � n� 1ð ÞTVy þ tanθ1 n� 1ð ÞTVx ¼ 0
tanθn � tanθ2ð Þxn � n� 2ð ÞTVy þ tanθ2 n� 2ð ÞTVx ¼ 0

�

ð13Þ
Let the coefficients of xn, Vy, Vx be (a1, a2, a3), (b1, b2,

b3), that is

a1 ¼ tanθn � tanθ1ð Þ b1 ¼ tanθn � tanθ2ð Þ
a2 ¼ � n� 1ð ÞT b2 ¼ � n� 2ð ÞT
a3 ¼ tanθ1 n� 1ð ÞT b3 ¼ tanθ2 n� 2ð ÞT

8<
:

ð14Þ
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Then Equation (13) can be written as

a1 a3
b1 b3

� 
xk
Vx

� 
¼ �a2

�b2

� 
Vy ð15Þ

Equations above have solutions as follows

xn ¼ a3b2 � a2b3
a1b3 � a3b1

⋅Vy ¼ dn1Vy ð16Þ

Vx ¼ a2b1 � a1b2
a1b3 � a3b1

⋅Vy ¼ dn2Vy ð17Þ

yn ¼ tanθk⋅dn1Vy ¼ dn3Vy ð18Þ

According to Equation (7), then

h ¼ tanβn⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn2 þ yn2

p
ð19Þ

Substituting Equations (16) and (18) into Equation
(19), the relationship between h and Vy could be written
as

h ¼ tanβn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
n1 þ d2

n3

q
Vy

�� �� ¼ dn4 Vy

�� �� ð20Þ

Substituting Equations (16), (17), (18), (20) into
Equation (5), we can obtain the nonlinear equation as
follows:

fdn þ 1
λ

"
dn1dn2 þ dn3ð ÞV 2

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
n1 þ d2

n3 þ d2
n4ð ÞV 2

y

q

þ dn3V 2
y � b� dn1Vy

� �
dn2Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b� dn1Vy
� �2 þ d2

n3V 2
y þ d2

n4V 2
y

q
#
¼ 0

ð21Þ
Assuming that N set of observations are used in initial

state estimation, take n = (N/2 + 1):N, we can get the
following nonlinear equations
fd2 þ 1
λ

d21d22 þ d23ð ÞV 2
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
21 þ d2

23 þ d2
24ð ÞV 2

y

q þ d23V 2
y � b� d2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� d21Vy
� �2 þ d2

2

q
2
64

fd3 þ 1
λ

d31d32 þ d33ð ÞV 2
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
31 þ d2

33 þ d2
34ð ÞV 2

y

q þ d33V 2
y � b� d3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� d31Vy
� �2 þ d2

3

q
2
64

⋮

fdn þ 1
λ

dn1dn2 þ dn3ð ÞV 2
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
n1 þ d2

n3 þ d2
n4ð ÞV 2

y

q þ dn3V 2
y � b� dn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� dn1Vy
� �2 þ dn

q
2
64

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
Solving Equation (22) by the LM algorithm can
achieve the optimal solution of Vy, and xn, Vx, yn, h,
which can also be obtained by Equation (16), (17), (18),
and (20). Thus, the numerical solution of the target state
(xn, yn, h, Vx, Vy) in nth instant is acquired.
Because measurement noise is considerably large

relative to the measurement data of azimuth angle, it is
necessary to smooth primary measurements through
polynomial fitting before the initial state estimation.
Polynomial coefficients can be obtained by least square
method, which can reduce the initial state estimation
error by an order of magnitude.
In the stage of follow-up tracking, EKF algorithm is

adopted. As mentioned earlier, the system state transition
equation and measurement equation are as follows:

X k þ 1ð Þ ¼ ΦK kð Þ þ Gv kð Þ ð23Þ
Z kð Þ ¼ h k;X kð Þð Þ þW kð Þ ð24Þ

where h(k, X(k)) denotes the measurement vector,
measurement noise denoted by W(k) is Gaussian white
noise process with zero mean. Assuming the process noise
covariance and measurement noise covariance at time k
are, respectively, expressed as Q(k) and R(k), then the
steps of filtering are as follows:
State prediction:

X̂ k þ 1 kj Þ ¼ ΦX kð Þð ð25Þ
Error covariance prediction:

P k þ 1 kj Þ ¼ ΦP k kj ÞΦT þ Q kð Þ�� ð26Þ
Measurements prediction:

Ẑ k þ 1 kj Þ ¼ h X̂ k þ 1 kj Þð ��� ð27Þ
Calculate residual covariance:

S k þ 1ð Þ ¼ hX k þ 1ð ÞP k þ 1 kj ÞhTX k þ 1ð Þ þ R k þ 1ð Þ�
ð28Þ
1Vy
�
d22Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V 2
y þ d2

24V 2
y

3
75 ¼ 0

1Vy
�
d32Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V 2
y þ d2

34V 2
y

3
75 ¼ 0

1Vy
�
dn2Vyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3V 2

y þ d2
n4V 2

y

3
75 ¼ 0

ð22Þ



Table 1 Simulation parameters

Transmitted signal wavelength 0.77 m Standard deviation of process noise 1

Baseline length 40 km Target’s velocity 150 m/s

Data update rate 1 Hz Flight-path angle 15°

Standard deviation of Doppler shift measurements 0.5 Hz Target’s initial X-coordinate 20 km

Standard deviation of azimuth measurements 0.5° Target’s initial Y-coordinate −6 km

Standard deviation of elevation measurements 0.5° Target’s initial H-coordinate 2 km
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Calculate Kalman gain:

K k þ 1ð Þ ¼ P k þ 1 kj ÞhTX k þ 1ð ÞS�1 k þ 1ð Þ� ð29Þ

Update state:

X̂ ðk þ 1 k þ 1j Þ ¼ X̂ ðk þ 1 kj Þ þ K k þ 1ð Þ
� Z k þ 1ð Þ � h X̂ k þ 1 kj Þð �� ��

ð30Þ

Update error covariance:

Pðk þ 1 k þ 1j Þ ¼ I � K k þ 1ð ÞhX k þ 1ð Þ½ �Pðk þ 1 kj Þ
⋅ I � K k þ 1ð ÞhX k þ 1ð Þ½ �T
� K k þ 1ð ÞR k þ 1ð ÞKT k þ 1ð Þ

ð31Þ

hX (k) in Equation (28) is the Jacobian matrix of h(k, X
(k)), which is

h k;X kð Þð Þ ¼
fDk Xð Þ
αk Xð Þ
βk Xð Þ

2
4

3
5

¼

� 1
λ

xkVx þ ykVyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k þ h2

q þ ykVy � b� xkð ÞVxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� xkð Þ2 þ y2k þ h2

q
2
64

3
75

αk ¼ arctan
yk
xk

	 


βk ¼ arctan
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2k þ y2k

q

2
66666666664

3
77777777775

ð32Þ
Table 2 Simulation results of initial state estimation

RMSE xn/m y

σf ¼ 0:5
σθ ¼ 0:5
σβ ¼ 0:5

Classical method 2028.2 5

New method 854.3737 2

σf ¼ 0:1
σθ ¼ 0:1
σβ ¼ 0:1

Classical method 773.0488 8

New method 172.2670 5
Make

RR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k þ h2

q
RT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b� xkð Þ2 þ y2k þ h2

q
ð33Þ

Then

∂fDk
∂xk

¼ � 1
λ

�
y2k þ h2
� �

Vx � xkykVy

R3
R

þ y2k þ h2
� �

Vx þ yk b� xkð ÞVy

R3
T

� ð34Þ

∂fDk
∂yk

¼ � 1
λ

�
x2k þ h2
� �

Vy � xkykVx

R3
R

þ b� xkð Þ2 þ h2
� �

Vy þ yk b� xkð ÞVx

R3
T

�
ð35Þ

∂fDk
∂h

¼ h
λ

xkVx þ ykVy

R3
R

þ ykVy � b� xkð ÞVx

R3
T

� 
ð36Þ

∂fDk
∂Vx

¼ � 1
λ

xk
RR

þ xk � b
RT

	 

∂fDk
∂Vy

¼ �Vy

λ

1
RR

þ 1
RT

	 

ð37Þ

∂αk
∂xn

¼ � yk
R2
R

∂αk
∂yn

¼ xk
R2
R

∂αk
∂h

¼ ∂αk
∂Vx

¼ ∂αk
∂Vy

¼ 0 ð38Þ
n/m h/m Vx/(m/s) Vy/(m/s)

37.1 264.6 220.1 20.3

55.1232 96.3750 2.1184 7.4299

7.3466 83.5152 48.4883 9.8001

0.3490 18.3618 0.9642 1.3896



Table 3 Averaging run time of the three methods

Classical method New method UKF algorithm

Average time
needed for a
complete
filtering (s)

8.564927 0.14912884 0.32414323
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∂βk
∂xk

¼ � hxk
R3
R þ RRh2

∂βk
∂yk

¼ � hyk
R3
R þ RRh2

∂βk
∂h

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k

q
x2k þ y2k þ h2

∂βk
∂Vx

¼ ∂βk
∂Vy

¼ 0

ð39Þ

hX (k) is

hX kð Þ ¼

∂fDk Xð Þ
∂xk

∂fDk Xð Þ
∂yk

∂fDk Xð Þ
∂h

∂fDk Xð Þ
∂Vx

∂fDk Xð Þ
∂Vy

∂αk Xð Þ
∂xk

∂αk Xð Þ
∂yk

∂αk Xð Þ
∂h

∂αk Xð Þ
∂Vx

∂αk Xð Þ
∂Vy

∂βk Xð Þ
∂xk

∂βk Xð Þ
∂yk

∂βk Xð Þ
∂h

∂βk Xð Þ
∂Vx

∂βk Xð Þ
∂Vy

2
6666664

3
7777775
X¼X

∧
k kj Þð

ð40Þ

Simulations and analysis
In order to verify the proposed accurate tracking
algorithm, the parameters of FSR experiment system
listed in references [3–6] are taken as the simulation
parameters.
To prove the validity of the proposed method for

initial state estimation, simulations are implemented
with the parameters list in Table 1 using classical
method and the new method, respectively, under the
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-6000

-4000

-2000

0

2000

4000

6000

X /km

Y
 /

m

Estimated Track

Real Track

Transmitter Receiver

(a) (

Figure 2 The effect of initial statement estimation errors on target tra
Gauss–Newton method. (b) Tracking results with the Initial statement obta
same parameters except standard deviations of Doppler
shift, azimuth, and elevation denoted by (σf, σθ, σβ).
The results are averaging performed in terms of 100
independent implementations, as shown in Table 2, and
their averaging run time are shown in Table 3.
Table 2 shows the initial statement estimation errors

of classical method and the proposed method under
the condition of different target measured parameters
estimation accuracy. It is obviously that the statement
estimation errors are affected by the estimation accuracy
of target measured parameters. As can be seen, with high
accuracy of target parameter measurement (i.e.,σf = 0.1
Hz, σθ = 0.1°, σβ = 0.1°), estimation errors of the two
methods are both within the error tolerance and the
proposed method has higher accuracy. However, when
measurement noise increases (i.e.,σf = 0.5 Hz, σθ = 0.5°,
σβ = 0.5°), the initial state estimation error of classical
method significantly increases, while that of proposed
method is much smaller than the former. In particular,
the velocity estimation error along the direction of the
baseline is fairly small.
To compare the performances of the two methods

more intuitively, simulations are implemented in case
that initial state estimations obtained by the two
methods are taken as the initial filtering value for EKF.
The statement estimation results are shown in Figure 2.
It can be seen that the initial statement estimation errors
of Gauss–Newton iteration method are so large that the
tracking results are divergent, while the EKF algorithm
works very well with the initial statement obtained by
the proposed method.
The averaged results performed in terms of 100 inde-

pendent implementations are shown in Figure 3. In
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Figure 3a–c, RMSE of X-, Y-, and H-coordinates using
initial value obtained by proposed method are all plotted
by dotted line, and the ones using initial value obtained
by classical method are plotted by solid line. It can be
seen that the proposed method gets more precise initial
filtering value, which results in the faster convergence
and more precise estimation of EKF. While taking the
initial state estimated by classical method as the filtering
initial value slows down the convergence speed of EKF.
In addition, the estimated trajectory has not converged
at the time of target crossing baseline. The large RMSE
of Vx estimation (as shown in Figure 3d) by classical
method slows down the convergence of EKF. The initial
value of Vx is more accurate obtained by the proposed
method, which is helpful to achieve rapid filtering
convergence.
Then, the overall tracking performances of classical

method, new method, and the unscented Kalman filter
(UKF) algorithm (taking the initial state obtained by new
method as first filtering value) are compared in Figure 4.
Figure 4 shows that the initial state estimation error

of classical method is relatively large in the general
measurement noise level. In the process of Gauss–Newton
iteration, the error is not significantly reduced due to
its unstable performance. In the same condition, the
initial error of the proposed method is quite small,
and gradually decreases until convergence in the
follow-up tracking stage. UKF algorithm has a deterioration
trend in follow-up tracking.
To compare the computation of different methods,

averaging is performed in terms of 100 independent
implementations. The time required for one complete
filtering of three methods are as follows:
Through analysis of the simulation results, we obtain

the following conclusions:

(1)The acquisition of accurate initial state estimation by
classical method required very high precision
measurement. The initial estimation error
significantly increases by the measurement noise.

(2)The proposed method demonstrated its superiority
in initial state estimation. In general measurement
accuracy, its estimation error is smaller than the
classical method’s by an order of magnitude. Applied
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to EKF, the initial value obtained by the proposed
method can effectively improve the convergence
speed. Then a stable track is able to be formed
before the target crossing baseline.

(3)In general measurement precision, classical method
showed non-steady performance and fluctuation of
estimation error. Tracking accuracy of UKF
algorithm is moderate. But UKF’s estimation error
has an increasing trend because of its sensitivity to
initial error. EKF algorithm can achieve high
tracking accuracy and fast convergence with a large
tolerance for initial error. Furthermore, its
computation is the smallest among three algorithms.

Conclusions
In this article, an accurate 3D tracking method in for-
ward scatter radar is presented. To solve the problem of
filter divergence results from the large initial estimation
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error, an accurate initial state estimation approach based
on analytic derivation and LM algorithm is proposed,
which can improve the accuracy of initial state estimation
without requiring high-precise measurement. For the pur-
pose of reducing the computation of filtering and speeding
up the convergence rate, the accurate initial state estima-
tion is combined with EKF algorithm. Then, an accurate
3D tracking in forward scatter radar is derived and verified
by the simulation results.
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