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Abstract

Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division
multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase
noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI
mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the
previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively
mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on
phase noise cancelation, especially in the presence of severe phase noise.

1 Introduction
Due to its high data rate transmission capability and
its robustness to multipath delay spread, orthogonal fre-
quency division multiplexing (OFDM) has been adopted
inmost parts of modern wireless communication systems,
such as wireless local area networks [1], digital audio and
video broadcasting [2], and so is OFDM being standard-
ized for the future wireless communication systems, such
as Worldwide Interoperability for Microwave Access [3]
and 3GPP’s Long-Term Evolution [4]. However, OFDM
is known to be very sensitive to radio frequency front-
end imperfections such as carrier frequency offset (CFO),
in-phase and quadrature-phase (IQ) imbalance and phase
noise. These imperfections, if not properly estimated and
compensated, will severely degrade the performance of
OFDM systems. CFO and IQ imbalance are constant over
an OFDM symbol period and have widely been inves-
tigated and well solved in the literature [5-8]. However,
unlike the constant CFO and IQ imbalance, phase noise
is a stochastic process during an OFDM symbol period
and therefore causes a greater challenging problem. This is
because each OFDM sample in an OFDM symbol period
suffers from different phase noise.
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The detrimental effect of phase noise on the perfor-
mance of OFDM systems has extensively been studied in
[9-11]. The effect of phase noise on OFDM is commonly
categorized as common phase error (CPE) and inter-
carrier interference (ICI). Several techniques have been
proposed to estimate and compensate for phase noise in
OFDM systems [12-17]. More specifically, by trading the
ICI as additional noise, Wu and Bar-Ness [12] use mini-
mum mean square error criterion to cancel the CPE. By
considering that phase noise can be modeled as a low-
pass process, the authors of [13,14] resort to estimate a
few spectral components of phase noise. In particular,
the ICI-cancelation scheme proposed in [13] stems from
iterative detection principle, while [14] resorts to inter-
polation between the CPE estimates of two consecutive
OFDM symbols in a noniterative way. Zou et al. [15,16]
propose to estimate a few phase noise components in the
time domain and obtain the rest components by inter-
polation. In [17], each OFDM symbol is partitioned into
several subblocks where phase noise process is assumed
quasi-static over each subblock and therefore only the
CPE of each subblock needs to be estimated.
In this article, we are concerned with ICI mitigation at

the receiver side of OFDM systems using the statistics of
phase noise, which can be obtained from measurements
or data sheets (see [9,10,13,18,19] and references therein).
Based on the framework of Wiener filter, a Wiener filter
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preprocessing algorithm for ICI mitigation is proposed.
The proposed algorithm performs directly on the received
signal without changing the structure of conventional
OFDM systems. Subsequently, the algorithms of previous
researches on phase noise cancelation can be performed
on the preprocessed received signal. Simulation results
show that by utilizing the correlation inherently exists
in phase noise, the proposed Wiener filter preprocessing
algorithm can effectively mitigate the ICI and lower the
error floor, and therefore significantly improve the perfor-
mances of previous researches on phase noise cancelation,
especially in the severe phase noise case.
The remainder of this article is organized as follows.

Section 2 describes the OFDM system and phase noise
models. The proposed Wiener filter preprocessing algo-
rithm is presented in Section 3. Section 4 gives some
simulation results that demonstrate the effectiveness of
the proposed algorithm. Finally, conclusions are drawn in
Section 5.
Notation: Vectors and matrices are boldface letters. A

hat over a variable (e.g., Ŝ) indicates an estimate of the
variable. E{·} denotes the expectation. Superscripts [ ·]T ,
[ ·]−1, [ ·]H , and [ ·]∗ denote the transpose, the matrix
inversion, theHermitian, and the complex conjugate oper-
ations, respectively. IN is an identity matrix with dimen-
sion N. 0N denotes an N × 1 vector whose elements are
all zeros. The symbol � denotes convolution. R{·} and
J{·} are the real and imaginary parts of the quantity in
the brackets, respectively. δ(·) denotes the Dirac delta
function. The matrix F is the normalized discrete Fourier
transform (DFT) matrix with the (m, n)th element given
by [F]m,n = 1√

N e−j2π mn
N .

2 Systemmodel
2.1 OFDMmodel
A model of the OFDM system in the presence of
phase noise is depicted in Figure 1. In an OFDM sys-
tem, the source data in the frequency domain X =
[X(0),X(1), . . . ,X(N − 1)]T is modulated onto N par-
allel subcarriers to obtain the time domain signal z =
[ z(0), z(1), . . . , z(N−1)]T = FHX. In general, the elements
of X can be categorized into

X(m) =
{
Xd(m) ∀ m ∈ Id
Xp(m) ∀ m ∈ Ip

, (1)

where Id is the index set of subcarriers allocated for
data symbols with Nd elements, and Ip is the index set
of subcarriers allocated for pilot symbols with Np ele-
ments, respectively. Notice that N = Nd + Np. From (1),
we have X = EdXd + EpXp, where the N × Nd matrix
Ed and N × Np matrix Ep denote matrices collecting
columns of IN corresponding to Id and Ip, respectively,
and Xd = [Xd(0),Xd(1), . . . ,Xd (Nd − 1)]T , Xp =

[
Xp(0),Xp(1), . . . ,Xp

(
Np − 1

)]T denote the data and
pilot vectors, respectively. We assume that the OFDM
subcarrier signals are mutually independent ran-
dom variables with zero mean and variance Es, i.e.,
E{X (m1)X∗ (m2)} = Esδ (m1 − m2). A cyclic prefix (CP)
with length Ncp longer than the delay spread of the
channel is inserted at the beginning of each OFDM
symbol to prevent intersymbol interference, i.e.,
the transmitted time domain signal is

[
z
(
N−Ncp

)
,

z
(
N−Ncp+1

)
, . . . , z(N−1), z(0), z(1), . . . , z(N − 1)

]T .
At the receiver side, assuming perfect timing and fre-

quency synchronization are achieved, the nth sample of
the received signal is given by

y(n) = ejφ(n)
L−1∑
l=0

h(l)z(n − l) + w(n), (2)

where φ(n) represents the phase noise, w(n)’s are inde-
pendent and identically distributed (i.i.d.) complex ran-
dom variables with zero mean and variance σ 2, repre-
senting the contribution of additive white Gaussian noise.
The coefficients {h(l)}L−1

l=0 represent the equivalent multi-
path discrete-time channel impulse response (CIR) with
length L, including transmit and receive filters, i.e., h(l) =
gTx(t) � hPr(t) � gRx(t)|t=lTs , where gTx(t), hPr(t), and
gRx(t) denote the pulse shaping filter at the transmit-
ter, the impulse response of the propagation medium,
and the shaping filter at the receiver, respectively, and
Ts is the sampling interval. We consider a slow fading
frequency-selective channel where the CIR is assumed to
remain constant during the transmission of one OFDM
symbol period but can change randomly from symbol
to symbol. The CIR is assumed perfectly known at the
receiver. Powerful schemes for accurate channel estima-
tion in the presence of phase noise have been proposed in
[20-22]. The channel taps are assumed mutually indepen-
dent and the correlation function of different taps is given
by E{h (l1) h∗ (l2)} = σ 2

l1δ (l1 − l2), where σ 2
l denotes the

average power of the lth tap and without loss of generality,
we assume

∑L−1
l=0 σ 2

l = 1.

Figure 1 The OFDM system in the presence of phase noise.
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After discarding the CP, the received signal after trans-
forming back into the frequency domain is given by

Y (k) = 1√
N

N−1∑
n=0

y(n)e−j2π nk
N

= H(k)X(k) J(0)︸︷︷︸
CPE

+
N−1∑

r=0,r �=k
H(r)X(r)J(k − r)

︸ ︷︷ ︸
ICI

+W (k)

� S(k)︸︷︷︸
the desired term

+ I(k)︸︷︷︸
ICI

+W (k)︸ ︷︷ ︸
noise

, (3)

where J(k), the DFT of the phase noise process, is given by

J(k) = 1
N

N−1∑
n=0

ejφ(n)e−j2π nk
N . (4)

The DC coefficient J(0) acts on all subcarriers as a CPE
in (3) and the second term on the right-hand side of (3)
represents ICI that results from higher order of J(k). The
channel frequency response H(k) is given by

H(k) =
L−1∑
l=0

h(l)e−j2π lk
N . (5)

W (k) represents the corresponding noise in the frequency
domain. It is observed that the effect of phase noise, i.e.,
CPE and ICI, distorts the received signal Y (k) in a mul-
tiplicative and additive manner, respectively. Due to the
detrimental effect of phase noise on the performance of
OFDM systems, the phase noise should be compensated
for.

2.2 Phase noise model
2.2.1 Nonstationary phase noise
When the system is frequency locked, the resulting phase
noise is slowly varying but not limited, and it is mod-
eled as a zero-mean, nonstationary, infinite-powerWiener
process. In this case, the phase noise is expressed as a
free-running or Brownian process, i.e.,

φ(n) = φ(n − 1) + v(n), n = 0, 1, . . . ,N − 1, (6)

where v(n) is an i.i.d zero-mean Gaussian variable with
variance σ 2

v = 2πβT/N , with β representing the two-side
3-dB linewidth of phase noise, βT representing the phase
noise rate [9,10] and T being the OFDM symbol period.
In the case of perfect synchronization at the beginning of
the OFDM symbol, φ(−1) = 0 and therefore, (6) can be
expressed alternatively as

φ(n) =
n∑

m=0
v(m), n = 0, 1, . . . ,N − 1. (7)

2.2.2 Stationary phase noise
When the system is phase-locked, the resulting phase
noise is low and modeled as a zero-mean, stationary,

finite-power stochastic process. For a classical model of
stationary phase noise, φ(n) is modeled as a stationary
Gaussian process with zero mean and a specified power
spectrum density [13,18,19].

3 The proposedWiener filter preprocessing
algorithm

It is observed from (3) that we wish to estimate the desired
term S(k), from Y (k), k = 0, 1, . . . ,N − 1. In the frame-
work of Wiener filter, the estimate of S(k), i.e., Ŝ(k), is
determined by estimating a set of coefficients {γki}Ni=0,
in order to minimize the estimation mean square error
(MSE) as

{
γ̂ki, opt

}N
i=0 = argmin{γki}Ni=0

E

{
|S(k) − Ŝ(k)|2

}
(8)

s.t. Ŝ(k) =
N−1∑
i=0

γkiY (i) + γkN , (9)

where γkN is a bias term that allows for nonzero means of
S(k) and Y (k), k = 0, 1, . . . ,N − 1. Substituting (9) into
(8) and setting the first derivative of the resulting (8) with
respect to γkN to zero, we obtain the optimal estimate of
γkN as

γ̂kN , opt = E{S(k)} −
N−1∑
i=0

γkiE{Y (i)}. (10)

Substituting (10) into (8), the MSE can be expressed as

E

{
|S(k) − Ŝ(k)|2

}
= ϒH

k 	YYϒk − 2R
{
ϒH
k 	YS(k)

}
+ 	S(k)S(k),

(11)

where ϒk = [γk0, γk1, . . . , γkN−1]T , 	YY is the covariance
matrix of Y =[Y (0),Y (1), . . . ,Y (N − 1)]T , 	YS(k) is the
cross-covariance vector of Y and S(k),	S(k)S(k) is the vari-
ance of S(k). Setting the first derivative of (11) with respect
to ϒk to zero, we obtain the optimal estimate of ϒk as

ϒ̂k,opt = 	−1
YY	YS(k). (12)

Substituting (10) and (12) into (9), the optimal estimate of
S(k) can thus be obtained as

Ŝopt(k) = E{S(k)} + 	H
YS(k)	

−1
YY(Y − E{Y}). (13)

Stacking all N subcarriers, the optimal estimate of
S =[ S(0), S(1), . . . , S(N − 1)]T can be written in matrix
form as
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Ŝopt =

⎡
⎢⎢⎢⎢⎢⎣

E{S(0)}
E{S(1)}

...
E{S(N − 1)}

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

�H
YS(0)

�H
YS(1)
...

�H
YS(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎦�−1

YY(Y − E{Y})

� E{S} + 	SY�−1
YY(Y − E{Y}), (14)

where

	SY = E{(S − E{S})(Y − E{Y})H} (15)
= E{SYH} − E{S}E{YH},

and

�YY = E
{
(Y − E{Y})(Y − E{Y})H} (16)

= E{YYH} − E{Y}E{YH}.
In (15), E{SYH} is derived as

E
{SYH} = E

{S(S + I + W)H
}

(17)
= 
SS + 
SI,

and in (16), E
{YYH} is derived as

E{YYH} = E
{
(S + I + W)(S + I + W)H

}
(18)

= 
SS + 
II + 
SI + 
H
SI + 
WW,

where we have assumed that the desired term S and the
ICI I =[ I(0), I(1), . . . , I(N − 1)]T are independent of
the noise W =[W (0),W (1), . . . ,W (N − 1)]T , and 
PQ
represents the correlation function between P andQ.
We now derive each term required to compute Ŝopt in

(14). From (3), the elements of 
SS in (17) and (18) can be
obtained as

E
{
S (k1) S∗ (k2)

}=E
{
(H (k1)X (k1) J(0)) (H (k2)X (k2) J(0))∗

}
=E

{
H (k1)H∗ (k2)

}
(19)

×E
{
X (k1)X∗ (k2)

}
E
{
J(0)J∗(0)

}
,

where the fact that the transmit signal, the wireless chan-
nel, and the phase noise are independent from each
other has been used. Using (5), the correlation function
E {H (k1)H∗ (k2)} can be derived as

E{H(k1)H∗(k2)} = E

⎧⎨
⎩
⎛
⎝L−1∑

l1=0
h (l1) e−j2π l1k1

N

⎞
⎠

×
⎛
⎝L−1∑

l2=0
h (l2) e−j2π l2k2

N

⎞
⎠∗⎫⎬
⎭ (20)

=
L−1∑
l1=0

L−1∑
l2=0

E
{
h (l1) h∗ (l2)

}
e−j2π (l1k1−l2k2)

N

=
L−1∑
l=0

σ 2
l e

−j2π l (k1−k2)
N .

Therefore, substituting (20) into (19) we obtain that if
k1 �= k2,

E
{
S (k1) S∗ (k2)

}=EsE
{
J(0)J∗(0)

}L−1∑
l=0

σ 2
l e

−j2π l (k1−k2)
N δ (k1−k2)

(21)
= 0,

and if k1 = k2,

E{S(k1)S∗(k1)} = EsE{J(0)J∗(0)}. (22)

Using (3) the elements of 
II in (18) can be derived as

E
{
I (k1) I∗ (k2)

} =E

⎧⎨
⎩
⎛
⎝ N−1∑

r1=0,r1 �=k1

H (r1)X (r1) J (k1 − r1)

⎞
⎠

×
⎛
⎝ N−1∑

r2=0,r2 �=k2

H (r2)X (r2) J (k2 − r2)

⎞
⎠∗⎫⎬
⎭ ,

(23)

and therefore, if k1 �= k2,

E
{
I (k1) I∗ (k2)

} = Es
N−1∑

r=0,r �=k1,k2

E
{
J (k1 − r) J∗ (k2 − r)

}
,

(24)

and if k1 = k2,

E
{
I (k1) I∗ (k1)

} = Es
N−1∑

r=0,r �=k1

E
{
J (k1 − r) J∗ (k1 − r)

}
.

(25)

Similarly, the elements of 
SI in (17) and (18) can be
derived as

E
{
S (k1) I∗ (k2)

} =E

⎧⎨
⎩(H(k1)X(k1)J(0))

×
⎛
⎝ N−1∑

r=0,r �=k2

H(r)X(r)J(k2 − r)

⎞
⎠∗⎫⎬
⎭ ,

(26)

and therefore, if k1 �= k2

E
{
S (k1) I∗ (k2)

} = EsE
{
J(0)J∗ (k2 − k1)

}
, (27)

and if k1 = k2

E
{
S (k1) I∗ (k1)

} = 0. (28)

It is noted from (19)–(28) that the correlation function
E {J (k1) J∗ (k2)} plays a pivotal role in the computation of

SS, 
II, and 
SI.
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Using (4), the correlation function E {J (k1) J∗ (k2)} can
be derived as

E
{
J (k1) J∗ (k2)

}= 1
N2E

⎧⎨
⎩
⎛
⎝N−1∑

n1=0
ejφ(n1)e−j2π n1k1

N

⎞
⎠

×
⎛
⎝N−1∑

n2=0
ejφ(n2)e−j2π n2k2

N

⎞
⎠∗⎫⎬
⎭ (29)

= 1
N2

N−1∑
n1=0

N−1∑
n2=0

E

{
ej(φ(n1)−φ(n2))

}
e−j2π (n1k1−n2k2)

N .

3.1 Nonstationary phase noise
Substituting (7) into (29), we obtain

E
{
J (k1) J∗ (k2)

} = 1
N2

N−1∑
n1=0

N−1∑
n2=0

E

{
ej
(∑n1

m1=0 v(m1)−∑n2
m2=0 v(m2)

)}

×e−j2π (n1k1−n2k2)
N

= 1
N2

N−1∑
n1=0

N−1∑
n2=0

E

{
ejsgn(n1−n2)

(∑|n1−n2|−1
m=0 v(m)

)}

×e−j2π (n1k1−n2k2)
N , (30)

where sgn(n) represents the sign operation, i.e.,

sgn(n) =
{
1, n > 0
0, n ≤ 0

(31)

Since v(n) is an i.i.d zero-mean Gaussian variable with
variance σ 2

v ,
{
sgn (n1 − n2) v(m)

}|n1−n2|−1
m=0 are also i.i.d.

Gaussian variable with zero mean and variance given by

	(sgn(n1−n2)v(m))(sgn(n1−n2)v(m)) =E

{(
sgn (n1−n2)

)2
(v(m))2

}
=σ 2

v . (32)

Therefore, the variance of sgn (n1−n2)
(∑|n1−n2|−1

m=0 v(m)
)

can be derived as

	(sgn(n1−n2)
(∑|n1−n2 |−1

m=0 v(m)
))(

sgn(n1−n2)
(∑|n1−n2|−1

m=0 v(m)
))

= |n1 − n2|σ 2
v .

(33)

Notice that for a Gaussian variable α with mean μ and
variance ψ2, its characteristic function is given by [23]

E
{
ejtα
} = ejμt−

ψ2t2
2 . (34)

Substituting (33) into (34) and letting μ = 0 and t = 1,
we obtain

E

{
ejsgn(n1−n2)

(∑|n1−n2|−1
m=0 v(m)

)}
= e−

|n1−n2|σ2v
2 . (35)

Substituting (35) into (30), the correlation function
E {J (k1) J∗ (k2)} for the nonstationary phase noise case
can be obtained.

3.2 Stationary phase noise
Since φ(n) is modeled as a stationary Gaussian process
with zeromean, φ(n1)−φ(n2) is also a stationary Gaussian
process with zero mean and variance given by
	(φ(n1)−φ(n2))(φ(n1)−φ(n2)) = E

{
((φ (n1) − φ (n2) )2

}
(36)

= 2
φ(0)φ(0) − 2
φ(n1−n2)φ(n1−n2).

Therefore, substituting (36) into (34) and letting μ = 0
and t = 1, we obtain

E

{
ej(φ(n1)−φ(n2))

}
= e
φ(n1−n2)φ(n1−n2)−
φ(0)φ(0) . (37)

Similar to the nonstationary one, substituting (37) into
(29), the correlation function E {J (k1) J∗ (k2)} for the sta-
tionary phase noise case can be obtained.
Finally, considering that

E{S(k)} = E{H(k)}E{X(k)}E{J(0)} (38)
= 0,

and
E{Y (k)} = E{H(k)}E{X(k)}E{J(0)}

+
N−1∑

r=0,r �=k
E{H(r)}E{X(r)}E{J(k − r)} + E{W (k)}

= 0, (39)

we have for E{S} in (15) as

E{S} = 0N , (40)

and for E{Y} in (15) and (16) as

E{Y} = 0N . (41)

Since the FFT does not change the noise distribution,

WW in (18) is given by


WW = σ 2IN . (42)

In summary, substituting the derived results (21) and
(22), (24) and (25), (27) and (28), (40)–(42) into (14), the
optimal estimate Ŝopt can be obtained. Notice that for the
nonstationary phase noise case, (30) and (35) should be
adopted; for the stationary phase noise case, (29) and (37)
should be adopted.
It is noted that without changing the structure of con-

ventional OFDM systems, the proposedWiener filter pre-
processing algorithm is based on the statistics of phase
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noise (which can be obtained from measurements or data
sheets) and performs directly on the received signal Y (see
Figure 1 for illustration). Subsequently, the algorithms of
previous researches on phase noise cancelation (e.g., [12-
17]) can be performed based on the preprocessed received
signal Ŝopt instead of on the received signal Y. We will
show in the next section that by utilizing the correla-
tion inherently exists in phase noise process, the proposed
Wiener filter preprocessing algorithm can effectively mit-
igate the ICI which results from phase noise and lower the
error floor, and therefore significantly improve the per-
formances of previous researches phase noise cancelation,
especially in severe phase noise case.

4 Simulation results and discussions
In this section, the performance of the proposed Wiener
filter preprocessing algorithm for ICI mitigation is
demonstrated by Monte Carlo simulations. In the simu-
lations, each OFDM symbol has 128 subcarriers (N =
128) and communicates over a bandwidth of 20MHz. The
sampling interval Ts is thus 50 ns. The data are modu-
lated by 16QAM modulation. The channel has three taps
(L = 3) with an exponential power delay profile, namely
σ 2
l = exp(−κl)((1 − exp(−κ))/(1 − exp(−κL))), l =

0, 1, . . . , L − 1 with κ = 1/3. Each tap coefficient fol-
lows a complex Gaussian distribution. Fourteen equally
spaced OFDM subcarriers are allocated to pilot symbols,
i.e., Np = 14 and Nd = 114. This means that roughly
10.94% of the subcarriers are occupied by pilots. The
pilots are used for the CPE estimation and cancelation
algorithm given in [12] (marked as “conventional [12]” in

Figures 2, 3, 4, and 5). The pilots are also used for the ICI-
cancelation algorithm given in [13] with ICI correction of
order 3 (marked as “conventional [13]” in Figures 2, 3, 4,
and 5). The performance of [12,13] preprocessed by our
proposedWiener filter preprocessing algorithm is marked
as “proposed [12]” and “proposed [13]” in Figures 2, 3, 4,
and 5.
For the nonstationary phase noise case, it can be seen

from Figure 2 that if the detrimental effect of phase noise,
i.e., CPE and ICI, are left uncompensated (marked as “no
phase noise correction” in Figures 2, 3, 4, and 5), the
performance is totally unacceptable for both cases where
phase noise rate are 0.1 and 0.01.
For the case that phase noise rate is 0.01 (dashed lines

in Figure 2), the CPE dominates the effect of phase noise.
Therefore, as can be seen from Figure 2, the performance
can significantly be improved if only CPE is compen-
sated. If [12] is preprocessed by our proposedWiener filter
preprocessing algorithm, there is a minor performance
improvement for “proposed [12]” compared to “conven-
tional [12]”, as can be observed from Figure 2. Although
ICI is small in this case, if ICI is also mitigated, a minor
performance improvement can be obtained especially in
high SNR region, where the decision on the transmit-
ted symbols are more accurate than that in low SNR
region and therefore, the ICI can be more accurately esti-
mated and canceled according to [13]. It is observed from
Figure 2 that the performance of “proposed [13]” is almost
the same as that of the “conventional [13]” (only with
minor improvement) for the reason that ICI is small in
this case.

Figure 2 BER performance: nonstationary phase noise case. BER versus SNR for nonstationary phase noise, where the phase noise rates are 0.1
and 0.01.
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Figure 3 BER performance: stationary phase noise case. BER versus SNR for stationary phase noise, where the standard deviations are 4° and 0.4°.

However, it can be observed from Figure 2 that for the
severe case where phase noise rate is 0.1 (solid lines in
Figure 2), the ICI dominates the effect of phase noise.
Since [12] only aims to cancel CPE without canceling
any of the ICI terms, the performance of “conventional
[12]” is not satisfactory. After [12] is preprocessed by our
proposed Wiener filter preprocessing algorithm, a perfor-
mance improvement can be observed from the “proposed

[12]” compared to the “conventional [12]”. However, it
is observed that the performance gap between the “pro-
posed [12]” and “no phase noise” case is still large, which
means that if an ICI-cancelation technique is employed,
the performance may be further improved. As can be
observed that in this severe phase noise case, the perfor-
mance of the “proposed [13]” is significantly better than
that of the “conventional [13]” for the reason that ICI is

Figure 4 BER performance: nonstationary phase noise case when SNR = 30 dB. BER versus phase noise rate for nonstationary phase noise,
where the range of phase noise rate is from 1e−5 to 1e−1.
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Figure 5 BER performance: stationary phase noise case when SNR = 30 dB. BER versus standard deviation for stationary phase noise, where the
range of standard deviation is from 0.0004° to 4°.

not negligible and contributes significantly to the overall
effect of phase noise. It is noted that ICI can effectively be
mitigated and the error floor is obviously lowered through
our proposed algorithm.
For the stationary phase noise case, it is generated

according to [18] with the standard deviation θrms =
4◦ and 0.4°. More specifically, the elements of the cor-
relation matrix for stationary phase noise are given by

φ(m−n)φ(m−n) =

(
πθrms
180

)2
e−(2π�0|m−n|Ts), where �0 =

1000 kHz is the 3-dB bandwidth of a single pole But-
terworth filter. It is observed from Figure 3 that similar
results can be obtained as the nonstationary phase noise
case.
Figures 4 and 5 show the BER performance of the pro-

posed algorithm and that of comparisons [12,13] versus
phase noise rate and standard deviation when SNR is
set to 30 dB, for the nonstationary and stationary phase
noise cases, respectively. The performance advantage of
the proposed algorithm over that of conventional [12,13]
can be observed especially for severe phase noise cases.

5 Conclusions
In this article, we focused on ICI mitigation for OFDM
systems in the presence of phase noise. By utilizing the
correlation inherently exists in phase noise, aWiener filter
preprocessing algorithm based on the statistics of phase
noise has been proposed, which performs directly on the
received signal without changing the structure of con-
ventional OFDM systems. Subsequently, the algorithms
of previous researches on phase noise cancelation can

be performed on the preprocessed received signal. Sim-
ulation results showed that for both nonstationary and
stationary phase noise cases, the proposed algorithm can
effectively mitigate ICI and lower the error floor, and
therefore significantly improve the performances of pre-
vious researches on phase noise cancelation, especially in
the presence of severe phase noise.
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