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Abstract

Independent vector analysis (IVA) is a recently proposed technique, an application of which is to solve the
frequency domain blind source separation problem. Compared with the traditional complex-valued independent
component analysis plus permutation correction approach, the largest advantage of IVA is that the permutation
problem is directly addressed by IVA rather than resorting to the use of an ad hoc permutation resolving algorithm
after a separation of the sources in multiple frequency bands. In this article, two updates for IVA are presented. First,
a novel subband construction method is introduced, IVA will be conducted in subbands from high frequency to
low frequency rather than in the full frequency band, the fact that the inter-frequency dependencies in subbands
are stronger allows a more efficient approach to the permutation problem. Second, to improve robustness and
against noise, the IVA nonlinearity is calculated only in the signal subspace, which is defined by the eigenvector
associated with the largest eigenvalue of the signal correlation matrix. Different experiments were carried out on a
software suite developed by us, and dramatic performance improvements were observed using the proposed
methods. Lastly, as an example of real-world application, IVA with the proposed updates was used to separate
vibration components from high-speed train noise data.
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1. Introduction
Blind source separation (BSS) aims at recovering individ-
ual source signals from their mixed observations, the
word “blind” means that neither the sources nor the
mixing environment is known [1]. The applications of
BSS techniques include speech enhancement, robust
speech recognition, analyzing EEG or fMRI signals, fea-
ture extraction, image denoising, etc. [1-3]
Independent component analysis (ICA) [1] is a stand-

ard BSS method, which works under the assumption
that sources are mutually independent, and the mixing
procedure is linear and instantaneous. However, for
speech and audio separation problems in real-world
acoustic environment, such as the “cocktail party prob-
lem”, signals are often mixed in a convolutive manner.
One common way to extend the instantaneous ICA to
the convolutive model is the so-called frequency domain
blind source separation (FDBSS) approach [2-4]. In
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FDBSS, observed signals are transformed to time-fre-
quency (T-F) domain via short time Fourier transform
(STFT) first, so that the convolutive mixture in the time
domain becomes instantaneous mixture in individual
frequency bins. Then, complex-valued ICA algorithms
[5,6] are used to separate data in each frequency bin in-
dependently. Although FDBSS has many advantages, it
suffers from the well-known “permutation problem”
[7-12]: the separated data must be aligned to make sure
that each output signal only contains the data from the
same source. After the permutation problem is solved,
the inverse STFT is used to reconstruct the sources in
the time domain. Many algorithms have been proposed
in order to overcome the permutation ambiguity in
FDBSS. For speech and audio signals, neighboring fre-
quency bins from the same source are strongly corre-
lated, and algorithms like [8-10] utilize this feature to
correct the permutation problem. In many cases, differ-
ent signals are likely to come from different directions,
so direction of arrival patterns, which are hidden in the
demixing matrices, can also be used to solve the permu-
tation problem [10-12].
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In recent years, independent vector analysis (IVA) was
developed as an extension of ICA from univariate to multi-
variate components [13-18], and sources in the IVA model
are considered as vectors instead of scalars. When IVA is
used to perform source separation in the frequency do-
main, sources in different frequency bins are optimized to-
gether as vectors. IVA utilizes not only the statistical
independency among different sources, but also the statis-
tical inner dependency of each source vector in the
optimization procedure [16]. Compared with the traditional
ICA plus permutation correction approach, the largest ad-
vantage of IVA is that the permutation problem is automat-
ically avoided, so there is no need for a postprocessing step
after ICA to align sources. Moreover, as pointed out in
[17], since the inter-frequency bin dependencies are consid-
ered in IVA, the separation results are expected to be better
than the results of ICA algorithms which are applied on in-
dividual frequency bins alone.
The basic IVA framework was originally introduced in

[13,14], this method used Kullback-Leibler (KL) diver-
gence, which is completely equivalent to mutual informa-
tion of the sources, as an objective function, with a natural
gradient-based updating rule to optimize the demixing
matrices frequency bin-by-frequency bin. To speed up the
optimization procedure, in [15,16] a fast fixed-point IVA
(FIVA) algorithm was proposed, which is based on the
complex-valued FastICA algorithm [6]. In [19], an online
IVA algorithm was proposed for real-time audio separation
task, and a two-channel hardware demonstration system
was developed. Another IVA algorithm was proposed in
[20], as an extension of independent factor analysis [21] to
the multivariate case. An expectation-maximization algo-
rithm was used in the optimization procedure, and a
Gaussian mixture model (GMM) was used to fit the source
prior. Mixing models of noiseless, noisy, and online cases
can conveniently be integrated in this framework. The IVA
model was also used to solve the joint blind source separ-
ation problem for fMRI data in [17], where both gradient
based and Newton updating rules are derived. There is a
number of other recently proposed IVA algorithms such as
IVA incorporating video information [22], non-circular
IVA [23], chain clique IVA [24,25], etc.
In this article, we present two improvements for IVA.

First, a new subband construction technique is intro-
duced to enhance the inter-frequency bin dependency.
Second, in each subband, the nonlinear mapping is cal-
culated in the one-dimensional subspace of the esti-
mated source data to further improve the separation
performance. These proposals are integrated in a soft-
ware suite for BSS research and applied usage, which is
publicly available [26].
The remainder of this article is organized as follows:

The general framework of the IVA algorithm is briefly
introduced in Section 2. Then, in Section 3 we present
the subband policy, and the nonlinear mapping improve-
ment is depicted in Section 4. Computational complex-
ities of the proposed methods are analyzed in Section 5,
and some methods are also introduced to reduce the
complexity. Different experiments were carried out to
show the performance improvements of the proposed
methods, the experimental results are reported in Sec-
tion 6. In addition to the simulated experiments, a real-
world application on high-speed train noise component
separation is described in Section 7 to demonstrate the
usefulness of the proposed methods. At last, we con-
clude this article in Section 8.
The frequently used notations in this article are listed

below for easy reference.

1. Italic lowercase letters denote scalars, boldface italic
lowercase letters denote column vectors, and
boldface italic uppercase letters denote matrices, e.g.,
a, a, and A.

2. Superscripts *, T, and H denote complex conjugate,
matrix and vector transpose, and conjugate
transpose, respectively, e.g., AH = (AT)* = (A*)T.

3. Commas separate values within rows, e.g., a = [a1, a2]
T,

while semicolons separate rows, e.g., a= [a1; a2], [a; b] =
[aT, bT]T.

4. The original source signal, the observed signal, and
the separated signal are denoted by the letters s, x,
and y, respectively.

5. Mixing matrices and demixing matrices are denoted
by the letters A and W.

6. Indices m, n, and f denote sensor index, source
index, and frequency bin index, respectively. There
are M sensors, N sources, and F frequency bins in
the IVA model. Indices t and τ represent time
domain sample index, and STFT frame index,
respectively. Variables with index t indicate time
domain data, while variables with indices f and/or τ
indicate frequency domain data.

2. Independent vector analysis
2.1. From FDBSS to IVA
In real-world acoustic environment, signals are mixed
with each other, as well as their delays, attenuations, and
reverberations, i.e., signals are convolutively mixed to-
gether. Supposing there are N sources and M sensors
(M ≥ N), the signal captured by sensor m can be mod-
eled as (1) [14], where ⋆ is the convolution operation,
amn(t) is the finite duration impulse response mixing fil-
ter from source n to sensor m.

xm tð Þ ¼ ∑N
n¼1amn tð Þ⋆sn tð Þ ð1Þ

When STFT is used, if the STFT frame length is suffi-
ciently longer than the mixing filter length [14], the time
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domain convolution in (1) can approximately be
converted to the frequency domain multiplication in

(2), where s f½ �n τð Þ, x f½ �
m τð Þ, and a f½ �

mn are frequency domain
versions of sn(t), xm(t), and amn(t), respectively.

For all sources s f½ � τð Þ ¼ s f½ �1 τð Þ;…; s f½ �N τð Þ
h iT

and sensors

x f½ � τð Þ ¼ x f½ �
1 τð Þ;…; x f½ �

M τð Þ
h iT

, the complete mixing process

can be formulated as (3), where A[f] is the mixing matrix

for frequency bin f, with a f½ �
mn as its entries.

x f½ �
m τð Þ ¼ ∑N

n¼1a
f½ �
mn s

f½ �
n τð Þ ð2Þ

x f½ � τð Þ ¼ A f½ �s f½ � τð Þ ð3Þ

y f½ � τð Þ ¼ W f½ �x f½ � τð Þ ð4Þ
Since signals are instantaneously mixed in each fre-

quency bin, complex-valued ICA algorithms like [5,6]
can be used to separate signals, as depicted in (4), where
W[f] is the demixing matrix for frequency bin f, which is
estimated by ICA. FDBSS utilizes (4) to separate signals,
an example of 2 × 2 FDBSS demixing model is shown in
Figure 1a. In this example, each horizontal layer is an
ICA demixing model in (4) for each frequency bin, and
the demixing procedure is carried out in layers inde-
pendently. Since ICA in different layers may output the
separated results in different order, the permutation am-
biguity will occur in FDBSS, which is indicated by the
different color of y[f] in Figure 1a. The permutation am-
biguity must be carefully addressed by algorithms like
[7-12] before the inverse STFT is performed, or else the
separation procedure will fail.
(a) FDBSS model

Figure 1 Comparison of FDBSS model and IVA model. In this figure, x f½ � ¼
In addition to separate sources in each frequency
bin, IVA utilizes inter-frequency bin information to
solve the permutation problem in the separation pro-
cedure. The IVA model is very similar with the FDBSS
model, as shown in Figure 1b. Their difference is
that signals are considered as vectors in IVA, i.e.

xm ¼ x 1½ �
m ;…; x F½ �

m

h iT
; yn ¼ y 1½ �

n ;…; y F½ �
n

h iT
(vertical bars in

Figure 1b), and they will be optimized as multivariate
variables, instead of independent scalars like in ICA.
The IVA model can also be formulated in a single equa-
tion: After data in each layer are concatenated into vec-
tors as: x = [x[1];…; x[F]], y = [y[1];…; y[F]], and W is a
block diagonal matrix with each W[f] in its diagonal, the
demixing procedure can be denoted as: y =Wx, just as
the same expression as ICA.

2.2. IVA objective function
Mutual information I(⋅) is a natural measure of independ-
ence, which is minimized to zero when random variables
are mutually independent, and it is often employed as the
objective function in ICA. Mutual information can be cal-
culated in the form of KL divergence KL(⋅∥⋅) in (5), where
py denotes the probability density function (PDF) of a ran-
dom vector y, pyn denotes the nth marginal PDF of y, and

z is a dummy variable for the integral [16].

I yð Þ ¼ KL py ∥∏
n

pyn

� �
¼ ∫py zð Þlog py zð Þ

∏npyn znð Þ dz ð5Þ

IVA objective function has the similar form as (5); how-
ever, each yn in IVA is a vector rather than a scalar. The
IVA objective function and the corresponding derivations
are given in (6) [16,17], where H(⋅) represents the entropy.
(b) IVA moddel

x f½ �
1 ;…; x f½ �

M

h iT
; y f½ � ¼ y f½ �

1 ;…; y f½ �
N

h iT
; xm ¼ x 1½ �

m ;…; x F½ �
m

h iT
; yn ¼ y 1½ �

n ;…; y F½ Þ
n

h iT
.
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J IVA ¼ KL py∥∏n pyn

� �
¼ ∑N

n¼1H ynð Þ−H y1;…; yNð Þ
¼ ∑N

n¼1H ynð Þ−H y 1½ �;…; y F½ �
� �

¼ ∑N
n¼1H ynð Þ−H W 1½ �x 1½ �;…;W F½ �x F½ �

� �
¼ ∑N

n¼1H ynð Þ−H Wxð Þ
¼ ∑N

n¼1H ynð Þ− ∑
F

f¼1
log det W f½ �

� ���� ���−C

ð6Þ

In formula (6), the last equation is derived since H
(Wx) = log|det(W)| + H(x) holds for a linear invertible
transformation W, and the determinant of the block di-

agonal matrix det Wð Þ ¼ ∏F
f¼1det W f½ �

� �
. The term C =H

(x) is a constant because the observed signals will not
change in the optimization procedure [16,17].
When the observed signals in each frequency bin are

centered and whitened (x← x − E(x) so that E(x) = 0, then
x←Vx so that E(xxH) = I, E(⋅) for expectation, V is the
whitening matrix), the demixing matrices W[f] become

orthonormal, so the term ∑F
f¼1log det W f½ �

� ���� ��� becomes

zero. Then, by noting that H ynð Þ ¼ ∑fH y f½ �
n

� �
−I ynð Þ, min-

imizing the IVA objective function in (6) is equivalent to
minimizing (7) [17].

J IVA ¼ ∑n ∑fH y f½ �
n

� �
−I ynð Þ

� �
ð7Þ

From here we can see that minimization of (7) bal-

ances the minimization of the H y f½ �
n

� �
term and the

maximization of the I(yn) term. According to the basic
ICA theory, independency is measured by non-

Gaussianity, and minimizing H y f½ �
n

� �
is equivalent to

maximizing the non-Gaussianity, which is responsible
for separating data in individual frequency bins. Mean-
while, maximizing I(yn) means enhancing the depend-
ency of entries in yn, which is responsible for solving the
permutation problem. In short, minimizing the IVA ob-
jective function can simultaneously separate the data
and solve the permutation problem [17].

2.3. Optimization procedures
To minimize the objective function in (6), the entropy of
the estimated source vectors must be calculated. Al-
though the actual PDF of each yn is unknown, a prior
target PDF p ̂ ynð Þ is often used, so the objective function
in (6) can be simplified as in (8) [14].

J IVA ¼ −∑nE log p̂ ynð Þ
� �

ð8Þ

Natural gradient descent and fast fixed-point iteration
are two frequently used optimization methods in IVA. In
the natural gradient-based approach [13,14], after differ-
entiating the objective function with respect to the
demixing matrices, the updating rule can be formulated
as (9)

W f½ �←W f½ � þ η I−E φ f½ � y f½ �
� �

y f½ �
� �H

� �	 

W f½ � ð9Þ

In this equation, η is the learning rate, and φ[f](⋅) is a
multivariate nonlinear function (also called score func-
tion) for frequency bin f. This nonlinear function is
highly related to the chosen source prior PDF:

φ f½ � ynð Þ ¼ −
∂log p ̂ y 1½ �

n ;…; y F½ �
n

� �
∂y f½ �

n

ð10Þ

In [15,16], a FIVA algorithm was proposed. Compared
with the natural gradient-based approach, the conver-
gence speed of FIVA is dramatically improved, and there
is no need to choose the learning rate manually. After
applying a nonlinear mapping G, the FIVA objective
function can be transformed from (8) to (11) [15,16].
The corresponding updating rule can be formulated in
(12), followed by the symmetric decorrelation scheme in

(13). In (12), w f½ �
n

� �H
represents the nth row of the

demixing matrix W[f]. In (13), the inverse square root of
a symmetric matrix W− 1/2 = PD− 1/2PH, and W = PDPH

is the eigendecomposition of W.

J FIVA ¼ ∑N
n¼1E G jynj2

��
¼ ∑

N

n¼1
E G ∑

F

f¼1
jy f½ �

n j2
������

ð11Þ

w f½ �
n ←E G

0
ynj j2� �þ y f½ �

n

�� ��2G00
ynj j2� �h i

w f½ �
n −E y f½ �

n

� ��
G

0
ynj j2� �

x f½ �
h i

ð12Þ

W f½ �← W f½ � W f½ �
� �H

� �−1=2

W f½ � ð13Þ

Although the original nonlinearity G used in (11) is
also derived from the source prior PDF as: G
yn

2j Þ ¼ −log p ̂ ynð Þjð [15,16], nonlinearities in FIVA
should be considered as entropy estimators, so, different
nonlinearities can also be used, which may not have a
direct association with source prior PDF. For example,
G ⋅ð Þ ¼ ffiffi

⋅
p

and G(⋅) = log(⋅) are two frequently used
nonlinear functions.
When the IVA updating rules in (9) and (12) are com-

pared with the corresponding updating rules in conven-
tional InfomaxICA [5] and complex-valued FastICA [6],
one can find that they have nearly the same expressions,
the only difference is the improvement from univariate
nonlinearities to multivariate nonlinearities. It means
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that multivariate nonlinearity is very important for IVA
algorithms, choosing proper nonlinearities will improve
the source separation performance.

3. Subband IVA
3.1. Clique-based approach
To illustrate the idea of the subband approach, the
spectrogram of an estimated source signal is shown in
Figure 2a as an example, and its corresponding correlation
matrix is visualized in Figure 2b. The correlation matrix
Σn of the estimated source yn is calculated upon the
amplitude of its T-F data by (14) [27]. According to the
demixing model in (4), since the observed data x[f] are
centered and whitened, and the demixing matrix W[f] is
orthonormal because of (13), data in Figure 2a are kept
zero mean and unit variance in each frequency bin (the
scaling ambiguity [2] is still unsolved), and the correl-
ation matrix in Figure 2b is symmetric and positive
semidefinite, with all entries belong to [0,1] and with all
ones in its diagonal.

Σn ¼ E y 1½ �
n

�� ��;…; y F½ �
n

�� ��h iT
y 1½ �
n

�� ��;…; y F½ �
n

�� ��h i	 

ð14Þ

From Figure 2 we can see that, when time domain sig-
nals are transformed to T-F domain by STFT, neighbor-
ing frequency bins usually have strong correlation;
however, two frequency bins may be weakly correlated if
they are far apart from each other [10]. Original IVA al-
gorithms [13-16] treat all frequency bins as a whole, and
although this approach is easy to implement and its
computational time is relatively short, weakly correlated
frequency bins will degrade the separation performance.
(a) spectrogram

Figure 2 Separated signal’s spectrogram and corresponding correlati
proposed subband subspace IVA algorithm was used for separation, STFT f
1024. In Figure 2a, brighter color means larger magnitude. In Figure 2b, th
Some policies have been proposed to compensate the
weakly correlated frequency bins in IVA. For example, a
chain clique model was introduced in [24], and its update
in [25] with variable clique size. Neighboring frequency
bins are treated as a “clique”, i.e., a fully connected sub-
graph, to increase the inter-frequency bin dependency,
and consecutive cliques are chained together by proper
overlapping, as depicted in Figure 3a. For speech and
music signals, harmonic structures usually exist in the sig-
nal T-F data (can also be observed in Figure 2), and neigh-
boring frequencies may still be weakly correlated because
of the harmonic structure. In order to choose strongly cor-
related frequency bins for IVA, a novel clique construction
method was proposed in [29] to utilize the harmonic-
dependent property of speech and music signals. The
frequently used source prior PDF of the preceding clique-
based approaches can be summarized in (15), where C is
the number of cliques, Ck means all frequency bins in
clique k. The corresponding nonlinear mapping can be de-
rived according to (10).

p ynð Þ∝exp −∑C
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑f ∈Ck y f½ �

n

�� ��2q� �
ð15Þ

3.2. Subband-based approach
In addition to the local dependency property of the T-F
data, from Figure 2 we can also conclude another prop-
erty that the high-frequency part of the speech T-F data
usually has stronger correlation than the low-frequency
part. As visualized in Figure 2a, the harmonic structure
of the speech data is weak in the high-frequency part,
so, the corresponding frequency bins are highly corre-
lated in a relatively large neighborhood, as visualized in
(b) corresponding correlation matrix

on matrix. In this example, dataset from [28] was used, and the
rame size, STFT frame overlap, and FFT size were set to 512, 7/8, and
e correlation matrix is reversed upside down for visualization.
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Figure 3 Subband construction comparison.
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Figure 2b. When the frequency bin index goes down,
the harmonic structure becomes clearer, and the neigh-
borhood of high correlation is decreased. According to
these two properties, our subbands are constructed as
depicted in Figure 3b. The difference between the
clique-based approach and the proposed approach is
that although the full frequency band is divided into
cliques in the former approach, the updating procedure
is still performed in the full frequency band, so the ter-
minology “clique” is used. On the other hand, in the
proposed approach, IVA is carried out in individual
subbands from high frequency to low frequency, the
underlying nonlinearity is only a function of the multi-
variate data within subbands, and the updating proced-
ure is also performed in current subband, so, the
terminology “subband” is used in the proposed
approach.
In each subband (except the first one), the input of the

IVA algorithm can be considered as partially separated
data, as depicted in Figure 4. Since two consecutive
subbands are overlapped with each other, data in the
overlapped part have already been handled by the IVA
performed in previous subband. Usually, most frequency
bins in the overlapped part will converge, only left a few
(possibly none) unseparated frequency bins. So, IVA in
current subband only needs to handle the unconverged
frequency bins, which are coming from the newly added
data, and inherited from the previous subband. Some-
times, permutation errors may occur in the overlapped
part of current subband, which are caused by previous
IVA. However, since current IVA utilizes the information
Figure 4 The input data of IVA in one subband.
of the entire subband to perform the separation, the al-
gorithm is robust against permutation errors if the num-
ber of the misaligned frequency bins is not too large, i.e.,
old permutation errors will not easily bring new errors
and propagate to lower subbands.
The advantages of this subband-based approach are:

first, the separated data in each subband can be used as
a kind of heuristic information by IVA, which makes the
unseparated data converge towards the separated part,
and this is useful for solving the permutation problem.
Second, since subbands with stronger correlations can
be handled by IVA easier, the separation is performed
from high frequency to low frequency, which is
according to the difficulty increasing order. Plenty of
heuristic information will simplify the separation in low-
frequency subbands. Third, only a few unseparated fre-
quency bins will participate in the IVA iteration, so,
subbands overlapping will not increase the complexity
too much. As the conclusion to this section, the pseudo
code of the complete subband IVA algorithm is given as
Algorithm 1. In Algorithm 1, a subband is converged if
all of its frequency bins are converged, and the conver-
gence criteria for a frequency bin is measured by the
average cosine of the corresponding rows of the
demixing matrices in two consecutive iterations W[f] and

W f½ �
0 , which can be compared according to (16), where tr

(⋅) calculates the trace of a matrix, abs(⋅) is entry to
entry absolute value of a matrix.

j1−tr abs W f½ � W f½ �
0

� �H
� �	 


=N j≤ε ð16Þ

In our experiments, the maximum iteration times was
set to 500, and the convergence threshold ε was set to
1 × 10− 10.

4. Subspace nonlinearity
4.1. IVA nonlinearity
The usage of the multivariate nonlinearities is the key
reason why IVA algorithms can avoid the permutation
problem. As the nonlinear function is closely related to
the source prior PDF, different PDFs are designed. The
multivariate spherically symmetric Laplace (SSL) distri-
bution proposed in [14] is probably the most widely
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used source prior PDF in IVA. The formulation of SSL is
given in (17), this PDF is based on the observation that
speech and audio signals in frequency domain usually
exhibit super Gaussian distribution, and their real and
imaginary parts are uncorrelated [14]. In SSL, although
different dimensions are uncorrelated, they are not inde-
pendent, IVA uses this property to correct the permuta-
tion problem.

p yð Þ∝exp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑f y

f½ ��� ��2q� �
ð17Þ

In source separation problems, different sources may
have different distributions. In [20], a mixture of Gauss-
ians is used to model the source prior, as shown in (18),
where k is the index of Gaussians, πk is the mixture
weight of the kth Gaussian, σkf is the standard deviation
for Gaussian k frequency bin f. Since the GMM can ap-
proximate almost any distribution with appropriate pa-
rameters [30], this approach is more flexible than (17).
However, as the tradeoff, the GMM must be trained be-
fore or during the separation procedure.

p yð Þ∝∑kπk∏f
1ffiffiffiffiffiffi

2π
p

σkf
exp −

y f½ �� �2
2σ2kf

" #
ð18Þ

In [17], the multivariate Gaussian distribution in (19)
is used as the source prior for fMRI data, where Σ is the
correlation matrix of the estimated source. Unlike the
first two PDFs which are spherically symmetric, second-
order correlations are considered and modeled in this
approach. In [17], Σ is learned from the estimated source
data in every iteration round.

p yð Þ∝exp −
1
2
yTΣ−1y

� �
ð19Þ

Given a source prior PDF, the nonlinearity for natural
gradient IVA can be derived as (10), while the
nonlinearity for FIVA can be derived as: G(|yn|

2) = − logp
(yn), however, different nonlinear functions G can also
be used. In this section, we mainly consider the FIVA al-
gorithm, as it is easy to extend the complex-valued
FastICA to FIVA [15,16], and the convergence speed of
FIVA is high. Moreover, nonlinear functions G in FIVA
are real valued univariate functions, which are easy to
differentiate.

4.2. The proposed approach
After the nonlinear function G is chosen for the FIVA al-
gorithm, its first- and second-order derivatives can be de-
rived, and the algorithm can be updated according to (12)
and (13). For example, the nonlinear function G(⋅) = log(⋅)
is used in all our experiments in Sections 6 and 7, then,
G'(|yn|

2) = 1/|yn|
2, and G' '(|yn|

2) = − 1/(|yn|
2)2 can be

substituted in (12) for the original FIVA iteration.
In (12), the nonlinearity is calculated from the squared

norm of the estimated source data as: ynj j2 ¼ ∑F
f¼1 y f½ �

n
2
����

in every iteration step, where y f½ �
n

��� ��� is also called the sig-

nal envelope for frequency bin f. It is well known that
signal envelopes of the same source are highly correlated
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in neighboring frequency bins, and this feature is often
used to solve the permutation problem [8-10]. When the
subband technique proposed in the previous section is
used, stronger correlations are expected to be observed
because of the local dependency property of the data.
Figure 5 is an example of the estimated source correl-
ation matrices Σn in different subbands, which are calcu-
lated according to (14). We still use Σn to denote the

correlation matrix of source n, and yn ¼ y 1½ �
n ;…; y F½ �

n

h iT
for the corresponding data in the current subband with-
out any ambiguity since all nonlinearities are calculated
within subbands. From Figure 5, we can see that fre-
quency bins in subbands are strongly correlated with
each other.
This strong correlation can be seen more clearly af-

ter performing eigendecomposition on Σn, as an ex-
ample, the five largest eigenvalues of the correlation
matrices in Figure 5a,b are shown in Figure 5c. An ani-
mation for the complete iteration procedure of the pro-
posed subband subspace approach is also provided as
Additional file 1 to illustrate the data property in
subbands. Several conclusions can be made from Figure 5
and Additional file 1: First, we can see that the first
(a) IVA begin (b) IVA end

Figure 5 Subband correlation matrices and corresponding eigenvalue
low-frequency subbands, respectively, subband size is 100. The first and the
when IVA begins and ends, correlation matrices are reversed upside down
eigenvalues of the correlation matrices.
eigenvalue is much larger than the other eigenvalues.
This phenomenon is due to the strong dependency of
the T-F data, it implies that data in a subband are almost
distributed in a one-dimensional subspace, which is
spanned by the dominant eigenvector. Second, from
high-frequency subband to low-frequency subband, the
T-F data become sparser, and the dominant eigenvalue
become smaller; however, the large eigengap between
the first and the second eigenvalues still can be ob-
served. Third, only small changes can be observed be-
tween the eigenvalues before and after IVA, since only a
small part of the correlation matrix is updated because
of subband overlapping. After IVA, the dominant eigen-
value in high-frequency subbands will increase a little, as
the frequency bin correlation is enhanced, while in low-
frequency subbands, the dominant eigenvalue will de-
crease a little, as the separated data become sparser.
Since data samples are mainly distributed in a one-

dimensional subspace, it is better to incorporate this
property in the nonlinearity calculation, and this yields
the proposed method: instead of calculating the
nonlinearity in the original space, we calculate the
nonlinearity in the scaled dominant subspace of the in-
put data. Supposing λn1 and vn1 are the dominant
(c) five largest eigenvalues

s. The first, second, and third rows are examples for high, middle, and
second columns are correlation matrices for one estimated source
for visualization. The third column visualizes the five largest
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eigenvalue and the corresponding eigenvector of Σn,
then data are first projected and scaled into the domin-
ant subspace as (20), and the updates are performed as
(21). The projected data are also likely super Gaussian dis-
tributed in the subspace, many samples are projected
around zero, so the scaling parameter α is introduced in
(20) to stretch the data. In our experiments, subspaces
spanned by more eigenvectors were also tried, and we
found that performance improvement was not guaranteed
when more eigenvectors were used, so only the dominant
eigenvalue and eigenvector are used in the proposed ap-
proach to keep computational cost low. In addition, differ-
ent values of α from 1 to very large scales were also tested,
and we found that the separation performance was not
sensitive to this parameter, so we fix α ¼ ffiffiffiffiffiffiffi

λn1
p

.

q ¼ αvTn1 y 1½ �
n ;…;j jy F½ �

n

�� ��h iT
ð20Þ

w f½ �
n ←E G

0
q2
� �þ y f½ �

n

�� ��2G00
q2
� �h i

w f½ �
n −E y f½ �

n

� ��
G

0
q2
� �

x f½ �
h i

ð21Þ

When the proposed nonlinearity is compared with the
nonlinearities which are derived from (17)-(19), we can
find that the proposed nonlinearity is based on the
method in (17), as they can share the same nonlinear
function G; however, the proposed nonlinearity is calcu-
lated in the dominant subspace. This can be explained
as a kind of denoising operation like principal compo-
nent analysis [27]: since data in trivial component direc-
tions usually result from noise or inaccuracy, discarding
these parts should improve data purity. Because different
sources have different dominant subspaces, the proposed
nonlinearities for different sources are also different, this
property is the same as equations (18) and (19). At last,
after each iteration round, the dominant eigenvectors
Figure 6 Correlation matrix construction.
should be updated, as the estimated source data are
refreshed, this is the same as the situation in (19).

5. Computational complexity analysis
Some improvements can be made to reduce the compu-
tational complexity of the proposed methods. In order
to calculate the subspace nonlinearity, the correlation
matrix Σn for each source must be calculated first, esti-
mating large correlation matrices in every iteration step
is computationally expensive. However, data in a
subband are partially converged (except the first
subband), the correlation between two converged fre-
quency bins will not change any more. This means that
only those entries corresponding to the unseparated fre-
quency bins in the correlation matrices need to be
updated. As the algorithm goes on, more and more fre-
quency bins will converge, so, fewer and fewer updates
are required. When the algorithm moves from one
subband to the next, the subcorrelation matrix of the
overlapped part can directly be copied to the corre-
sponding position of the new correlation matrix. In
addition, only half of the entries need to be updated
since correlation matrices are symmetric. The preceding
procedures for correlation matrix calculation are
depicted in Figure 6.
After the correlation matrix is constructed, performing

full eigendecomposition is unnecessary since only the
dominant eigenvalue and the corresponding eigenvector
are needed in subspace nonlinearity calculation. Instead,
the “power method” [31] can be used for this purpose,
whose main operation is matrix-vector multiplication,
with the time complexity of O(F2). In one subband, the
order of correlation matrices F is not large, so this oper-
ation is efficient. Because of the symmetric and positive
semidefinite property, the dominant eigenvalue and
eigenvector of Σn are guaranteed to be found, moreover,
the convergence speed of the power method is propor-
tional to the gap between the dominant and the second
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eigenvalue [31], this gap typically is very large, as can be
seen for example in Figure 5c, which makes the algo-
rithm converge very fast.
As the number of sources, signal length, or FFT block

size increase, more data are processed by the separation
algorithm; therefore, the spatial complexity becomes a
problem. Here, the spatial complexity means the amount
of main memory space consumed by the algorithm, for
FDBSS problems, the memory is mainly taken up by the
observed and the estimated T-F data. Sometimes, it is
suitable to store the unused T-F data into disk to de-
crease the spatial complexity, and load them into mem-
ory when they are requested by the separation
algorithm. At the first glance, the traditional ICA plus
permutation correction approach has the lowest spatial
complexity, since only the amount of data for one fre-
quency bin is needed at a time in ICA. However, the
permutation problem still exists, and some permutation
algorithms need to load all the separated data into mem-
ory to correct the permutation, so, the total spatial com-
plexity is still high. For IVA algorithms like [14,15], all
sensor data should be loaded since the inter-frequency
bin information is required in the separation procedure.
Although the clique-based approaches, like [24,25,29],
calculate nonlinearities within cliques, the updating pro-
cedures are still performed in the full frequency band, so
the spatial complexity remains the same. In the pro-
posed subband and subspace approach, all calculations
are performed in subbands, only the amount of data for
one subband needs to be loaded into memory, so the
spatial complexity is reduced.

6. Experiments
All experiments were carried out on a software suite for
BSS research and application purpose (see Figure 7).
This platform is developed in Java, some frequently used
(a) GUI screenshot

Figure 7 The BSS platform.
source separation algorithms and permutation algo-
rithms have already been implemented in the system,
and modules for virtual mixing environment generation
and performance evaluation are also provided. Moreover,
well-designed interfaces enable new ICA, IVA, permuta-
tion algorithms, and also other new features to be con-
veniently integrated in the platform. The source code is
available for public, please refer [26] for more information.
Different algorithms were compared in the following ex-

periments, including the complex-valued FastICA algo-
rithm [6] (ICA), natural gradient-based IVA [14] (IVA), fast
fixed-point IVA [15] (FIVA), IVA with the chain clique ap-
proach [24] (IVA-C), with 100 clique size and 1/2 overlap-
ping; the proposed subband approach (FIVA-S), with 100
subband size and 7/8 overlapping; the proposed subband
with the subspace nonlinearity approach (FIVA-SS). Separ-
ation results were also postprocessed by the permutation
algorithm proposed in [10] (with the -P suffix) for com-
parison. Separation performance was evaluated in terms of
signal-to-interference ratio (SIR) improvement [32].

6.1. Instantaneous mixture
The first experiment tests the permutation overcoming
ability of IVA algorithms, for simplicity, instantaneous
mixtures are performed so that we can focus our atten-
tion on the permutation problem. The dataset from [28]
was used, which includes two male and two female
speeches for 7 s, the source sampling rate is 8000 Hz.
In this experiment, 2 × 2 mixtures were performed, all
C2

4 ¼ 6 different combinations of 4 sources were mixed by
25 randomly generated mixing matrices, i.e., 150 groups
of mixed signals were tested for each algorithm. The
STFT frame size was set to 512, with 3/4 overlapping,
and the FFT block size was set to 1024. The mean value
and the standard deviation of SIR improvements are
shown in Figure 8. In this experiment, the nonlinearity
(b) sound capture device



Figure 8 Performance of instantaneous mixture.

Figure 9 Virtual room configuration.
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derived from the Gaussian distribution in (19) was also
tested, which utilizes the second-order statistics between
frequency bins; however, the algorithm failed to separate
the speech sources. It means that although this non-
linearity works well in the joint BSS problems for fMRI
data in [17], only second-order correlation may still not
adequate to separate mixed speeches by IVA.
Several conclusions can be deduced from this experi-

ment. First, performances of the natural gradient IVA
(IVA) and the fast fixed-point IVA (FIVA) are much
higher than the ICA without permutation correction
(ICA); this means that IVA algorithms can dramatically
alleviate the permutation ambiguity. However, the per-
mutation problem is still not perfectly solved by IVA, as
their performances can be further improved after
permutation correction (IVA-P and FIVA-P). Second,
large standard deviations of IVA algorithms (IVA, FIVA,
IVA-C) mean that they are not stable enough, their
depermutation ability are highly related to the input data
and the mixing environment. Third, even postprocessed
by the permutation algorithm, performances of the full
frequency band IVA (IVA-P, FIVA-P) are still not as
good as ICA with permutation correction (ICA-P), a
similar result was also observed in [16]. A possible ex-
planation to this phenomenon is that uncorrelated fre-
quency bins in the full frequency band will degrade the
IVA performance. When subband techniques are used
(IVA-C-P, FIVA-S-P), separation performances become
comparable with the traditional ICA plus permutation
correction approach, as inter-frequency bin dependen-
cies become stronger in subbands or cliques. Fourth,
when the proposed subband approach is used alone
(FIVA-S), the average performance is already higher than
other compared IVA algorithms (IVA, FIVA, IVA-C).
When the subspace nonlinearity is further used (FIVA-SS),
both the separation performance and the stability are im-
proved to a comparable level with the ICA-P approach;
however, no permutation algorithm is followed. When
postprocessed by the permutation algorithm (FIVA-SS-P),
only a tiny performance improvement was observed, the
marginal gain in performance achieved by FIVA-SS-P rela-
tive to FIVA-SS indicates that the additional complexity of
a postprocessing source alignment algorithm is not re-
quired for FIVA-SS.

6.2. Convolutive mixture
In this experiment, a virtual room was established simi-
lar to [33], the mixing environment configurations are
shown in Figure 9, and the mixing filters from each
source to each sensor were generated by the image



Table 1 Performance in convolutive mixture

Algorithm Type of mixtures (source and sensor combinations)

2 × 2 mixture
(a, d)

3 × 3 mixture
(a, b, d)

4 × 4 mixture
(a, b, c, d)

ICA-P 19.66 20.06 22.59

IVA 4.39 5.13 10.01

FIVA 0.10 10.91 8.63

IVA-C 4.98 6.04 5.81

FIVA-SS 19.22 18.77 21.18
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method [34,35]. The dataset in [28] was also used in this
experiment, the STFT frame size was set to 1024, with
7/8 overlapping, and the FFT block size was set to 2048
for all algorithms.
SIR improvements of this experiment are shown in

Table 1. Since long STFT size and FFT size are required
in long reverberation environment, the difficulty of the
permutation problem is also increased. The proposed
FIVA-SS approach is only a little inferior to the trad-
itional ICA-P approach; however, FIVA-SS outperforms
other IVA algorithms considered in this experiment. The
proposed approach was also tested on real-world audio
signals that were recorded by the BSS platform and the
sound capture device in Figure 7, some separation exam-
ples can be found at [26].

7. IVA application: high-speed train noise
component separation
High-speed train noise level is an important factor with
respect to passenger comfort and life quality of residents
along the railway. Determining how to attenuate the
noise level is an important research direction that train
designers care about [36,37]. Studies show that train
noise is a kind of mixed signal which is made up of train
body vibration, rolling noise, aerodynamic noise, device
noise, etc. [37]. Separating individual noise components
(a) speech signal from [32]

Figure 10 Spectrogram examples of speech and noise signal. In this fi
from the same speech signal.
from the overall observations will provide some guide to
train noise reduction design. Since the noise component
is of interest, here we use “noise signal” or “noise com-
ponent” to distinguish it from the common use of
“noise” for undesired interference.
Since BSS and ICA have many successful applications

in speech and audio separation tasks, a natural choice is
to use these techniques to perform train noise compo-
nent separation; however, noise signals from mechanical
vibration are very different from speech. Figure 10 shows
two spectrogram examples of these signals, compared
with the speech spectrogram, we can see from Figure 10
that noise signal T-F data are more stationary but not as
sparse as speech, so, non-Gaussianity in each frequency
bin is not strong. All these characteristics make individ-
ual noise components more difficult to be separated by
ICA [38]. Moreover, neighboring frequency bins in noise
spectrogram are weakly correlated, which increases the
difficulty of the permutation problem.
Since IVA utilizes inter-frequency dependencies in the

separation and can avoid the permutation problem, we ex-
pect that IVA has better performance in noise component
separation tasks than the traditional ICA-P approach.

7.1. Simulation experiment
The SPIB noise dataset [39] was used in the simulation,
including (1) destroyer engine room noise, (2) factory
noise, (3) tank noise, (4) military vehicle noise. The first
8 s of signals were used, the sampling rate was 19.98
kHz. Mixing filters were randomly generated by concat-
enating different all-pass filters. The STFT frame size
was set to 512, with 3/4 overlapping, and the FFT block
size was set to 1024. Experimental results are given in
Table 2.
In this simulation experiment, we observed that when

the ICA-P approach was used, ICA on many frequency
bins failed to converge; however, when IVA was used,
(b) destroyer engine noise from [39]

gure, brighter color means larger magnitude. Figures 10a and 2a are



Table 2 SIR improvement of noise component separation

Dataset Algorithm Mixing filter length (number of samples)

1 256 512

(1), (2) ICA-P 8.33 9.69 9.10

FIVA 16.70 14.32 9.50

FIVA-SS 18.16 14.53 14.00

(2), (3) ICA-P 12.01 8.54 8.71

FIVA 13.62 8.10 11.58

IVA-SS 18.68 11.58 16.09

(4), (3) ICA-P 7.69 8.27 2.44

FIVA 9.82 7.25 6.52

FIVA-SS 14.39 10.71 7.74
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better convergence ability was observed. This suggests
that for noise signals, inter-frequency bin information
can improve the separation. From Table 2, we can see
that the separation performances of all algorithms in this
experiment are much lower than the performances in
the previous section, this is due to the stationary and
strong Gaussianity of noise signals make it difficult to
separate these components. However, compared with
the traditional ICA-P approach, the performances of the
IVA algorithms are greatly improved, so IVA is a better
choice for noise component separation tasks.

7.2. Train noise component separation
In this application, train noise signals were collected by four
sound pressure sensors a-d in Figure 11, the corresponding
train speed was 380 km/h, the sampling rate was 65,536
Hz. The low-frequency part of the signals is of more inter-
est to train designers, so data are low pass filtered and
down sampled to 1024 Hz before separation to reduce the
data size.
Train noise is highly related to mechanical vibration, and

different physical devices have different intrinsic frequen-
cies. Although the original train noise signal exhibits greatly
uncertainty and randomness, just like “noise”, the
(a) sensor example

Figure 11 The testing environment.
underlying intrinsic frequencies can be revealed by calculat-
ing the signal’s autocorrelation sequence [36,40]. Figure 12
shows a sensor signal’s autocorrelation and the correspond-
ing spectrum, we can see that two components are mixed
in the observed data, component 1 is related to the train
body vibration, and component 2 is related to the nearby
device. Signals collected by other sensors in Figure 11b have
similar characteristics like Figure 12, while their ratios are
different.
After the proposed FIVA-SS approach was used, two

of the total four output signals’ autocorrelations and
spectrums are given in Figure 13. Unlike Figure 12, two
dominant frequencies are individually shown by two sep-
arated signals, so we can infer that train noise compo-
nents were separated in this experiment.
8. Conclusion
With the help of the multivariate nonlinear mapping,
IVA is able to solve the permutation problem in the
source separation procedure, so there is no need for an
extra permutation correction algorithm as the
postprocessing step. In this article, the subband and the
subspace nonlinearity approaches are proposed as two
improvements for IVA. Because of the local dependency
property of the T-F data, performing IVA in subbands
will gain more inter-frequency dependency than in the
full frequency band, and this is useful for overcoming
the permutation ambiguity. In each subband, highly cor-
related T-F data are likely distributed in the one-
dimensional subspace of the original data space, so, IVA
nonlinearity is calculated in the dominant subspace to
meet the actual data distribution and for the sake of
denoising. A platform was developed in Java for FDBSS
research and real-world application purpose, and all our
experiments were carried out on this platform. Experi-
mental results show that the separation performance
and the algorithm stability are greatly improved by the
(b) sensor placement



(a) autocorrelation sequence (b) corresponding spectrum

Figure 12 Sensor d’s autocorrelation.

(a) autocorrelation sequence (b) corresponding spectrum

Figure 13 Two separated components’ autocorrelation. Two rows in this figure stand for two estimated components.
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proposed methods. Lastly, as an example of real-world
application, the FIVA algorithm with the proposed up-
dates was used to separate vibration components from
high-speed train noise data.

Additional file

Additional file 1: The animation for the subband subspace IVA
iteration procedure in Section 4.2. Description: This animation
visualizes the variation of the subband correlation matrix and its five
largest eigenvalues as the algorithm proceeds, the experimental
configuration is the same as Section 6.1.
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