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Abstract

It is now well understood that by exploiting the available additional spatial dimensions, multiple-input
multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output
systems without increasing the overall transmit power or requiring additional bandwidth. However, these large
capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently,
when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity
needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the
case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data
detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics
not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the
circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits
inter-block channel variations and apply Kalman tracking when MIMO–OFDM communication is performed.
Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by
information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to
understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that
the Kalman recursion procedure can be simplified by the optimal minimummean square error training design. Using
the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.

Keywords: MIMO-OFDM, Cramér-Rao lower bound, Optimal training design, Channel estimation, Kalman filtering,
Capacity bounds

1 Introduction
In the presence of a rich scattering environment, multiple-
input multiple-output (MIMO) systems enable a linear
increase in capacity with no increase in bandwidth or
transmit power compared to single-input single-output
(SISO) systems. However, the seminal work of [1] is based
on the assumption that the channel is perfectly known
to the receiver. In practical systems, the estimated chan-
nel using training sequences can be imperfect. As a result,
there is potentially a mutual information loss between the
input and the output of the channel. Given a power bud-
get and a desired data rate, the time and power spent on
training versus information symbols have to be judiciously
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selected since there is an interesting interplay involving
information throughput and the quality of the channel
estimates. If a large fraction of the time and/or power
is spent on training, excellent channel estimates can be
obtained at the expense of poor information through-
put. Conversely, expending too little time and/or power
on training results in poor channel estimates that lead to
error-prone information symbol transmission. Receivers
that rely on channel estimates to perform information
symbol decoding are termed as “mismatched” receivers
[2-5]. In this article, we study this scenario involving
a transmitter with no channel state information (CSI)
communicating with a receiver that relies on imper-
fect channel estimates. A different problem which deals
with transmit and receive precoder design under the
assumption that CSI is available at the transmitter has
been studied extensively in the published literature e.g.,
see [6-8].
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The problem of channel estimation has been studied in
numerous contexts. Here, we list a few relevant studies.
For an exhaustive survey of the area of channel estima-
tion using known pilot sequences, see [9]. One of the
earliest works in formulating training designs to obtain
channel estimates for orthogonal frequency division mul-
tiplexing (OFDM) systems was [10]. In [11], optimal train-
ing designs have been designed for single-carrier and
OFDM systems by maximizing a tight lower bound on the
ergodic training-based independent and identically dis-
tributed (i.i.d.) capacity. Optimal pilot symbol design and
their placement in a packet were addressed for both SISO
and MIMO systems in [12] by minimizing the Bayesian
Cramer-Rao bound (CRB) of a semi-blind channel esti-
mator. In [13], a general affine-precoding framework [14]
was considered and it was shown that decoupling channel
estimation from symbol detection and optimizing a least-
squares channel estimator naturally leads to an OFDM
system with information and training symbols on disjoint
subcarriers. Considering the same framework, Ohno and
Giannakis [15] provide a link between optimal training
designs andmaximizing the channel capacity lower bound
similar to [11]. This work was extended in [16] to include
a MIMO communications setup. Furthermore, by con-
sidering block-processing of transmitted symbols with a
cyclic-prefix or zero-padding, optimal training designs are
provided that maximize the channel capacity lower bound
when a linear minimum mean square error (LMMSE)
estimator is employed.
The impact of receiver estimation error from an infor-

mation theoretic viewpoint has also extensively been
studied. One of the earliest studies was conducted in [4]
where the relationship between lower and upper bounds
on the mutual information between transmitted and esti-
mated Gaussian symbols is derived by modeling a time-
varying frequency-selective channel as a random compo-
nent with a known mean and a covariance that accounts
for the channel estimation error. Specifically, it was shown
that signal-to-noise ratio in the mutual information lower
bound is lowered as a result of imperfect channel knowl-
edge. In [17], the achievable data rate of a flat-fading
interleaved MIMO channel is related to the LMMSE
covariance matrix. In [5], the transmission of Gaussian
symbols through a flat-fading channel was considered and
it was demonstrated that when the Gaussianity assump-
tion on the additive noise is rendered invalid due to
channel estimation errors, scaled nearest neighbor detec-
tion is suboptimal. In [18], a lower bound on the capacity
of a time-multiplexed training scheme in the presence of
a flat-fading channel was studied and related to the vari-
ance of an LMMSE channel estimator. In [19], two pilot
arrangement schemes were considered and the impact of
the receiver estimation error was analyzed when CSI is
available only at the receiver and when it is also fed back to

the transmitter. In both cases, maximum likelihood chan-
nel estimation was considered. The relationship between
the symbol Bayesian CRB and the mutual information
between estimated and transmitted symbols was shown
in [20]. In this study, two strategies were considered. One,
when the receiver obtains joint Bayesian channel and
symbol estimates and two, when the receiver computes
channel estimates followed by their utilization in obtain-
ing symbol estimates. The model presented in [18] was
generalized in [21] by considering a superimposed train-
ing scheme of which time multiplexed training can be
termed as a special case. Based on the mutual information
bounds derived, a comparison between the superimposed
training and the conventional time multiplexed training
is performed by optimizing over training design, number
of transmit antennas, and a training/information symbol
power budget. While Hassibi and Hochwald [18] pro-
vide the optimal noise covariance matrix that maximizes a
tight lower bound on the mutual information between the
input and the output when both the transmitter and the
receiver have imperfect CSI, Ding and Blostein [22] pro-
vide the optimal signal covariance matrix and show that
the uniform power allocation scheme is suboptimal.
Our most important contribution in this article is

the result provided in Theorem 1. Although this result
is similar to that provided in ([23], Lemma 1), the
approach that we have taken, i.e., the application of
the theory of complex-valued differentials to compute
the Bayesian Fisher Information Matrix (FIM), is novel.
Second, although the decoupling of channel and sym-
bol estimation has been noted based on the structure of
the least-squares channel estimator for SISO systems [13]
as well as MIMO–OFDM systems [24], we arrive at this
conclusion by maximizing the Bayesian FIM of a general
affine-precoded MIMO system. Moreover, we extend the
analysis conducted regarding Kalman channel tracking of
SISO–OFDM systems in [25] to MIMO–OFDM systems.
In the process, we extend the discussion in [18,21] by
considering a “slowly” time-varying frequency-selective
channel. In other words, while both [18,21] consider
a block-invariant frequency-flat channel, we consider a
frequency-selective channel that is correlated over succes-
sive symbol blocks.
The system model considered is described in Section 2.

Based on this system model, we derive the Bayesian
FIM of a general MIMO communications system that
employs affine precoding at the transmitter in Section 3.
We then show that in order to decouple channel esti-
mation from data detection, an orthogonality constraint
has to be met between the training and linear precoder
matrices. A solution to the orthogonality constraint is
the MIMO–OFDM system with frequency domain mul-
tiplexing (FDM) training symbols. We consider a MIMO
channel that undergoes block-wise variations according
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to a first-order autoregressive (AR) model. Moreover,
in order to improve the information throughput while
understanding the impact of imperfect channel estimates,
we formulate a scheme where during the training phase,
the OFDM symbol contains training and information
symbols, whereas in the data transmission phase, only
information symbols are transmitted. Consequently, we
consider a scheme wherein during the training phase,
channel tracking is performed by a Kalman filter followed
by the estimation of information symbols during the data
phase based on channel state prediction in Section 4.
Using this setup, we derive the capacity upper and lower
bounds in Section 5 based on a training scheme that has
been derived in an MMSE minimizing sense. We then
provide simulation examples in Section 6 to support the
theoretical results.

2 Systemmodel
In our analysis, we consider a MIMO communications
system consisting of K transmit antennas that trans-
mit N training and information symbols over a time-
varying frequency-selective block fading channel. We
design super-imposed training symbols optimally such
that the channel estimates from Nt consecutive blocks
of training symbols are utilized in the data detection of
the following Nd information symbol blocks. We assume
that the receiver also has K receive antennas without loss
of generality. The maximum order of the discrete-time
complex baseband wireless channels, L, is assumed to be
known.

2.1 Training phase
In the training phase, training symbols and information
symbols are affinely-precoded [14] and transmitted over
K antennas. A matrix formulation of this system for an
arbitrary time index, n, is as follows. Assuming that the
information symbol vector at each antenna is of sizeM, we
stack the symbols transmitted across K transmit antennas
as shown below

x̃n � vec ([ x̃n,1 x̃n,2 . . . x̃n,K ] ), (1)

where the nth block of M symbols from kth transmit
antenna is represented as

x̃n,k �[ x̃n,k(0) x̃n,k(1) . . . x̃n,k(M − 1)]T . (2)

The affine-precoder output vector is similarly arranged as

xn � vec ([ xn,1 xn,2 . . . xn,K ] ), (3a)
xn,k � [ xn,k(0) xn,k(1) . . . xn,k(P − 1)]T . (3b)

Denoting the precoder matrix of size KP × KM as Q and
the additive pilot-symbol vector of size KP×1 as t, we can

now write the equation for the transmitted symbol vector
during the training mode as follows:

xn = t + Q x̃n, (4)

where t � vec ([ t1 t2 . . . tK ] ). Furthermore,
the matrix Q is such that the data stream transmit-
ted from an antenna is precoded independently of the
data-streams from the other antennas. In other words,
Q has a block diagonal structure and hence Q �
diag ([Q1 Q2 . . . QK ] ). Despite this restriction on the
structure of Q, it is still general enough to encapsulate
not only a MIMO system employing K antennas but also
a multi-user system, e.g., KU users utilizing K antennas
in total and communicating with a base-station equipped
with K antennas. Also, restricting the structure ofQ to be
block diagonal simplifies an orthogonality condition (cf.,
Theorem 2) that helps in the design of the linear precoder
and the training vector.
After pre-multiplying the above vector by IK⊗CT where

CT �[ [ 0L×(P−L) IL]T IP ]T with P̄ = P + L, the KP̄ × 1
vector (P̄ = P + L) undergoes a digital-to-analog conver-
sion followed by pulse-shaping to yield a continuous-time
signal. Assuming perfect timing and carrier synchroniza-
tion at the receiver, the signal is sampled to obtain the
received symbol vector. Subsequently, the cyclic-prefix is
removed by a pre-multiplication operation with IK ⊗ CR
(CR �[ 0P×L IP ]T) and an ISI-free received vector of size
KP × 1 is available for processing:

yn = Hn t + HnQ x̃n + zn, (5)

where the channel matrixHn is

Hn �

⎡⎢⎢⎢⎢⎣
H(n)

1,1 H(n)
1,2 . . . H(n)

1,K
H(n)

2,1 H(n)
2,2 . . . H(n)

2,K
...

...
. . .

...
H(n)

K ,1 H(n)
K ,2 . . . H(n)

K ,K

⎤⎥⎥⎥⎥⎦ . (6)

Each matrix in the set, {H(n)
i,j } for 1 ≤ i ≤ K , 1 ≤ j ≤ K is

circulant with the first column, [ h(n)
i,j [ 0] . . . h(n)

i,j [ L] 0 ]T

and first row, [ h(n)
i,j [ 0] 0 h(n)

i,j [ L] . . . h(n)
i,j [ 1] ]. We now

define a channel vector hn such that

hn � vec ([hn,1 hn,2 . . . hn,K ] ), (7a)
hn,i � vec ([h(n)

i,1 h(n)
i,2 . . . h(n)

i,K ] ), (7b)

h(n)

i,k � [ h(n)

i,k [ 0] . . . h(n)

i,k [ L] ]
T . (7c)

By exploiting the commutativity property of discrete con-
volution, (5) can now be written in a different form in
terms of the MIMO channel vector, hn and the pilot
symbol matrix, T �[T1 T2 . . . TK ] as,

yn = (IK ⊗ T)hn + HnQ x̃n + zn, (8)
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where the circulant matrices, {Tk} are constructed such
that [ tk[ 0] . . . tk[P − 1] ]T is the first column and
[ tk[ 0] tk[P−L] . . . tk[P−1] ] is the first row. In (5) and (8),
we use the subscript n inHn and hn to indicate the time-
dependence of the random channel. The system model
described above needs to satisfy the following conditions.

(C1) The KP × KM dimensional linear-precoder matrix,
Q is of full column-rank and strictly-tall, i.e., P > M.
Also, V � P − M.

(C2) The P × K(L + 1) dimensional training matrix, T is a
tall matrix, i.e., P ≥ K(L + 1).

(C3) The matrix, T is of full column-rank, i.e.,
rank(T) = K(L + 1).

Remark: Condition (C1) is enforced as a simple way of
introducing redundancy in the precoding process [7,26].
Condition (C2) ensures that enough dimensions are avail-
able for the identification of the unknown channel coef-
ficients in a linear least-squares sense. As we shall show
in Theorem 2, the extra dimensions that are available as
a result of employing a full-column rank, strictly-tall pre-
coding matrix are useful in designing the training vector.
Condition (C2) also suggests that given the knowledge
of the channel order and for a fixed number of transmit
antennas, the data-block size has to be at least equal to the
product of the number of channel taps and the number
of transmit antennas. Condition (C3) which complements
(C2) implies that each element of the set, {Tk} is also of
full column-rank.

2.2 Data transmission phase
Due to the fact that no training symbols are available in the
data transmission phase, we can write the system model
as follows:

rn = Hn sn + zn, (9)

where sn = Q̄ s̃n and s̃n are obtained in a manner similar
to (1).
A few assumptions on the system model shown in (8)

and (9) are now in order.

(A1) The channel vector, hn is zero-mean, i.i.d complex
Gaussian with variance σ 2

h , i.e.,
hn ∼ CN (0, σ 2

h IK2(L+1)). Moreover, each channel
tap gain is assumed to be an independent AR
process. We only consider a first-order AR model (cf.
Appendix 1.1 for a brief discussion of the general AR
model) for each tap gain so that

hn = ahn−1 + un, (10)

where a ∈[ 0, 1] is the AR coefficient for the l th
channel tap gain and the excitation noise,
un ∼ CN (0, σ 2

u IK2(L+1)). In order to match the

correlation functions at lags 0 and 1 and thus make
the random process WSS for n ≥ 0, we select
σ 2
u = (1 − a2) σ 2

h .
(A2) The transmitted symbol vectors, x̃n and s̃n are i.i.d

complex Gaussian with variance σ 2
x and σ 2

s , i.e.,
x̃n ∼ CN (0, σ 2

x IKP) and s̃n ∼ CN (0, σ 2
s IKP)

respectively.
(A3) The additive noise vector, zn is zero-mean,

circularly-symmetric i.i.d complex Gaussian noise
with variance σ 2

z , i.e., zn ∼ CN (0, σ 2
z IKP).

Remark: Assumption (A1) indicates that the channel is
modeled as Rayleigh-fading random vector. This assump-
tion represents a standard model for a rich scattering
environment in the absence of line-of-sight. An expres-
sion for a in terms of the channel Doppler spread and
the transmission bandwidth was shown in [4]. However,
the first-order ARmodel possibly incurs considerable esti-
mation error and results in numerous erroneous symbol
decisions [27,28]. One reason formaking assumption (A2)
is to satisfy the regularity conditions related to the evalu-
ation of the Bayesian FIM described below. They require
that the joint distribution of p(yn, x̃n, hn) be absolutely
continuous with respect to xn,k(p). A data vector modeled
as Gaussian meets this criterion. For those transmit sym-
bol vectors modeled on other distributions, the Theorem
1 gives an approximation. Another reason for making this
assumption lies in the fact that a signal that is a zero-mean
uncorrelated complex Gaussian distributed maximizes
the lower bound (which is given with respect to a zero-
mean uncorrelated complex Gaussian noise vector) on the
mutual information between the input and the output for
of MIMO channels [18,29]. Moreover, for a block trans-
mission scheme such as an OFDM systemwith large num-
ber of subcarriers, the transmit symbol vector obtained by
linear-precoding the information-symbol vector with an
IDFT matrix can be claimed to be Gaussian by an appeal
to the central limit theorem ([30], Figure 4.21). Hence,
(A2) is not a particularly restrictive assumption.

3 Decoupled channel and symbol estimation
An observation of (8) reveals that the knowledge of the
MIMO channel vector is contained not only in the known
training symbols, but also in the unknown information
symbols. However, the joint estimation of the channel vec-
tor and the detection of the information symbol vector is a
non-linear problem, and its solution may not exist in cer-
tain cases [13]. On the other hand, a sub-optimal approach
is to decouple the channel estimation problem from the
data detection process. In order to do so, we may consider
the channel vector to be a deterministic unknown within
the classical approach to statistical estimation or as a ran-
dom vector by adopting the Bayesian viewpoint. In this
study, we consider the latter approach and derive the FIM
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of the channel vector based on the (8). That is, we derive
the Bayesian FIM concerning the estimation of the chan-
nel vector using KP×1 observations gathered from all the
receive antennas at an arbitrary time instant, n. We then
maximize the Bayesian FIM, which is equivalent to mini-
mizing the Bayesian Cramer-Rao lower bound and obtain
an orthogonality criterion. Finally, we formulate an affine
precoder scheme that meets this condition.

3.1 Strategy: Bayesian FIMmaximization
Theorem 1. Assuming that the likelihood function of

p (yn;hn) for the system model given in (8) satisfies the
regularity condition, the complex FIM for estimating the
MIMO channel is

I(hn) = σ−2
z (IK ⊗ THT) − σ−4

z σ 2
x �(t, Q)

+ σ 4
x �(Q) + σ−2

h IK2(L+1),
(11)

where,

�(t, Q) � Eh
{
(IK ⊗ T)HHnQGQHHH

n (IK ⊗ T)
}
,

(12a)

�(Q) � Eh

⎧⎨⎩
KM−1∑
j=0

(QH
j ⊗ hTnQT

j )(R
−1
yn|hn ⊗ R−T

yn|hn)

×
KM−1∑
j=0

(Q∗
j ⊗ Qjhn)

⎫⎬⎭ , (12b)

G �
(
IKM + σ−2

z σ 2
xQHHH

n HnQ
)−1

, (12c)

Qj � IK⊗[Qj,1 Qj,2 . . . Qj,K ] . (12d)

Proof. See Appendix 1.2.

Remark: Since we will be considering a non-decision-
aided setup where any information about the channel
coefficients that is contained in data symbols is discarded,
the term �(Q) represents potentially useful information
that is not utilized. Consequently, as it is independent of
t, the maximization of I(hn) in such a scenario is possi-
ble by working with �(t,Q) alone. The maximization of
I(hn) leads us to the orthogonality condition shown in
Theorem 2.

Theorem 2. If the affine precoder scheme, (t, Q) satis-
fies conditions, (C1) and (C2), then the following orthog-
onality condition is necessary and sufficient for a non
decision-aided training-only estimator to maximize the
Bayesian FIM, I(hn) obtained in (11):

TH
i Qj,m = 0 1 ≤ i, j ≤ K 0 ≤ m ≤ M − 1. (13)

Proof. See Appendix 1.3.

The expression for the Bayesian FIM that we have
obtained in Theorem 1 is analogous to the result provided
in ([23], Lemma 1). Moreover, as shown in Appendix 1.2,
we have not based this result on the block-diagonal struc-
ture ofQ. Hence, the result in Theorem 1 is a general one.
Also, the result that we derived in Theorem 2 was showed
previously in [13] for SISO systems and in [24] for MIMO
OFDM systems using minimum least-squares estimation
error variance arguments. In [16,23], the orthogonality
condition was derived within a Bayesian framework with
the former relying on an LMMSE channel estimator while
the latter uses a Bayesian FIM expression similar to this
study. However, while we focus on a block diagonal struc-
ture of the linear precoder, Vosoughi and Scaglione [23]
focus on a general linear precoder matrix.

3.2 OFDMwith FDM training: an orthogonal affine
precoder scheme

We see from ([13], Theorem 1) for the case of a SISO sys-
tem that the affine precoder scheme which uses linearly
precoded OFDM along with an FDM training sequence
that modulates a disjoint set of tones not used for data
transmission meets the orthogonality criterion. Similarly,
for MIMO systems, Theorem 3 establishes that although
the training symbols and information-bearing symbols
overlap in time domain, orthogonality between the sub-
carriers in frequency domain satisfies (13).

Theorem 3. The affine precoder scheme, (t, Q) that
satisfies the orthogonality condition given in (13) irrespec-
tive of the FIR channel provides a non-data-aided channel
estimator if it is selected from the class

Qk = WHP(Q)

[
�M×M
0V×M

]
, (14a)

tk = WHP(t)
[
t̃k
0

]
. (14b)

In the above equations, �M×M is any full-rank matrix and
P(t) is a permutation matrix that places the L + 1 possi-
ble non-zero entries of t̃k on non data-bearing subcarriers,
whereasWm,n = 1

P exp(j2πmn/P).

Proof. The proof is a straight-forward generalization
of ([13], Appendix I).

In the subsequent sections, we focus our analysis on
a MIMO-OFDM communication system. That is, we
assume x̃n,k̄ to be the result of a linear-precoding opera-
tion involving a general full-rank matrix, �M×M before it
is IDFT-modulated. Moreover, the same set of subcarri-
ers are used for transmitting training symbols across all
the antennas.
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3.2.1 Training phase
By substituting the result of Theorem 3 in (5), and consid-
ering the signal at an arbitrary receive antenna, k, we write
the following equation:

yn,k =
K∑

k̄=1

H(n)

k,k̄ tk̄ +
K∑

k̄=1

H(n)

k,k̄ Qk̄ x̃n,k̄ + zn,k

=
K∑

k̄=1

H(n)

k,k̄ W
HP(t)

[
t̃k̄
0

]

+
K∑

k̄=1

H(n)

k,k̄ W
HP(Q)

[
IM×M
0V×M

]
x̃n,k̄ + zn,k .(15)

By multiplying the above equation with P(t)T
0:V−1W , we

notice that the channel estimation is decoupled from data
detection so that the following expression is obtained

P(t)T
0:V−1W yn,k =

K∑
k̄=1

P(t)T
0:V−1 H̄

(n)

k,k̄ P
(t)
0:V−1 t̃k̄

+P(t)T
0:V−1W zn,k , (16)

where H̄(n)

k,k̄ � W H(n)

k,k̄ W
H is a diagonal matrix and

P(t)
0:V−1 is the result of disregarding the zero entries in

[ t̃Hk̄ 0H]H. Moreover, we have utilized the fact that
P(t)T
0:V−1 P

(Q)
0:M = 0 i.e., the submatrices, P(t)T

0:V−1 and P(Q)
0:M

are orthogonal to each other. We also recognize that the
following relationship holds due to the diagonal nature of
H̄(n)

k,k̄ :

P(t)T
0:V−1 H̄

(n)

k,k̄ P
(t)
0:V−1 t̃k̄ = √

P T̃k̄ P
(t)T
0:V−1W0:L h(n)

k,k̄

= T̃k̄ Ŵ0:L h(n)

k,k̄ , (17)

where T̃k̄ � diag (t̃k̄) and Ŵ0:L �
√
PP(t)T

0:V−1W0:L. As a
result, (16) can be written as

ỹ(t)
n,k = T̃ hn,k + z̃n,k , (18)

where ỹ(t)
n,k � Ŵ0:L yn,k and

T̃ �[ T̃1 Ŵ0:L T̃2 Ŵ0:L ... T̃K Ŵ0:L] . (19)

Also, it can be showed that TH
kTk = ŴH

0:L T̃∗
k T̃k Ŵ0:L.

With, ỹ(t)
n � vec ([ ỹ(t)

n,1 ỹ(t)
n,2 ... ỹ(t)

n,K ] ), we can write the
MIMO system model for the measured signal across all
receive antennas due to the pilot tones as follows:

ỹ(t)
n = (IK ⊗ T̃)hn + z̃n. (20)

It can be showed that enforcing conditions (C1), (C2),
and (C3) naturally result in two more standard conditions

regarding the structure of T̃ and thus satisfy the dimen-
sionality of (20).

(C4) The V × K(L + 1) dimensional training matrix, T̃ is
a tall matrix, i.e., V ≥ K(L + 1).

(C5) The matrix, T̃ is of full column-rank, i.e.,
rank(T̃) = K(L + 1).

By employing operations similar to those that helped
in obtaining (20), the equation for the observation vector
affected by the information symbols alone is as follows:

ỹ(dt)
n = H̃n x̃n + z̃n, (21)

where the KM × KM channel matrix, H̃n is as follows:

H̃n �

⎡⎢⎢⎢⎢⎣
H̃(n)

1,1 H̃(n)
1,2 . . . H̃(n)

1,K
H̃(n)

2,1 H̃(n)
2,2 . . . H̃(n)

2,K
...

...
. . .

...
H̃(n)

K ,1 H̃(n)
K ,2 . . . H̃(n)

K ,K

⎤⎥⎥⎥⎥⎦ . (22)

Each matrix in the set, {H̃(n)
i,j } for 1 ≤ i ≤ K , 1 ≤ j ≤

K is a diagonal matrix and is obtained by performing the
operation,

H̃(n)

i,k = P(Q)T
0:M−1 H̄

(n)

i,k P(Q)
0:M−1. (23)

3.2.2 Data transmission phase
Although the linear precoder matrix, Q̄ can be any full-
column rank matrix in general, we focus on a block diag-
onal structure. We consider each element in the set, {Q̄k}
to be a P × P IDFT matrix that modulates an informa-
tion symbol vector which has been linearly precoded by a
general full-rank matrix, �̄P×P .

r̃n = Hn s̃n + z̃n, (24)

where r̃n � W rn and the KP ×KP channel matrix,Hn is
defined as follows:

Hn �

⎡⎢⎢⎢⎢⎣
H̄(n)

1,1 H̄(n)
1,2 . . . H̄(n)

1,K
H̄(n)

2,1 H̄(n)
2,2 . . . H̄(n)

2,K
...

...
. . .

...
H̄(n)

K ,1 H̄(n)
K ,2 . . . H̄(n)

K ,K

⎤⎥⎥⎥⎥⎦ . (25)

Remark: By enforcing the orthogonality condition and
by choosing MIMO–OFDM with FDM training symbols
as the affine precoder scheme, we have broken down (8)
into (20) and (21). As a result, the impact of overlapping
data-bearing symbols on the channel estimator has been
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circumvented.Moreover, we carryover the linear precoder
from the training phase to the data transmission phase by
introducing a simple modification on the dimensions of
the IDFT matrix.
Before we study the MMSE characteristics during train-

ing and data transmission phases when a Kalman filter is
employed to track the time-varying channel vector, hn we
note that the following time and power budget constraints
are enforced over (20), (21), and (24),

N = Nt + Nd, (26a)
P N = (Pt + Pdt)Nt + Pd Nd, (26b)

where P is the total average transmit power that is split
into Pt , the average power allocated for training, Pdt , the
average power allocated for information symbols in the
training phase, and Pd, the average power allocated for
information symbols in the data transmission phase. In
addition, Pt is distributed equally among the transmit
antennas, i.e.,

Pt = ‖t‖2 =
K∑

k=1
‖tk‖2, (27)

where ‖tk‖2 = ∑V−1
v=0 |T̃k[ v] |2 = Pt/K , ∀ 1 ≤ k ≤ K .

4 Blockwise Kalman tracking
Due to the AR(1) random process model for time-

variations on the channel vector, in order to compute the
channel estimator in the MMSE sense, we have to utilize
the past and the current observations, {ỹ(t)

nN+k : k ∈
[ 0,Nt − 1] , n = 1, 2, . . .}. An MMSE channel estimator
can then be given as,

ĥnN+k = E {hnN+k | { ỹ(t)
nN+j : j ≤ k, j ∈[ 0, Nt − 1] },

{ỹ(t)
(n−m)N+j : j ∈[ 0, Nt − 1] , m = 1, 2, . . .}}.

(28)

However, a batch processing approach would necessitate
the use of large datasets. A natural choice is the sequen-
tial MMSE approach and is implemented by a Kalman
filter. A Kalman filter is well known for its computational
efficiency which results from the fact that only the most
recent estimate need to be stored in order to refine the
MMSE estimate of the unknown parameter of interest
based on the new observations. For the current problem at
hand, we compute the channel estimate during the train-
ing phase based on (20) and utilize the predicted chan-
nel vector in the data transmission phase. The Kalman
filter recursion algorithm for estimating the MIMO chan-
nel vector in the setup considered is summarized in
(29a)–(29e) [31].

Prediction:

ĥn|n−1 = aĥn−1|n−1, (29a)

Minimum Prediction MSEMatrix:

Mn|n−1 = a2Mn−1|n−1 + (1 − a2) σ 2
h IK2(L+1), (29b)

Kalman Gain Matrix:

Kn = Mn|n−1 (IK ⊗ T̃H)

× ( σ 2
z IKP + (IK ⊗ T̃)Mn|n−1 (IK ⊗ T̃H) )−1,

(29c)

Correction:

ĥn|n = ĥn|n−1 + Kn (ỹ(t)
n − (IK ⊗ T̃) ĥn|n−1), (29d)

MinimumMSEMatrix:

Mn|n = ( I − Kn (IK ⊗ T̃) )Mn|n−1. (29e)

4.1 Kalman filter recursion
It can be noticed that when the system converges to a
steady state, the MMSE of the channel estimator is not
stationary during each cycle ofN blocks. In the data trans-
mission phase, the MMSE associated with the channel
estimator’s predicted state increases monotonically from
the Ntth block to the (N − 1)th block. Thus, the maxi-
mum steady-state MMSE in the data transmission phase
occurs at the last information symbol block of each cycle.
On the other hand, since the channel estimator com-
puted based on the observations of the 0th block in nth
cycle refines the predicted channel state at the end of
the last information symbol block of (n − 1)th cycle, the
steady-state MMSE decreases monotonically from the 0th
training block to the (Nt − 1)th training block. Before
we derive the steady-state MMSE expressions for the two
cases described above, we derive the steady-state MMSE
when all the blocks are training symbols and make an
interesting observation. The steady-state MMSE when all
blocks are training symbols is given by the solution to the
Ricatti equation (based on (29e)),

M(∞) = ( I − K(∞) ( IK ⊗ T̃) )M(∞)
1 , (30)

where M(∞) � limn→∞ Mn|n, M(∞)
1 � limn→∞ Mn|n−1,

and K(∞) � limn→∞ Kn. Although several techniques
have been proposed in the published literature such as
eigenvector solutions [32], Schur vector approaches [33],
iterative solving for scalar polynomials [34], etc., to solve
the system of equations obtained in (30), we will show
that by utilizing the following lemma describing the opti-
mal design of the training symbols in the MMSE sense,
the above system of equations is greatly simplified for
MIMO-OFDM systems.
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Lemma 1. For the systemmodel shown in (20), themin-
imum error variance of the MMSE channel estimator is,

σ 2
�hn = K3(L + 1) σ 2

z σ 2
h

Kσ 2
z + σ 2

h Pt
. (31)

The optimal T̃, T̃(opt) that attains this error variance is,

T̃(opt) =[ (E1φ(V ))T ... (EKφ(V ))T ]T , (32)

where

[ Ek ]v, v = exp
[
j2πvfk
V

]
, (33a)

∀ 0 ≤ v ≤ V − 1, 1 ≤ k ≤ K

φ(V ) =
√

Pt
KV

[ exp(jφ0) exp(jφ1) ... exp(jφV−1)]T ,

(33b)
fk = k(V − L − 1), (33c)

{φv} ∈[−π , π ] . (34)

Proof. See Appendix 1.4.

Remark: By employing the training design described in
(32), T̃H T̃ in (D.7) is diagonal and the MMSE of (31)
is attained. The time-domain training sequences can be
obtained from (14b) in a straight-forwardmanner by using
the relation, t = (IK ⊗ WHP(t)

0:V−1) T̃. It can be noticed
that a simple way of making the term, T̃∗

k1 [ v, v] T̃k2 [ v, v]
in (D.13) equal to zero is to allow only (L+1) out ofV sub-
carriers dedicated for training symbols to be used at any
given antenna. These equispaced and equipowered train-
ing symbols occupy disjoint sets of subcarriers at each
transmit antenna. Clearly, such a scheme utilizes only
(L+1) out ofV subcarriers dedicated for training symbols
at any given antenna. On the other hand, a general training
scheme design described in (32) uses all non-data-bearing
subcarriers, i.e., V for channel estimation purposes.
Remark: In [16], disjoint sets of subcarriers were con-

sidered to reduce the MMSE channel estimation error.
Training designs similar to ours were shown in [24] by
minimizing the least-squares channel estimation error
and in [20] by minimizing the MSE of the LMMSE chan-
nel estimate. In [35], several classes of training schemes
are derived by minimizing the least-squares channel esti-
mation error. In this study, the disjoint allocation of sub-
carriers for training symbols from different antennas is
referred to as a FDM scheme and the phase-shift orthogo-
nal design as a code-division multiplexing in the frequency
domain scheme.
If we were to initialize the Kalman recursion by sub-

stituting the scaled identity covariance matrix of hn for

M−1|−1, the one-step prediction error matrix, Mn|n−1 is
always a scaled identity matrix. Consequently, the matrix
K̃n � Kn ( IK ⊗ T̃) is also a scaled identity matrix since
( IK ⊗ T̃HT̃) is designed to be a scaled identity matrix.
This is better understood by writing the alternative ver-
sion of the Kalman gain matrix using the matrix inversion
lemmaa:

Kn = σ−2
z Mn|n−1( IK ⊗ T̃H)

−σ−4
z Mn|n−1 ( IK ⊗ T̃HT̃)

×(M−1
n|n−1 + ( IK ⊗ T̃HT̃) )−1( IK ⊗ T̃H). (35)

As an extension of the above fact, due to assump-
tion, (A1) and the optimal training design described by
Lemma 1, M(∞) is also a scaled identity matrix. It can
be showed that an arbitrary diagonal element, m(∞) �
M(∞)[ l, l], 0 ≤ l ≤ K2(L + 1) − 1 is given as follows:

m(∞) = σ 2
z (a2 m(∞) + σ 2

u )

σ 2
z + Pt

K ( a2 m(∞) + σ 2
u )

= σ 2
h

1
2

(
1 + σ 2

h Pt
σ 2
z K

)
+
√

1
4

(
1 + σ 2

h Pt
σ 2
z K

)2
+ a2

1−a2
σ 2
h Pt
σ 2
z K

.

(36)

This steady-state Ricatti solution is the lower bound on
the MMSE for estimating any of the K2(L+ 1) channel fil-
ter taps, irrespective of the particular phase being consid-
ered. To compute the steady-state MMSE characteristics,
we let n → ∞, and define,

M(∞)
j � lim

n→∞MnN+j|nN+j, (37)

for j ∈[ 0, N − 1]. We can now review the closed-form
expressions for steady-state channel MMSEs in training
and data transmission phases based on [36].

Lemma 2. When the training vectors are designed
according to (32) and a Kalman filter is employed to per-
form channel tracking, the steady-state channel MMSEs
for the system model corresponding to (20), (21), and (24)
are given as follows:

m(∞)
N−1 = δ

(∞)
N−1[ l, l]+m(∞), (38a)

Training phase ( j ∈[ 0, Nt − 1] ) :

m(∞)
j = m(∞) + (1 − α) δ

(∞)
N−1[ l, l]

β (1 − αj) δ
(∞)
N−1[ l, l]+αj (1 − α)

,

(38b)
Data transmission phase ( j ∈[Nt , N − 1] ) :

m(∞)
j = m(∞)

N−1 − σ 2
h (1 − a2(N−j))

a2(N−j) , (38c)
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where m(∞)
j � M(∞)

j [ l, l] and δ
(∞)
N−1[ l, l] is computed as

follows:

δ
(∞)
N−1[ l, l] = −b∞ +

√
b2∞ + c∞, (39a)

b∞ �
(

αNt − a2(N−Nt)

αN−t − 1

)(
α − 1
2β

)

−
(
1 − a2(N−Nt)

2

)
(σ 2

h − m(∞)),

(39b)

c∞ � αNt

(
1 − a2(N−Nt)

αNt − 1

)(
α − 1

β

)
(σ 2

h − m(∞)),

(39c)

α � 1
a2

(
1 + ( σ 2

h − a2(σ 2
h − m(∞)))

Pt
K

)2
,

(39d)

β � Pt
K

(
1 + ( σ 2

h − a2(σ 2
h − m(∞)))

Pt
K

)
, (39e)

Proof. See proof of Lemma 1 in [36].

5 Capacity bounds with sequential MMSE channel
estimation

Similar to [18], we adopt the definition of capacity in
bits per channel use to be the maximum over the distri-
bution of the transmit signal of the mutual information
between the known training symbols and the observations
and the unknown transmitted signal. In other words, for
the system model shown in (20), (21), and (24), the chan-
nel capacity averaged over the random channel is defined
as follows:

C = 1
N

× M
P

Nt−1∑
n=0

E

[
max

px(.),E[||x̃n||2]=Pdt
I ( ỹ(dt)

n ; x̃n | ̂̃Hn )

]

+ 1
N

N−1∑
n=Nt

E

[
max

ps(.),E[||s̃n||2]=Pd
I ( r̃n; s̃n |Ĥn )

]
bits/channel use.

(40)

5.1 Upper bound on the channel capacity
To benchmark the maximum achievable capacity, we con-
sider the ideal scenario where the channel estimation is
perfect. We also utilize the Gaussianity assumption on the
distribution of the information symbol vectors, x̃n and s̃n
due to (A2) in the channel capacity expression. We now
have the following result:

Theorem 4. The upper bound on the channel capac-
ity for the system model shown in (20), (21), and (24) is

obtained when the information symbol vectors, x̃n and s̃n
are Gaussian distributed and is given by the expression:

Cu = Nt
N

× M
P

E

[
max

px(.),E[||x̃n||2]=Pdt
I ( ỹ(dt)

0 ; x̃0 |H̃0 )

]
+Nd

N
E

[
max

ps(.),E[||s̃n||2]=Pd
I ( r̃Nt ; s̃Nt |HNt )

]
bits/channel use

= Nt
N

× M
P

E

[
log det

(
IKM + Pdt

σ 2
z

H̃0 H̃
H
0

)]
+Nd

N
E

[
log det

(
IKP + Pd

σ 2
z
HNt H

H
Nt

)]
bits/channel use. (41)

Proof. See Appendix 1.5.

5.2 Lower bound on the channel capacity
From [4] and ([18], Theorem 1), we know that the lower
bound on the mutual information between the chan-
nel input and its output is obtained when the addi-
tive noise is Gaussian distributed. In other words, when
imperfect channel estimates are employed for estimat-
ing information symbols, a zero-mean uncorrelated com-
plex Gaussian noise vector minimizes the upper bound
over the distribution of the information symbol vector
of the mutual information between the transmitted and
observed information symbols. For the problem under
consideration, the following signal model can be written
by expressing the estimated channel matrix, as a sum of
the conditional mean, and the random error component,

ỹ(dt)
n = ̂̃Hn x̃n + ˇ̃Hn x̃n + z̃n

= ̂̃Hn x̃n + (IK ⊗ X̃n) ȟn + z̃n. (42a)

r̃n = Ĥn s̃n + Ȟn s̃n + z̃n

= Ĥn s̃n + (IK ⊗ S̃n) ȟn + z̃n. (42b)

In (42a), we made use of the following relationship,

P(Q)T
0:M−1 H̄

(n)

k,k̄ P
(Q)
0:M−1 x̃n,k̄ = √

P X̃n,k̄ P
(Q)T
0:M−1W0:L h(n)

k,k̄

= X̃n,k̄ W̌0:L h(n)

k,k̄ , (43)

where X̃n,k̄ � diag (x̃n,k̄), W̌0:L �
√
PP(Q)T

0:M−1W0:L and

X̃n �[ X̃n,1 W̌0:L X̃n,2 W̌0:L ... X̃n,K W̌0:L] . (44)

Similarly, in (42b), we made use of the following
relationship,

H̄(n)

k,k̄ s̃n,k̄ = √
P S̃n,k̄ W0:L h(n)

k,k̄ , (45)
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where S̃n,k̄ � diag (s̃n,k̄) and

S̃n �[
√
P S̃n,1W0:L

√
P S̃n,2W0:L ...

√
P S̃n,K W0:L] .

(46)

It should be observed that in (21) and (24), the chan-
nel is unknown whereas in (42a) and (42b), the channel
is known. Furthermore, the additive noise in the former
two equations is Gaussian and independent of the infor-
mation symbols whereas in the latter two, it is possibly
neither. This is due to the fact that each of the effective
additive noise vectors, z̃(dt)

n � (IK ⊗ X̃n) ȟn + z̃n and
z̃(d)
n � (IK ⊗ S̃n) ȟn + z̃n appear to be a sum of a Gaussian
vector and a vector whose elements are obtained by sum-
ming products of Gaussian random variables. As a result,
we will merely derive the lower bound by replacing the
effective noise vectors, with Gaussian noise vectors that
possess the same average powers. The expressions for the
average noise powers in each phase are as shown below.

5.2.1 Training phase

σ 2
z(dt) (n) = 1

KM
E{ trace{ z̃(dt)

n z̃(dt)H
n } }

= 1
M

m(∞)

k E{ trace{X̃n X̃H
n } } + σ 2

z

= 1
M

m(∞)
n

K∑
k=1

E{ trace{X̃n,k W̌0:L W̌
H
0:L X̃H

n,k } } + σ 2
z

= L + 1
M

m(∞)
n

K∑
k=1

M−1∑
m=0

E{ |X̃n,k[m,m] |2 } + σ 2
z

= L + 1
M

m(∞)
n Mσ 2

x + σ 2
z

= (L + 1)Pdt m(∞)
n + σ 2

z n ∈[ 0,Nt − 1] ,
(47)

where we substituted, σ 2
x = Pdt to account for the power

budget on the transmit symbols in the training phase.

5.2.2 Data transmission phase

σ 2
z(d) (n)= 1

KP
E{ trace{ z̃(d)

n z̃(d)H
n } }

= 1
P
m(∞)

n E{ trace{S̃n S̃Hn } } + σ 2
z

= 1
P
m(∞)

n

K∑
k=1

E{ trace{P S̃n,k W̌0:L W̌
H
0:L S̃Hn,k }}+σ 2

z

= L + 1
P

m(∞)
n

K∑
k=1

P−1∑
p=0

E{ |S̃n,k[ p, p] |2 } + σ 2
z

= L + 1
P

m(∞)
n Kσ 2

s + σ 2
z

=(L + 1)Pd m(∞)
n + σ 2

z n ∈[Nt ,N − 1] ,
(48)

where we substituted, σ 2
s = Pd to account for the power

budget on the transmit symbols in the data transmission
phase.
The lower bound on the channel capacity when the esti-

mated MIMO channels are taken to be the true channels
is now given by the following result.

Theorem 5. The worst-case lower bound on the chan-
nel capacity for the system model shown in (20), (21), and
(24) is obtained when the additive noise is Gaussian dis-
tributed and is maximized when the information symbol
vectors, x̃n and s̃n are Gaussian distributed. It is given by
the expression:

Cl = 1
N

× M
P

Nt−1∑
n=0

E

[
max

px(.),E[||x̃n||2]=Pdt
I ( ỹ(dt)

n ; x̃n | ̂̃Hn )

]

+ 1
N

N−1∑
n=Nt

E

[
max

ps(.),E[||s̃n||2]=Pd
I ( r̃n; s̃n |Ĥn )

]
bits/channel use

≥ 1
N

× M
P

Nt−1∑
n=0

log det (IKM + Pdt σ
2
z(dt) (n)

̂̃HH

n
̂̃Hn)

+ 1
N

N−1∑
n=Nt

log det (IKP + Pd σ 2
z(d) (n) Ĥ

H

n Ĥn). (49)

Proof. See Appendix 1.6.

6 Simulation results
In our simulation, we selected K = 2, P = 32,

L = 3, and M = 24 (since M = P − V and V is set to
K(L + 1)). The training vectors are generated according
to (32). We also set P = 1, so that the SNR is defined as:
SNR � −10 log10 σ 2

z . In designing the optimal training
vector and in generating Gaussian information symbols
over each of the K transmit antennas, their variances have
been appropriately scaled such that the total power con-
straint on the overall system is satisfied. We selected the
Rayleigh channel variance to be σ 2

h = 1/(L + 1). Thus,
the Rayleigh channel adopted is an uncorrelated uniform
scattering model. Moreover, we averaged the results over
500 randomly generated MIMO channel vectors. Given
the fact that the channel capacity lower bound given by
(49) is quite involved, we do not attempt to provide ana-
lytical results for the optimal power allocation and the
optimal number of blocks out of N that carry super-
imposed training symbols. Consequently, we resort to
numerical optimization to determine optimal Pdt , Pt , Pd,
and Nt .
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6.1 Performance evaluation of optimal training designs
over non-time-varying wireless channels

In this section, we have generated the Rayleigh channels
such that there is no correlation between successive block
indices. In other words, eachMIMO channel vector of any
index is assumed to be independent of the MIMO chan-
nel vector of any other index. Moreover, we consider each
block to contain training and information symbols such
that channel tracking is not performed. Thus each block is
represented by (20) and (21) alone. This also implies that
Pdt + Pt = 1 and Pd = 0 are assumed.

6.1.1 Comparison of theMIMO channel estimator and BCRB
Figure 1 provides a comparison of the Bayesian CRBs
with the corresponding variances of channel estimators
for varying training powers. In this figure, we normalized
the Bayesian CRB and the channel variance values by the
number of MIMO channel coefficients, i.e., K2(L + 1).
From Figure 1, we notice that when a large fraction of total
power is allocated for training symbols, the lower bound
of the channel estimator progressively decreases. When
the training symbols carry a small fraction of the total
power, the under-performance of the MMSE channel esti-
mator that is evaluated based solely on (20) w.r.t the lower
bound is evident. On the other hand, as the power of train-
ing symbols increases, the difference between the MMSE
channel estimator variance and the Bayesian lower bound
achievable is negligible. In other words, the role played by
the term, σ 4

x �(Q) in (11) is progressively minimized.

6.1.2 MMSE estimation of information symbols
Figure 2 describes the performance of an MMSE equal-
izer for estimating the information symbols using (21).We
provide the MMSE variance characteristics for the case
when the true channel was used in (21) as well as the case
where estimated channels were used. Unsurprisingly, the
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Figure 1 Bayesian CRB andMMSE of channel coefficients.
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Figure 2MMSE of information symbols.

curves corresponding to true channel values suggest that
the MMSE variance of the estimated information symbols
is lower than those that result when estimated channel
vectors are used. However, a more interesting observa-
tion is that the performance is impaired both when Pt is
too low or too high. Specifically, when Pt = 0.25, a small
fraction of the total power is employed to gather channel
estimates. Since, there are bound to be numerous errors
in this scenario, data estimation suffers. Conversely, when
Pt = 0.95, only a small fraction of total power is expended
for information symbols and hence the data estimation
suffers. On the other hand, when Pt = 0.5, the perfor-
mance appears to be better. However, we refrain from
computing the optimal power allocation by considering
a capacity lower bound similar to (49) for the non-time-
varying wireless channel scenario and reserve such an
analysis for the next section.

6.2 Kalman tracking of time-varying wireless channels
In this section, we selected the MIMO channel vectors
such that they are correlated. The excitation noise is
generated with the appropriate variance so that the chan-
nel vectors are WSS. Throughout this section, we set
N = 10. We then performed a numerical optimization
as mentioned above and determined that the following
values result maximize the lower bound obtained in (49):
Pdt = 0.32, Pt = 0.41, Pd = 0.27 and Nt = 4. When a
non-optimal value of Pdt is allocated to training symbols,
the division of the remaining power to information sym-
bols in the training phase and the data transmission phase
is arbitrarily chosen.

6.2.1 Steady-stateMMSE of the channel estimator
In Figure 3, we provide the steady-state MMSE character-
istics of the channel estimator when a Kalman filter is used
to track the channel. We set a = 0.95 and fixed Nt = 4 in
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Figure 3 Steady-state MMSE of channel coefficients due to
Kalman channel tracking.

order to generate these characteristics. We also analyzed
the characteristics for Pt = 0.25, 0.5 and 0.95 in addi-
tion to the optimal value. The MMSE lower bound shown
in Figure 3 corresponds to (36) whereas the normalized
MMSE corresponds to averaging (38b) and (38c) every N
blocks. We notice that for small Pt the errors committed
due to channel predictions in the data transmission phase
cause significant deviation of the normalized steady-state
MMSE from the lower bound. Only at high values of Pt ,
these errors become insignificant. Of particular impor-
tance is the fact that even at an SNR of 30 dB and with
optimal training power allocation, the deterioration suf-
fered due to prediction errors w.r.t the lower bound is
close to 3 dB.

6.2.2 MMSE estimation of information symbols due to
Kalman channel tracking

Figure 4 shows the resulting MMSE estimation error vari-
ance characteristics of information symbols. The solid
curves rely on true channel estimates whereas the dashed
curves depend on not only the estimated channel states,
but also on Kalman predictions. Similar to Figure 2, we see
that when Pt is too small or too large the error variance
of information symbol estimation suffers greatly. Even at
high SNR, the non-judicious power allocation combined
with Kalman predictions during the data transmission
phase leads to numerous errors. On the other hand, opti-
mal power allocation between training and information
symbols leads to the lowest possible information symbol
estimation error variance.

6.2.3 Capacity bounds
The final simulation example that we will consider is the
capacity upper and lower bound characteristics. While
the upper bound characteristics for varying levels of Pt
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Figure 4MMSE of information symbols due to Kalman channel
tracking.

exhibit a gradual improvement toward the theoretical
upper bound, the lower bound characteristics are more
abrupt. This can be attributed to the prediction errors
that occur in the Kalman prediction stage during the data
transmission phase. When Pt = 0.95, the fraction of the
total power available for information symbols in the train-
ing phase and the data transmission phase is minuscule
and hence the achievable capacity lower bound is small.
In contrast, this value can be improved by more than
15 bits/channel use with an optimal allocation of training
and data powers (Figure 5).

7 Conclusion
In this article, we have shown that similar to a SISO
case, an OFDM linear precoder with an FDM training
sequence satisfies the orthogonality condition and results
in decoupled channel estimation and symbol detection.
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Figure 5 Capacity upper and lower bounds.
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Furthermore, we have derived optimal training sequences
such that the FDM training sequences between different
antennas are phase-shift orthogonal to each other. Based
on the structure of the training matrices, the Kalman filter
recursion was simplified to a scalar recursion. Eventually,
the upper and lower bounds on the channel capacity
were obtained by utilizing the Kalman filter’s MMSE
expressions to account for imperfect channel estimates.
We showed that the Kalman filter predictions affect the
capacity calculations substantially. Taking this degrada-
tion into account, we numerically determined the optimal
training power allocation and optimal number of training
blocks to achieve the best possible capacity lower bound.
Finally, we provided numerical results to support the
theoretical results.

8 Appendix 1
1.1 Modeling time-variations in low-mobility wireless

channels
While the complex random variable description of a wire-
less channel as Rayleigh, Rician, etc., forms one aspect
of characterization, another one involves taking the time-
variations of the channel filter taps into consideration. A
common assumption on the random process that drive
the time-variations of the channel filter taps is its wide-
sense stationarity. In other words, the mean and the auto-
correlation functions of each filter tap are assumed to be
independent of time, with the latter being a function of
the time-difference alone. Further, each tap at a given time
instant is assumed to be independent of every other tap
at any time instant. Together these two assumptions give
rise to the wide-sense stationary, uncorrelated scattering
(WSSUS) model.
Autoregressive model: A widely used approach to model

time variations of a WSSUS channel is by a general Pth
order AR random process. By considering (7a), the AR
model that helps us to specify the correlation between the
current state of the system and the past states is as shown
below:

hn =
P∑

p=1
Aphn−p + Bun. (A.1)

In (A.1), each element in {Ap} is termed as an AR coef-
ficient matrix or a state-transition matrix and un as the
excitation or driving noise vector. The eigen values of
each element in {Ap} are assumed to be less than 1 in
magnitude and the driving noise is assumed to be i.i.d
and complex Gaussian distributed with zero mean. The
AR model admits the following Yule–Walker equations to
describe the covariance function of the process [37].

Rh[ n]=
P∑

p=1
ApRh[ n − p]+σ 2

uBBH. (A.2)

Assuming that Rh[ 0] and {Ap} are known, we can
apply the fact that Rh[ n]= Rh[−n], and recursively find
{Rh[ n] } for n = 1, 2, . . . ,P. We can also find a non-unique
B by computing the square-root of (A.2) for n = 0 ([38],
p. 358).

1.2 Proof of Theorem 1
From [39], we know that the complex FIM is given by the
equation,

E

{(
∂ ln p(yn;hn)

∂ h∗
n

)(
∂ ln p(yn;hn)

∂ h∗
n

)H
}

= E

{
E

[(
∂ ln p(yn|hn)

∂ h∗
n

)(
∂ ln p(yn|hn)

∂ h∗
n

)H

|hn
]}

+ E

{(
∂ ln p(hn)

∂h∗
n

) (
∂ ln p(hn)

∂h∗
n

)H
}
. (B.1)

In the second equality of the above equation, the inner
expectation in the first term is w.r.t yn, whereas the outer
expectation is w.r.t hn. The log-likelihood function of
the probability density function, p(yn|hn) in (B.1) and its
derivative are as follows:

ln p(yn|hn) = constant − ln (|Ryn |) − uH R−1
yn u,

(B.2a)

∂ ln p(yn|hn)
∂ h∗

n
= −∂ ln |Ryn|hn |

∂ h∗
n

−
∂ uHR−1

yn|hnu
∂ h∗

n
,

(B.2b)

where, u � (yn − (IK ⊗ T)hn) and

Ryn|hn = σ 2
x HnQQHHH

n + σ 2
z IKP

= σ 2
x

KM−1∑
j=0

QjhnhHnQH
j + σ 2

z IKP , (B.3a)

R−1
yn|hn = σ−2

z IKP − σ−4
z σ 2

xHnQ

×
(
IKM + σ−2

z σ 2
xQHHH

n HnQ
)−1

QHHH
n

= σ−2
z IKP − σ−4

z σ 2
xHnQGQHHH

n . (B.3b)

and Qj � IK⊗[Qj,1 Qj,2 . . . Qj,K ] are obtained from
each of the KM columns of Q. The matrices {Qj,k} are
a result of applying the commutativity property of con-
volution. It should be noted that we have not utilized
the block-diagonal structure of Q in obtaining {Qj,k}. In
other words, the matrices {Qj,k} are constructed with-
out explicit consideration of the fact that (K − 1)P out of
KP elements in each column of Q are zeros. In addition,
we have utilized the matrix inversion lemma in obtaining
(B.3b) where G �

(
IKM + σ−2

z σ 2
xQHHH

n HnQ
)−1

.
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We now evaluate the two partial derivatives in (B.2b)
separately.

∂ ln |Ryn|hn |
∂ h∗

n
Using ([40], (9)), we note that

∂ ln |Ryn|hn |
∂ h∗

n
= Dh∗

n ln |Ryn|hn |
=(DRyn|hn ln |Ryn|hn | )Dh∗

n Ryn|hn
+ (DR∗

yn|hn
ln |Ryn|hn | )Dh∗

n R
∗
yn|hn .

(B.4)

Here, DRyn|hn ln |Ryn|hn | = R−T
yn|hn and DR∗

yn|hn
ln |Ryn|hn |

= 0 ([41], Table II). Moreover, from (B.3a), we see that
(cf. ([40], (1)),

dRyn|hn = σ 2
x

KM−1∑
j=0

Qjhn dhHnQH
j

+ σ 2
x

KM−1∑
j=0

Qj dhnhHnQH
j , (B.5a)

dvecRyn|hn = σ 2
x

KM−1∑
j=0

(Q∗
j ⊗ Qnhn)d vec(h∗

n)

+ σ 2
x

KM−1∑
j=0

(Q∗
j h∗

n ⊗ Qn)d vec(hn).

(B.5b)

From the above equations and ([40], Table III), we notice
that, Dh∗

n Ryn|hn = σ 2
x
∑KM−1

j=0 (Q∗
j ⊗ Qnhn). It should be

noted that the definition of the partial derivative for the
case of a scalar function w.r.t a column vector adopted by
Hjørungnes and Gesbert result in a row vector ([40], Table
III, 2nd row). We consider this definition to lead to trans-
posed derivative and perform a transpose operation of the
results obtained based on ([40], (9)) in order to obtain the
FIM with appropriate dimensions. Consequently,

∂ ln |Ryn|hn |
∂ h∗

n
= (DRyn|hn ln |Ryn|hn | )Dh∗

n Ryn|hn

=
(
vecT

[
∂ ln |Ryn|hn |

∂ Ryn|hn

] [
∂vecRyn|hn

∂Th∗
n

])T

= σ 2
x

KM−1∑
j=0

(QH
j ⊗ hTnQT

j ) vec(R
−T
yn|hn). (B.6)

∂ uHR−1
yn|hnu

∂ h∗
n

Using ([40], (9)), we can similarly show that

∂ uHR−1
yn|hnu

∂ h∗
n

= −σ 2
x

KM−1∑
j=0

(QH
j ⊗hTnQT

j )(R
−1
yn|hn ⊗Ry

−T
n )(u ⊗ u∗)

− (IK ⊗ T)HR−1
yn|hnu.

(B.7)

Hence, from (B.2b),

∂ ln p(y|hn)
∂ h∗

n
= σ 2

x

KM−1∑
j=0

(QH
j ⊗ hTnQT

j )

×[ (R−1
yn|hn ⊗ Ry

−T
n )(u ⊗ u∗) − vec(R−T

yn|hn)]

+ (IK ⊗ T)HR−1
yn|hnu. (B.8)

Before we evaluate the inner expectation in the first
term of (B.1), we recall that,

E
[
u ⊗ u∗] = E

[
vec(u∗uT)

]
= vec(E

[
u∗uT

]
)

= vec(RT
yn|hn). (B.9)

Incidentally, by utilizing the above result, we can see that
E

[
∂ ln p(yn|hn)

∂ h∗
n

]
= 0 indicating that the regularity condi-

tion is satisfied. Employing (B.8) and (B.9), we can show
that

E

[(
∂ ln p(y|hn)

∂ h∗
n

)(
∂ ln p(y|hn)

∂ h∗
n

)H

|hn
]

= (IK ⊗ T)HR−1
yn|hn(IK ⊗ T)

+ σ 4
x

KM−1∑
j=0

(QH
j ⊗ hTnQT

j )(R
−1
yn|hn ⊗ R−T

yn|hn)

×
KM−1∑
n=0

(Q∗
j ⊗ Qnhn). (B.10)

Moreover, we observe that E

{(
∂ ln p(hn)

∂h∗
n

)
(

∂ ln p(hn)
∂h∗

n

)H} = σ−2
h IK2(L+1). Substituting this result

along with (B.10) and (B.3b) in (B.1) gives:

I(hn) = Eh
{
(IK ⊗ T)HR−1

yn|hn(IK ⊗ T)
}

+σ 4
x �(Q) + σ−2

h IK2(L+1)

= σ−2
z (IK ⊗ T)H (IK ⊗ T)

−σ−4
z σ 2

x Eh
{
(IK ⊗T)HHnQGQHHH

n (IK ⊗T)
}

+σ 4
x �(Q) + σ−2

h IK2(L+1)

= σ−2
z (IK ⊗ TH T) − σ−4

z σ 2
x �(t, Q) + σ 4

x �(Q)

+σ−2
h IK2(L+1). (B.11)
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1.3 Proof of Theorem 2
From (12c), we see that G is the inverse of sum of two
full-rank positive-definite matrices. This is because,Hn is
a Rayleigh-fading channel matrix of full rank (with prob-
ability 1) due to (A1) and (C1) stipulates that Q be a full
column-rankmatrix. Hence,QHHH

n HnQ is a matrix with
strictly-positive eigenvalues. Together with the fact that
IKM is also a matrix with strictly-positive eigen-values, we
arrive at the result that G 
 0. By making a similar argu-
ment, we can show that R−1

yn|hn 
 0. As a result of the
above statements, we can claim that �(t, Q) � 0 and
�(t) � 0. Combining the above results with (C1) leads
us to conclude that I(hn) 
 0. Now, based on a previ-
ous observation that only �(t, Q) is the term under the
designer’s control, we see that I(opt)(hn) � I(hn) where
the optimal Bayesian FIM for a training-based channel
estimator is as follows:

I(opt)(hn) = σ−2
z (IK ⊗ T)H (IK ⊗ T) + σ 4

x �(Q)

+ σ−2
h IK2(L+1). (C.1)

It should be recalled that for any A, B 
 0 such that
A � B, we have B−1 � A−1 and therefore, tr (B−1) �
tr (A−1). Hence, finding the conditions under which
I(opt)(hn) � I(hn) is equivalent to finding the condi-
tions under which tr (I(opt)(hn)−1) � tr (I(hn)−1). where
tr (I(opt)(hn)−1) is the Bayesian CRB of a non-decision-
aided channel estimator for the system model described
in (8). We can now see that I(opt)(hn) is obtained by mak-
ing �(t, Q) = 0 which in turn is possible by enforcing the
condition:

(IK ⊗ T)H Hn Q

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

TH H(n)
1,1 Q1 TH H(n)

1,2 Q2 . . . TH H(n)
1,K QK

TH H(n)
2,1 Q1 TH H(n)

2,2 Q2 . . . TH H(n)
2,K QK

...
...

. . .
...

TH H(n)
K ,1 Q1 TH H(n)

K ,2 Q2 . . . TH H(n)
K ,K QK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0.

(C.2)

In other words,

THH(n)
i,j Qj = 0 1 ≤ i, j ≤ K . (C.3)

We now utilize the commutativity property of convo-
lution and in a manner similar in the construction
of the matrices, {Tk}, we see that H(n)

i,j Qj =[Qj, 1h(n)
i,j

Qj, 2h(n)
i,j ... Qj,M−1h(n)

i,j ] where the circulant matrices,
{Qj,m} are constructed such that [ qj,m[ 0] ... qj,m[P − 1] ]T
is the first column and [ qj,m[ 0] tk[P − L] ... qj,m[P − 1] ]
is the first row. The column vector qj,m is themth column
of the jth linear precoder,Qj. Hence,

TH
i Qj,m = 0 1 ≤ i, j ≤ K 0 ≤ m ≤ M − 1. (C.4)

1.4 Proof of Lemma 1
First, it is easy to see that the optimal MMSE estima-
tor coincides with the linear MMSE estimator for the
system under consideration i.e., (20), due to the joint
Gaussian nature of the unknown parameter and the obser-
vation vectors. The optimal MMSE channel estimator, ĥn
is now ([31], (11.33) and (11.35)):

ĥn = σ−2
z [ σ−2

h IK2(L+1) + σ−2
z (IK ⊗ T̃H T̃) ]−1

× (IK ⊗ T̃H) ỹn, (D.1a)
C�hn =[ σ−2

h IK2(L+1) + σ−2
z (IK ⊗ T̃H T̃) ]−1 . (D.1b)

where, �hn = hn − ĥn. The resulting channel estimator
error variance is,

σ 2
�hn = trace {C�hn}

= trace {[ σ−2
h IK2(L+1) + σ−2

z (IK ⊗ T̃H T̃) ]−1 }.
(D.2)

The optimal T̃, T̃(opt) needs to minimize σ 2
�hn sub-

ject to (27). An equivalent representation of this pilot
power constraint that will be useful for finding T̃(opt) is as
follows:

trace (T̃H
k T̃k) = Pt/K , (D.3a)

trace (T̃H T̃) = (L + 1)Pt . (D.3b)

As a result of (D.3b), we have

T̃(opt) = argT̃ min
trace (T̃H T̃)=(L+1)Pt

σ 2
�hn . (D.4)

From ([15], Appendix I), we see that for any M × M
dimensional positive-definite matrix A,

trace(A−1) ≥
M−1∑
m=0

1
am,m

, (D.5)

where the equality is attained if and only if A is diagonal.
Therefore, if T̃(opt) is employed to perform the MIMO–
OFDM channel estimation, the resulting variance of the
MMSE channel estimator is as follows:

σ 2
�hn = trace {[ σ−2

h IK2(L+1) + σ−2
z (IK ⊗ T̃H T̃) ]−1 }

≥
K2(L+1)−1∑

l=0

1
[ σ−2

h IK2(L+1) + σ−2
z (IK ⊗ T̃H T̃) ]l,l

= K3(L + 1) σ 2
z σ 2

h
Kσ 2

z + σ 2
h Pt

, (D.6)

and equality in the above equation is attained when T̃H T̃
is diagonal.

1.4.1 Optimal training design
We now design the optimal training design that achieves
the minimum MSE variance shown in (D.6). We will see
that in order to attain this bound, the pilot sequences of
each transmit antenna as well as their relationship with
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the training sequences emitted from every other transmit
antenna need to satisfy certain specific properties. These
properties are a direct consequence of (D.3b) and (D.5).
A closer observation of T̃H T̃ reveals the following:

T̃H T̃ =

⎡⎢⎢⎢⎣
R1,1 . . . R1,K
R2,1 . . . R2,K
...

. . .
...

RK ,1 . . . RK ,K

⎤⎥⎥⎥⎦ , (D.7)

where the (L + 1) × (L + 1) dimensional submatrix Rk1,k2
is defined based on (19) as:

Rk1,k2 � ŴH
0:L T̃H

k1 T̃k2 Ŵ0:L. (D.8)

The minimum variance as shown in (D.6) is therefore
attained when

Rk1,k2 = ŴH
0:L T̃H

k1 T̃k2 Ŵ0:L = P̄
K
IL+1δ(k1 − k2). (D.9)

Case - k1 = k2 In order to understand the conditions that
need to be imposed on the structure of T̃k , we examine an
arbitrary element of Rk,k . From (D.9), we notice that

[Rk,k]l1,l2 =
V−1∑
v=0

|T̃k[ v, v] |2 exp{−j2π lv(l2 − l1)/P}

= Pt
K

δ(l1 − l2). (D.10)

It can be verified that the above expression is true under
three conditions:

(C6) P = VS where S ∈ Z
+.

(C7) {lv}, the index set of subcarriers that carry pilot
symbols are chosen such that lv = ls + vS for
ls ∈[ 0, S − 1] and 0 ≤ v ≤ V − 1.

(C8) The pilot tones are all equally powered so that
|T̃k[ v, v] |2 = Pt

KV .

The above conditions indicate that the pilot symbols
used for channel estimation must be equispaced in the
subcarrier domain and equipowered. Due to (C8), we
see that T̃∗

k T̃k = Pt
KV IV . Combined with the fact that

ŴH
0:L Ŵ0:L = V IL+1, we see that Rk,k = Pt

K IL+1. We now
see that when K = 1, the following pilot sequence design:

T̃k = φ(V )

=
√

Pt
KV

[ exp(jφ0) exp(jφ1) ... exp(jφV−1)]T ,

(D.11)

meets conditions (C6), (C7), and (C8) that mandate the
usage of equipowered, equispaced pilots at each trans-
mit antenna. In (D.11), {φv} are any arbitrary values in
[−π , π ].

Case - k1 �= k2 We now incorporate the consequences
of imposing the condition, Rk1,k2 = 0 when k1 �= k2,
in (D.11). We again utilize (D.9) and apply (C7). We see
that

[Rk1,k2 ]l1,l2 = exp{−j2π ls(l1 − l2)/P}

×
V−1∑
v=0

T̃∗
k1 [ v, v] T̃k2 [ v, v]

× exp{−j2π vS(l1 − l2)/P}, (D.12)

which equals zero when∑V−1

v=0
T̃∗
k1 [ v, v] T̃k2 [ v, v] exp{−j2π vS(l1 − l2)/P} = 0

⇔
∑V−1

v=0
T̃∗
k1 [ v, v] T̃k2 [ v, v] exp{−j2π v(l1 − l2)/V } = 0,

(D.13)

∀ 1 ≤ k1, k2 ≤ K and ∀ (l1 − l2) ∈[ 0, ±1 ... ± L]. This
condition clearly suggests that in the frequency-domain,
phase-shift orthogonality is required between the pilot
sequences of different transmit antennas over the range,
(l1 − l2) ∈[ 0, ±1 ... ± L]. Equivalently, this translates
to circular shift orthogonality in the time-domain. We
now define a diagonal V × V dimensional phase-shifting
matrix, Ek as shown below:

[ Ek ]v, v = exp
[
j2πvfk
V

]
, (D.14)

∀ 0 ≤ v ≤ V − 1, 1 ≤ k ≤ K and design the pilot
sequence such that

T̃k = Ekφ(V ). (D.15)

As a result of substituting (D.14) in (D.13), we see that

V−1∑
v=0

exp{−j2π v(fk1 − fk2 + l1 − l2)/V } = 0. (D.16)

We selected Ek as shown in (D.14) so that we can exploit
the property of summation of the roots of unity. In order
to do so, we require that the term, (fk1 − fk2 + l1 − l2) be a
non integer-multiple ofV. So, we choose fk = k(V−L−1).
In conclusion, the training design shown in (32) meets not
only conditions (C6), (C7), and (C8) but also (D.13) so
that phase-shift orthogonality is maintained between the
pilot sequences of any pair of transmit antennas.

1.5 Proof of Theorem 4
By denoting the entropy using H(.) and applying the def-
inition of mutual information, we can write the following
expression,

I ( ỹ(dt)
n ; x̃n |H̃n ) = H ( x̃n|H̃n ) − H ( x̃n|H̃n, ỹ(dt)

n ), (E.1)
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for the system model in the training phase. In the above
equation, H ( x̃n|H̃n ) is maximized when x̃n is Gaussian.
Hence, with Rx̃n = Pdt IKM,

H ( x̃n|H̃n) = log det ( π ePdt IKM ). (E.2)

On the other hand,

H ( x̃n|H̃n, ỹ(dt)
n ) = log det ( π eRx̃n|ỹ(dt)

n , H̃n
), (E.3)

where Rx̃n|ỹ(dt)
n , H̃n

= ( (1/Pdt) IKM + (1/σ 2
z ) H̃H

n H̃n )−1.
In writing the covariance matrix of the random vector, x̃n
conditioned on ỹ(dt)

n and H̃n, we utilize the fact that z̃n is
Gaussian distributed. Consequently,

I ( ỹ(dt)
n ; x̃n |H̃n ) = log det

(
IKM + Pdt

σ 2
z

H̃n H̃
H
n

)
. (E.4)

By a similar approach, we can show that

I ( r̃n; s̃n |Hn ) = log det
(
IKP + Pd

σ 2
z
HnH

H
n

)
, (E.5)

in the data transmission phase. Due to the fact that the
mutual information between the transmitted and esti-
mated data vectors is independent of the block index, we
represent the channel capacity upper bound by choosing
the mutual information with respect to an arbitrary block
indices as shown in (41). It can also be observed that we
have included the appropriate normalization factor since
only M out of P subcarriers in each OFDM symbol in the
training phase, carry information symbols.

1.6 Proof of Theorem 5
We again apply the definition of mutual information and
write the expression,

I ( ỹ(dt)
n ; x̃n | ̂̃Hn ) = H ( x̃n| ̂̃Hn ) − H ( x̃n| ̂̃Hn, ỹ(dt)

n ), (F.1)

for the systemmodel in the training phase. Similar to (E.2),
we see that

H ( x̃n| ̂̃Hn) = log det ( π ePdt IKM ), (F.2)

whereas,

H ( x̃n| ̂̃Hn, ỹ(dt)
n ) ≤ log det ( π eRx̃n|ỹ(dt)

n , ̂̃Hn
), (F.3)

with equality if and only if x̃n given ỹ(dt)
n and ̂̃Hn is

drawn from a Gaussian distribution with the covariance
matrix, Rx̃n|ỹ(dt)

n , ̂̃Hn
. We can now formulate an expression

for Rx̃n|ỹ(dt)
n , ̂̃Hn

by assuming that LMMSE estimatorb has
been used to estimate x̃n:

Rx̃n|ỹ(dt)
n , ̂̃Hn

= Rx̃n − Rx̃n, ỹ(dt)
n

Rỹ(dt)
n

Rỹ(dt)
n , x̃n

, (F.4)

where

Rx̃n, ỹ(dt)
n

� E {x̃n ỹ(dt)H
n | ̂̃Hn} = Pdt

̂̃HH

n , (F.5a)

Rỹ(dt)
n

� E {ỹ(dt)
n ỹ(dt)H

n | ̂̃Hn}

= Pdt
̂̃Hn

̂̃HH

n + σ 2
z(dt) (n) IKM. (F.5b)

In (F.5a) and (F.5b), we have utilized the orthogonality
property of LMMSE estimation and eliminated the covari-
ance terms between the information symbol vector, x̃n
and the effective noise vector, z̃(dt)

n . By substituting (F.5a)
and (F.5b) in (F.4), we see that

Rx̃n|ỹ(dt)
n , ̂̃Hn

= Pdt IKM − P2
dt
̂̃HH

n

×(Pdt
̂̃Hn

̂̃HH

n + σ 2
z(dt) (n) IKM)−1 ̂̃Hn

= ((1/Pdt) IKM + σ 2
z(dt) (n)

̂̃HH

n
̂̃Hn)

−1. (F.6)

Finally, from (F.2), (F.3) and (F.6), we have,

I ( ỹ(dt)
n ; x̃n | ̂̃Hn ) ≥ log det (IKM + Pdt σ

2
z(dt) (n)

̂̃HH

n
̂̃Hn).
(F.7)

By a similar approach, we can show that

I ( r̃n; s̃n |Ĥn ) ≥ log det (IKP + Pd σ 2
z(d) (n) Ĥ

H

n Ĥn),
(F.8)

in the data transmission phase. Therefore, the channel
capacity lower bound is obtained by combining (F.7)
and (F.8) as shown in (49).

2 Endnotes
a(A + BCD)−1 = A−1−A−1B(C−1+DA−1 B )−1DA−1.
bNotice that when z̃(dt)

n is Gaussian, the LMMSE estimator
coincides with an MMSE estimator.
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