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Abstract

In this article, an efficient distributed and parallel algorithm is proposed to maximize the sum-rate and optimize the
input distribution policy for the multi-user single input multiple output multiple access channel (MU-SIMO MAC)
system with concurrent access within a cognitive radio (CR) network. The single input means that every user has a
single antenna and multiple output means that base station(s) has multiple antennas. The main features are: (i) the
power distribution for the users is updated by using variable scale factors which effectively and efficiently maximize
the objective function at each iteration; (i) distributed and parallel computation is employed to expedite convergence
of the proposed distributed algorithm; and (iii) a novel water-filling with mixed constraints is investigated, and used as
afundamental block of the proposed algorithm. Due to sufficiently exploiting the structure of the proposed model, the
proposed algorithm owns fast convergence. Numerical results verify that the proposed algorithm is effective and fast
convergent. Using the proposed approach, for the simulated range, the required number of iterations for convergence
is two and this number is not sensitive to the increase of the number of users. This feature is quite desirable for large
scale systems with dense active users. In addition, it is also worth noting that the proposed algorithm is a monotonic

Water-filling, Algorithm with mixed constraints

feasible operator to the iteration. Thus, the stop criterion for computation could be easily set up.

Keywords: Channel capacity, Multi-user MIMO (MU-MIMO), Multi-access Channels (MAC), Cognitive Radio (CR),
Multiple-antenna, Broadcast systems, Maximum sum-rate, Optimal power distribution, Optimization methods,

1 Introduction

The radio spectrum is a precious resource that demands
for efficient utilization as the currently licensed spec-
trum is severely underutilized [1]. Cognitive radio (CR)
[2-4], which adapts the radios operating characteristics
to the real-time conditions, is the key technology that
allows flexible, efficient and reliable spectrum utilization
in wireless communications. This technology exploits the
underutilized licensed spectrum of the primary user(s)
(PU) and introduces secondary user(s) (SU) to operate
on the spectrum that is either opportunistically being
available or concurrently being shared by the PU and
the SU. Under this situation and according to the defini-
tion of a cognitive (radio) network [5], opportunistically
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utilizing the spectrum means that the SUs may fill the
spectrum gaps or holes left by the PUs; whereas concur-
rently utilizing the spectrum means that the SUs trans-
mit over the same spectrum as the PUs, in a way that
the interference from the transmitting SUs does not vio-
late the quality requirement from the PUs. This article
focuses on the latter case. Furthermore, the multiple-
input multiple-output (MIMO) technology uses multiple
antennas at either the transmitter or the receiver to signif-
icantly increase data throughput and link range without
additional bandwidth or transmitted power. Thus it plays
an important role in wireless communications today. In
infrastructure-supported networks, such as the widely
used cellular network, base stations are typically shared by
a large number of users. Within the scope of this article,
it is therefore assumed that the base station under con-
sideration is shared by multiple PUs and multiple SUs. In
this article, a MIMO-enhanced CR network is considered
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to fully ensure the quality of service (QoS) of the PUs as
well as to maximize the weighted sum-rate of the SUs. We
consider multiple SUs accessing the base station, referred
to as a multiple-access channel (MAC).

The weighted sum-rate maximization problem is to
compute the “best" achievable rate vector in the capacity
region [6-8] by specifying the working point at the bound-
ary of the capacity region. This optimality problem is of
the Pareto meaning under multi-objective optimization.

For the non-CR cases, the sum-rate maximization prob-
lem has been intensively explored for both Gaussian
broadcast channel (BC) [9,10] and Gaussian MAC [11].
Typical approaches include iterative water-filling algo-
rithms [9,11] and dual-decomposition [10]. The conven-
tional water-filling algorithm [12] which is an efficient
resource allocation algorithm needs to be used inside each
of the iterations as an inner loop operation. In addition,
the setup of the well known duality between the Gaussian
BC and the sum-power constrained Gaussian dual MAC
[13-15] facilities the transform of BC sum-rate problems
into its dual MAC problem. As for the weighted sum-rate
problem, it is easily seen that as the weighted coeffi-
cients all being unity, the weighted sum-rate problem
is reduced into a sum-rate optimization problem. Thus,
solving the weighted sum-rate problem is more general.
However, due to the more complicated problem struc-
ture, the conventional water-filling algorithm [12] is not
able to compute its solution. For computing the maximum
weighted sum-rate for a class of the Gaussian single-
input multiple-output (SIMO) BC systems or equivalent
dual MAC systems [16], has presented some algorithms
using a cyclic coordinate ascent algorithm to provide the
max-stability policy.

For the CR cases, besides the individual power con-
straints to the SUs, the total interference power from the
SUs needs to be included into the constraints of the tar-
get problem. Since single-antenna mobile users are quite
common and compose a major served group due to the
size and cost limitations of mobile terminals, this arti-
cle is confined to a single input multiple output multiple
access channel (SIMO-MAC) in the CR network. Ear-
lier study [17,18] investigated the sum-rate problem and
the weighted sum-rate problem in CR-SIMO-MAC cases,
respectively. In addition, for the ergodic sum capacity
of single input single out (SISO) system [19], studied
the maximum (non-weighted) sum-rate problem with a
simple form of the objective function.

In this article, by exploiting the structure of the weighted
sum-rate optimization problem, we propose an efficient
iterative algorithm to compute the optimal input pol-
icy and to maximize the weighted sum-rate, via solv-
ing a generalized water-filling problem in each of the
iterations. The water-filling machinery is experiencing
continuous development [12,20-23]. In this article, we
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propose a generalized weighted water-filling algorithm
(GWWTFA) to form a fundamental step (inner loop algo-
rithm) for the target problem. In the inner loop, the
weighted sum-rate problem is decomposed into a series
of generalized water-filling problems. With this decom-
position, a decoupled system with each equation of the
decoupled system containing only a scalar variable is
formed and solved. Any one of the equations is solved
by the GWWFA with a finite number of loops. To
speed up the computation of the solution to each of
the equations, we also specify the intervals the solution
belongs to.

For the outer loop of the algorithm, a variable scale fac-
tor is applied to update the covariance vector of the users.
The optimal scale factor is obtained by maximizing the
target objective value (i.e., the weighted sum-rate) in the
scalar variable B to expedite convergence of the proposed
algorithm. In order to achieve this purpose, we deter-
mine an optimal scale factor by searching in a range which
consists of a few discrete values. As a result, parallel oper-
ation can be used to expedite the search and to avoid the
requirement of another nested loop. This parallel oper-
ation can be distributed to and carried out by multiple
processors (for example, four processors).

Compared with earlier study [18], the main difference
of our study is that: (i) in [18], the dual-decomposition
approach [10] is used. In our study, we apply the itera-
tive water-filling algorithm [9] and extend the algorithm
to solve the target problem. The advantage of the iterative
water-filling algorithm is that it is a monotonic feasible
operator to the iteration. That is to say, the proposed algo-
rithm generates a sequence composed of feasible points in
its iterations. The objective function values, correspond-
ing to this point sequence, are monotonically increas-
ing. Hence, the stop criterion for computation might be
easily set up. However, the regular primal-dual method
used in [18] is not a feasible point method; (ii) for the
constraints of the target problem, we make the individ-
ual power constraints more strict and more reasonable,
due to the values of signal powers being assumed to be
greater than or equal to zero; (iii) the convergence rate
is improved significantly. In the numerical example illus-
trated by Figure 1 of [18], the convergence of the weighted
sum-rate is obtained after 110 iterations for a system
with 3 SUs and 2 PUs. However, with our proposed algo-
rithm, we achieve the weighted sum-rate convergence
with two iterations with the simulated range (number of
SUs up to 110). In addition, even if the PUs and SUs are
served by different base stations, it is easy to see that
the proposed machinery can be used with some minor
modifications.

In the remainder of this article, the system model for
a CR-SIMO-MAC system and its weighted sum-rate are
described in Section 2. Section 3 discusses the proposed
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Figure 1 CR-MAC system model.
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algorithm to solve the maximal weighted sum-rate prob-
lem through an inner loop algorithm. The optimality
proof of the inner loop algorithm (GWWFA) is presented
in Section 3.1. Then the outer loop algorithm (AWCR) and
its implementation are presented in Section 3.2. Section 4
provides the convergence proof of the AWCR. Section 5
presents numerical results and some complexity analysis
to show the effectiveness of the proposed algorithm.

Key notations that are used in this article are as fol-
lows: |A| and Tr (A) give the determinant and the trace
of a square matrix A, respectively; E[ X] is the expec-
tation of the random variable X; the capital symbol I
for a matrix denotes the identity matrix with the cor-
responding size. A square matrix B > 0 means that
B is a positive semi-definite matrix. Further, for two
arbitrary positive semi-definite matrices B and C, the
expression B > C means the difference of B — C
is a positive semi-definite matrix. In addition, for any
complex matrix, its superscripts T and T denote the
conjugate transpose and the transpose of the matrix,
respectively.

2 SIMO-MAC in CR network and its weighted
sum-rate

For a SIMO-MAC in a CR network, as shown in Figure 1,

assume that there are one base-station (BS) with N, anten-

nas, and K SUs and N PUs, each of which is equipped with

one single antenna. The received signal y € CN"*1 at the

BS is described as

y =YX+ T R 2 by eV,
j =1,2,...,K, and h; e CVNVr, (1)
j =12,...,N,

where the jth entry ¥ of x € CK*1 is a scalar complex
input signal from the jth SU and x is assumed to be a
Gaussian random vector having zero mean with indepen-
dent entries. The jth entry ¥ of X is a scalar complex
input signal from the jth PU and X is assumed to be a
Gaussian random vector having zero mean with indepen-
dent entries. The noise term, z € CN*! is an additive
Gaussian noise random vector, i.e, z ~ N(0,0%I). The
channel input, X, x, and z are also assumed to be indepen-
dent. Furthermore, the jth SU’s transmitted power can be
expressed as

S ZE[INP]i=12... K ©)

Note that S;, Vj, is non-negative.

The mathematical model of the weighted sum-rate opti-
mization problem for the SIMO-MAC in the CR network
can be stated as follows (refer to (2.16) in [6] and the
references therein):

Given a group of weights {wk}llle which is assumed to
be in decreasing order (users can be arbitrarily renum-
bered to satisfy this condition) with the achievable rate of
the secondary user k,

k k—1
log [ | ICo+ ) hihs| / ICo+ Y hhs;| | | vk,
j=1 j=1

the weighted sum-rate is organized by

Sfwmac (h-}l-' e ,h;(;Pl, P Pt)
= ma)({Sk}{f:1 wi log |Co + Zlel h;rhij|
+ Yt i — w1 log|Co + Y1, hihyS)|
Subject to: 0 < S < Py, Vk; Zlengk <P,
3)
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where, for the MAC cases, the peak power constraint on
the kth SU exists and is denoted by a group of positive
numbers: Py, k = 1,. .., K; the power threshold to ensure
the QoS of the PUs is denoted by the positive number
Py. Further, when no confusion is possible, fiymac is simply
written as f. For convenience, we define ng by wy — wy 1
for k = 1,...,K — 1; and nx by wg, as a group of non-
negative real numbers, and assume at least one of them to
be non-zero. Further, the term gx = hkhz, Vk, is the chan-
nel power gain of the kth SU to the BS. Also, we denote the
covariance matrix of the random vector Z]AL 1 fl;f(/ +zby
Co. It is easy to see that the matrix Cy is positive definite.
The constraint Zle g1Sk < Py is called the sum-power
constraint with gains. The constraint is obtained in the fol-

lowing analysis. Let H = [h;, . ,h;(] € CNrK and H =
[fl}h, cees IAI}LV] € CN*N | Thus, the received signal at BS is

y= HX + (Hx + z), where Hx + z can be regarded as the
additive interference and noise to the transmitted signal
Hx from the PUs. To guarantee the QoS for the PUs, the
power of the interference and noise should be less than a
threshold value, Pry. This condition can be expressed as

Tr(HE(x")H' 4 E(zz")) < Prn. (4)

It can be written as

K

> gSk < Pri — Nyo? = P, (5)
k=1

where the power constraint value P; is the interference
and noise threshold subtracted by the Gaussian noise
power.

As an alternative, to guarantee the QoS for each of the
PUs, individually, the power of the interference and noise
should be less than a threshold value, Pty (i), Vi. Similarly,
it is obtained that

K

> &Sk < Pui), Vi. ©)
k=1

That is to say, the condition above is equivalent to

K

&S < min{Py()). 7)
k=1

Name min;{P:(i)} as P then the target model can still
cover the case that the QoS for each of the PUs is con-
sidered individually. Note that at the base station with
multiple antennas, the received signals can be regarded
as a stochastic vector or point in a Hilbert space and
the received signal powers are abstracted into the norm
squared of the vector. The transmitted powers of the
PUs have been taken into account by forming Cy and P,
mentioned above, which appear in (3).
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It is seen that the sequence {ﬂk}l/le stems from the vec-
tor of weights used in the multi-user information theory
[6]. The parameter or item 7y, Vk, in the sequence is called
the weighted coefficient without confusion.

A more strict weighted sum-rate model can also be
obtained that reflects the essence of the issue for the CR-
SIMO-MAC. Along a similar way mentioned above, we
may choose the power thresholds P;; to limit the impact
from the SUs on each of the antennas of the BS. Thus
the sum-power constraint with the gains is evolved into
Zlegk,iSk < P;,i = 1,2,...,N,. It is seen that such a
weighted sum-rate problem with more power constraints
can be solved by solving a similar problem in (3). There-
fore, the proposed article aims at computing the solution
to the problem (3). Note that if 3h;, = 0,1 < ip < K,
for (3), we remove the user iy and then the number of
the users is reduced to K — 1. Thus, we can assume that
h; # 0, Vi.

For the important special case of the sum-rate prob-
lem, which is included in (3), assume that M = rank(H).
Applying the QR decomposition, H = QR, let Q =
lq1,--.,qm] € CNr M have orthogonal and normalized
column vectors. R € CM*X is an upper triangle matrix
with r;; denoting the (i, j)th entry of the matrix R. Qfis
regarded as an equalizer to the received signal by the BS.
Thus, the ith SU should have the rate:

Iri,i2S;
Rate; = log| 1+ 5 N & g e pynll E
o+ Zn:l ani R,q; + Zj=i+1 |Vi,/'| Sj

(8)
where S, = E[%"(®")'] and R, = hih,,n = 1,...,N. It

is easy to see that the rate just mentioned comes from the
expression:

k k—1
log (|I+Zhj'hjs,|)/ (|1+Zh}'h,sjl) ,Vk,
j=1 j=1

i.e., Co = I in this case.

3 Algorithm AWCR

The proposed algorithm for solving the weighted sum-
rate problem in the cognitive radio network, denoted by
AWCR, is an iterative algorithm. It consists of two lay-
ers of loops. Inside the inner loop, a generalized weighted
water-filling algorithm is proposed and used. Due to spe-
cial problem structure and the complexity of the weighted
sum-rate problem, the proposed water-filling is more gen-
eral than regular weighted water-filling. It is discussed in
Section 3.1. For the outer loop of AWCR, a variable scale
factor with parallel computation is applied to expedite the
convergence. This discussion is presented in Section 3.2.
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3.1 Generalized weighted water-filling algorithm
(GWWFA)
Being a fundamental block of the optimum resource
allocation problem for the CR-SIMO-MAC systems, the
generalized water-filling problem is abstracted as follows.
For a multiple receiving antenna system, it is given that
P, > 0, as the total power or volume of the water; K is
the total number of the users; the allocated power and the
propagation path (non-negative) gains for the ith user are
given as S; fori = 1...K, and {“zj},K:p respectively. The
generalized weighted water-filling problem under consid-
eration then reads

K

max Zm' Z log(1+a;S)),

1S 0<8i<Py, Vis S  iSi<Pe is]  je(T, i)
)

where the set {27,-}11-;1 plays the role of the weighted coef-
ficients. Note that if Z{il giP; < Py holds, the solution
to Problem (3) is regressed into a trivial case. Hence,
Zfil giP; > Py is assumed.

Due to the specific CR SIMO MAC setup considered as
well as the inclusion of arbitrary weights {#;}, the problem
structure (9) is novel. It is easy to see that if a;; = 0, as
i # j,and P; >> 0, Vi, then the problem (9) is reduced into
the conventional weighted water-filling problem. Further,
if equal weights are chosen, it is reduced into the conven-
tional water-filling problem, which can be solved by the
conventional water-filling algorithm [12].

To find the solution to the more complicated gener-
alized problem above, the generalized weighted water-
filling algorithm (GWWFA) is presented as follows. Let

1 X
Alzgzn]ﬂll, i=1,...,K. (10)
J=1
Utilize a permutation operation 7 on {};} such that
Axl) = Ax@) = = Ay > 122(
K (11)
1 n,-a,-i
vy = — ——— >0 =A ,
| gi Z 1+ a;P D
j=i /
where P = Zle Py. Define function J;(s;) as
I i=1,...,K. (12)

1
Ji(s)) = éjz Z m,
j=i /

It is easy to see that the function J;(s;) is strictly monoton-
ically decreasing and continuous over the interval

1
(—mjn{|aji > 0} ,oo) .
;o aj

The steps of the GWWFA can be described as below.

(13)
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Algorithm GWWFA:

(1) Given & > 0, initialize Amin and Amax.
(2) Set A = O‘min + Amax)/z
(3) If xfalls in the interval [ Az (iy1), Ax (i), where

. o . () (0)
1 <i < K, initialize the point [sﬂ(l), . ,sﬂ(l.)] and
compute
(n+1) (n+1)
Sa) 7 Sx
(n) (1)
| S0 (Sﬂﬂ)) —* w o <S”(1>> —4
TEOT T w0 T T
(1) \Sz(1) LIORGEZ0)
(14)
Then increase the iteration from n to n + 1. Repeat
the procedure in (14) until the point [57(1"()1) o sz”(’l)]

i [ @)
converges. Denote lim, [Snn<1>~ . ‘,s;(l)} by [s;(l), . ,sj;(i)} .
Let [55 - 53] =0 B0,
(4) If Zle gks/’: — Py > 0, then Apip is assigned A;
if YK 8ksg — Pr < 0, then Amay is assigned A;

It YK, 8kSy — Py = 0, stop.
(5) If [Amin — Amax| < &, stop. Otherwise, go to step (2).

Remarks 3.1. Note, in (1) of the GWWTFA, that the
initial Ayin may be chosen as Ay (x+1), and Amax may be
chosen as Az (q).

In (3), for the initialization of S;O()k), first, we may choose
an interval, such as [ 0, P; ()], and use the secant method
or the bisection method [24] over the interval to com-
pute, in parallel, an approximate solution to the system
Jxk) Sz(ky) — & = 0,Vk. Hence, only through a few loops
(2 Tlogy Pry] + 1 loops), |eol, as an absolute error
between the accurate solution and the approximate solu-
tion obtained by the method above, is less than 0.5. The

initialization of S;O()k), for k = 1,...,i, is assigned by the
above approximate solution. Let (e,);r = Sy*r(k) — sf:'()k),

where ](s;‘[(k)) — A = 0. It is seen that

1 .2
Sty VY k) 1
(0 Sy~ (€)) 1+a5. 1057

K
2 jmr (k) (ta;

2
(en+1)k = (en)k TR
ZK S VY k)

= K) (1, g (5% g = (€n)i)?

= (en)lz(pm
(15)

where 0 < p, < 1. It can be observed that 0 <
(emik < (eo),%m and then {sj(rnglz)}fn":l uniformly converges,
as 0 < (eg)r < 1071° (machine zero), Vk. That is to
say, the absolute error between the approximate solution
and the accurate solution is the machine zero within 6



He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:80
http://asp.eurasipjournals.com/content/2013/1/80

loops. Thus, the optimal solution (57*1(1), .
obtained in parallel, within finite loops.
Denote a function

,57*1(1.)) can be

0, x<0
Xg=1% 0<x=<a (16)
a, x > a.
Then define G(1) as
al _1 Prry
G = Y gnity (T @), - (17)

k=1
Since J (k) (Sx(k)) is strictly monotonically decreasing and
continuous over the interval, so are ];(}() (A) and G()) over
the corresponding interval(s). Due to G(Azx+1)) > Pt
and G(Ar(1)) < Py step (4) can make A converge such
that G(A) = P;. Optimality of the GWWFA is stated by
following proposition.

Proposition 3.1. For (9), its optimal solution can be
obtained by the GWWFA.

Proof of Proposition 3.1. From the third item of (4) in
the GWWFA and (5), G(A) = P;. Then

K L \PR)
kX;gnao rao®),  =Po

Since there exists ip (1 < ig < K) such that A €
[)»ﬂ(i0+1),)\.ﬂ(io)], ﬁn(j) =0and ﬁn(j) = kﬂ(j) — A > 0hold
asj=1,... ,io,wehaveﬁn(j) = A—Az() > Oandﬁn(j) =0

(18)

asj =1ip+1,...,K. Therefore, there exists the solution

K

st = 0780007 (19)
and the Lagrange multipliers A, {&n (k)} and {i; )} men-
tioned above such that the KKT condition of the prob-
lem (9) holds, where the A corresponds to the constraint
Zle gksk < P, and {ﬁn(k)} and {it; )} correspond
to the constraints {s;xy > 0} and {syy =< Prih
respectively.

Since the problem in Proposition 3.1 is a differentiable
convex optimization problem with linear constraints, not
only is the KKT condition mentioned above sufficient,
but it is also necessary for optimality. Note that it is eas-
ily seen that the constraint qualification (the CQ) of the
optimization problem (9) holds. Proposition 3.1 hence is
proved.

Remarks 3.2. To decouple the variables in the objective
function of the problem (3), a sum expression is acquired
by adding the objective function, just mentioned, K times.
Then the sum expression is operated, by one variable
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being selected as an optimized variable with respect to
the others being fixed. Thus, from the expression (3), the
problem (20),

K i

max Z n;

. log (1+ G (G’ 1),
(S 0<8<Py, YU @iSi<Pr 1] =1

(20)
is implied as follows:
Since
K K B
Y Y nilog|Co+ Y hhS;+ Y hilyS,
j=1 i=1 lef1,...iiN) ke(L,.oin\{j}
K K
=Y miy log1+ > GiG.S|
=1 j=1 le{1,...i)NE)
K K B
+Y ) [Cot+ Y. hihyS,
=1 j=1 ke(Li\{j}
(21)
where Sy, Vk, is fixed and
_1
2
Gy=hi |G+ > hinS| vl o (22
ke(L.i\{l}
the optimization problem
K K
max ni
(S 0=Sk <Py, Yy &Sk <Ps FZI i1
x log |Co + Z thhZS; + Z h;;hkgk
le{1,....iiN4) ke(L,...,iN\{j)
(23)

is equivalent to the problem below:

K

i
max Z n; Zlog (1 + Gy (Gﬂ)T S[) .

(S 0=8=P, YK &Si<P =] =1

If the CR SIMO weighted case is generalized to the CR
MIMO weighted case, it is still an open question whether
there exists a fast water-filling solution like the algorithm
mentioned above.

3.2 Algorithm AWCR and its implementation

The proposed Algorithm AWCR, which is based on the
combined problem of both the MIMO MAC and the CR
network, is listed below.
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Algorithm AWCR:
Input: vector h;, ¥ =0, i=1,...,K;n=1.

(1) Generate effective channels

(n) + n-1)\"
1,..., K, where the superscript with a pair of bracket,
(n), represents the number of iterations.

[SIT

, fori=

(2) Treating these effective channels as parallel,
noninterfering channels, the new covariances

~ o 1K
{SE”) } _, are generated by the GWWFA under the
=
K

sum power constraint P;. That is to say, {Eg") }iil is
the optimal solution to (24):
K i
max Z ni Z
(s 0=Si<Pi, YK, @iSi<P: i =1 (24)

log (1 +6 (6") s,) .

Note that (24) is similar to (20), only Sf"_l) and Gl(].”)
in the former take place of S; and Gy in the latter,

respectively, for any i, , /.

(3) Update step: Let y ™ and p*~V denote the newly
obtained covariance set and the immediate past
covariance set, respectively,

s 2 (Sgn),ggn),...j}(”)) and
P 2 (s 5D, o).

Let

B* =max{,81|ﬂ1 € arg max
1/K,1
Bel1/K 1] (25)

£ (Br™+a-ppm) } :

as the innovation, where the function f has been
defined in (3). Then, the covariance update step is

P = (Si”),s;”% . .,s}?) = By (1 — ) pD,
(26)

The updated covariance is a convex combination of
the newly obtained covariance and the immediate
past covariance.

(4) Increase the iteration from n to n + 1. Go to (1) until
convergence.

Note that the new algorithm employs variable weight-
ing factors, which are obtained to maximize the objective
function and to update the covariance.
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Y ¢
In this section, the optimality of {SE")}, . has been
=

~ K
proved, i.e., {S;")}' ) is the solution to (20), by
Proposition 3.1. =

Remarks 3.3. Due to the objective function
f(,B)/(”) —|—(1—,3)p(”_1)) in step (3) of Algorithm
AWCR being (upper) convex, i.e., being concave, in
the scalar variable B, for computing the maximum
solution to the corresponding optimization prob-
lem, we can choose finite searching steps with even
fewer evaluations of the objective function. Without
loss of generality, the objective function in step (3) is
evaluated at the four points {ﬁ = %, % + % (1- %) ,
++4%(1— #) and 1} by parallel computation to deter-
mine B*. That is to say, this parallel operation can be
distributed to and carried out by multiple processors
(for example, four processors) at the base station, in
order to expedite convergence of the proposed algo-
rithm. Finally, the obtained satisfying solution is then
distributed or returned to the corresponding secondary
users.

4 Convergence of Algorithm AWCR

There are two methods by either of which convergence
of the proposed algorithm can be proved. The first
method is to utilize convergence of Algorithm AWCR
with g* = i (refer to [25]) and the innovation, as
a spacer step, by Zangwill's convergence theorem B
( [26], p. 128). However, we will then still need to prove
Algorithm AWCR with g* = i, as a basic mapping, to
satisfy the closedness condition of Zangwill’s convergence
theorem B. This point requires much explanation and
an abstract proof. As an alternative, the second method
which is more intuitive than the first method is used. The
fixed point approach proposed in this article could also be
generalized to solve other problems.

In this section, utilizing results from Section 3.1, con-
vergence of Algorithm AWCR will be strictly proved
under a weaker assumption. Note that, due to the
power constraint being coupled between the optimiza-
tion stages of (20) with the weighted coefficients in
the objective function while being decoupled between
the optimization stages of the MIMO-MAC case with-
out the weighted coefficients, usage of the water-
filling principle in the former is different from that of
the latter.

4.1 Convergence proof of the proposed algorithm

In this article, as a more general model, we eliminate
the assumption in [9] that the optimal solution is unique
to prove convergence of the proposed algorithm. To the
best knowledge of the authors, this is one of the pro-
posed novelty for convergence of this class of algorithm
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with the spacer step ( [26], p. 125). Since our conver-
gence proof is based on more general functions including
an objective function and a few constraint functions, it
will also enrich the optimization theory and methods.
It is assumed that a mapping projects a point to a set.
First, two concepts are introduced. The first concept is
of an image of a mapping (or algorithm) that projects a
point to a set; the second one is of a fixed point under
the mapping (algorithm). Then, two lemmas are pro-
posed, followed by the convergence proof of the proposed
algorithm.

Definition 4.1. (Image under mapping or Algorithm
A) (seee.g., [26], p. 84). Assume that X and Y are two sets.
Let A be a mapping or an algorithm from X to Y, which
projects from a point in X to a set of points in Y. If the
point in X is denoted by x and the set of the points in
Y is denoted by A(x), then A(x) is called the image of x
under A.

Definition 4.2. (Fixed point under mapping or Algo-
rithm A). Let A be a mapping or an algorithm from X to
Y. Assume x € X. If x € A(x), x is said to be a fixed point
under A.

Note that (20) can be changed into a general form:

L
[Si ] € ar max
i=1 {Si}{'(:liofstﬁph Z{ilgz’SiSPz
K i ) (27)
Z ni Z log (1 + ng’” <Gl(,],")) Sj) ,
=1 j=1

due to the condition of the optimal solution uniqueness
being removed. Further, corresponding to this change,
step (2) of Algorithm AWCR will be carried out in this

K
way: given a feasible point {S;") } X its image under step
i

(2) of Algorithm AWCR is a set o?points. A point in this
set is chosen arbitrarily as the next point {Sgnﬂ) }K | gen-
erated by Algorithm AWCR. Thus, Algorithm AWCR can
generate a point sequence under this change. In the fol-
lowing, we will still call this algorithm Algorithm AWCR
despite the changes. The feasible set is denoted by V;.
For any convergent subsequence, whose limit is denoted
by St,...>SK), generated by Algorithm AWCR, we may
use the following lemma to prove that the limit is a fixed
point under Algorithm AWCR, when Algorithm AWCR is

regarded as a mapping.

Lemma 1. A point is the limit of a convergent sub-
sequence of the point sequence generated by Algorithm
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AWCR if and only if this point is a fixed point under
Algorithm AWCR.

Proof. See Appendix 1. O

Lemma 2. (Sy,...,Sx) € V4 is a fixed point under
Algorithm AWCR if and only if (S1,...,Sx) € V; is one
of the optimal solutions to the problem in (3).

Proof. See Appendix 2. O

Based on the lemmas above, we obtain the conclusion
that Algorithm AWCR is convergent. At the same time,
step (3) of Algorithm AWCR is then regarded as a com-
putation for a point. With these lines of proofs, Algorithm
AWCR generates a point sequence and every point of the
point sequence consists of the K non-negative numbers,

e.g., (Sg"), e S}?). The details are described below.

Theorem 4.1. Algorithm AWCR is convergent. At the
same time, the sequence of objective values, obtained by
evaluating the objective function at the point sequence,
monotonically increases to the optimal objective value.

Proof. Due to compactness of the set of feasible solu-
tions for the problem in (3), the point sequence generated
by Algorithm AWCR already includes a convergent sub-
sequence. For every convergent subsequence, according
to Lemma 1, the convergent subsequence must converge
to a fixed point under Algorithm AWCR. Then, according
to Lemma 2, it converges to one of the optimal solutions
to the problem in (3).

In addition, conversely, as stated by the sufficient
and necessary conditions of Lemmas 1 and 2, for
any optimal solution to the problem in (3), there is
a point sequence generated by Algorithm AWCR such
that the point sequence converges to that optimal
solution.

With Algorithm AWCR generating the point sequence,
the definition of Algorithm AWCR and (30) in Appendix
1 imply that the sequence of the objective values, obtained
by evaluating the objective function at the point sequence,
monotonically increases to the optimal objective value.
This is due to (30) and any convergent subsequence of the
point sequence converging to one of the optimal solutions
to the optimization problem in (3).

Therefore, Algorithm AWCR is convergent.

To reduce the cost of computation, (20) and (25) in
Section 3 may utilize the Fibonacci search. To improve
the performance of the algorithm and reduce the cost of
the computation, the objective function in step (3) of the
AWCR can be evaluated at the four points mentioned in
Remark 3.3, by parallel computation to find the estimate
of B* of (25). O]
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5 Numerical results and complexity analysis

In this section, numerical examples are provided to
illustrate the effectiveness of the proposed algorithm.
For comparison purpose, a regular feasible direction
method utilizing the gradient [27] in the optimiza-
tion is chosen. It is denoted as Algorithm AFD. Note
that, as a benchmark and a feasible direction method,
the Algorithm AFD can also generate a sequence of
feasible points (as a feasible point algorithm). It is
easy to set up a stop criterion of computation for
a feasible point algorithm, especially for a mono-
tonic feasible point algorithm like the proposed one.
Due to the feasible set being a convex polygon, the
recently developed AFD algorithm is used as a ref-
erence. We didn't select [18] for comparison since
the primal-dual algorithm used in [18] is not a feasi-
ble point method; in addition, the assumption of the
constrains is different and system model is different,
too.

Figures 2 and 3 show the evolution of the weighted
sum-rate values versus the number of iterations for
AWCR and AFD for some choices of the number of
users (K). In the calculation, the number of anten-
nas at the base station (m) is set to be 4. Chan-
nel gain vectors are generated randomly using random
m x 1 vectors with each entry drawn independently
from the standard Gaussian distribution. {P} is the
set of randomly chosen positive numbers. The sum
power constraint is P, = 10dB. A group of dif-
ferent weights are also generated randomly. In these
figures, the cross markers and the diamond markers rep-
resent the results of our proposed Algorithms AWCR
and AFD, respectively. These results show that the pro-
posed Algorithm AWCR exhibits much faster conver-
gence rate, especially with an increasing number of
users.

Let f* be the maximum sum-rate, f" the sum-
rate at the nth iteration and [f" — f*| the error in
the sum-rate. Figures 4 and 5 show the correspond-
ing error in the sum-rate versus the number of itera-
tions. Note it is easy to see that using the fixed-point
theory of the proposed Lemma 2 one can determine

—0.3864 + 0.3319; —0.6040 + 0.3786i 0.3432 4 0.0937i
—0.5987 — 0.6389i —0.8495 + 0.3909; —0.4211 + 1.1264¢ 1.0855 — 0.4820:

—0.1742 + 0.0254¢ —0.0848 — 0.1440; —0.1058 + 0.7201i —0.4288 — 0.7245i
—0.0462 — 1.4526i —0.3074 — 1.1175i —0.9527 — 0.8728i

ottt -
(f b 1o m}) =
0.4688 — 0.4437i

and
(], b 1, i, ) =
0.2042 — 0.8059i
—0.3036 — 0.1493i 0.2623 — 0.4253i

0.0395 4 0.8416; 0.5150 + 0.3897i
—0.2601 — 0.7893i 1.4935 — 0.7777i
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the maximum sum-rate f* mentioned. As shown in
these figures, the algorithms converge linearly. The pro-
posed algorithm exhibits a much larger slope in the
sum-rate error function, which translates to a faster
convergence rate.

We can further observe that the convergence rate of
the proposed algorithm is not sensitive to the increase
of the number of users. For clearly understanding,
we define

Nawcr 2 min{n| |[f? — f*| < ef*, asj > n},

where the point {(j,f¥)} is generated by the AWCR and
€ = 1073 without loss of generality; Napp is simi-
larly defined but generated by the AFD. Each of these
numbers can be regarded as the required number of
iterations for the corresponding algorithm. We simu-
late different selection of K, and list the corresponding
Nawcr and Napp in Table 1. We can observe that in
the simulated range, using the proposed algorithm, the
required number of iterations for convergence is about 2,
whereas for the AFD, the required number of iterations is

much larger.
Since the AFD and the proposed algorithm use the

same matrix inverse operations, which consist of the
most significant part of the computation, to compute
the gradient of the objective values, both algorithms
have similar computational complexity O(m3) in each
of the iterations (refer to [28]). This is because for a
m X m square matrix, its inverse needs mm? — 1) +
m(m — 1)2, i.e., O(m?3), arithmetic operations; its deter-
minant needs %mg + m, ie, O(m3), operations (the
Cholesky decomposition approach is used for efficiency
and our objects). Thus, since these operations are used
with finite times, it is easily seen that, for each iteration,
computational complexities for both AFD and AWCR
are O(m?®).

Also for conveniently checking the algorithms, deter-

ministic instances are chosen as n; = ﬁ,‘v’k, P, =
k=1
10dB and P; = 9dB, Vi, and the channel gains are

randomly generated as

—0.0561 — 0.0556i

—0.3288 + 0.4492i —0.9598 + 0.0608; —0.9767 — 0.2270i 1.3841 — 0.8709i

—0.7231 — 1.41744 0.2231 + 0.8744¢ 0.3568 + 0.7465i
0.7339 — 0.3487i 1.0983 — 0.4464¢ 1.3184 — 0.0801i ’
—0.2756 + 0.3267i 0.5006 — 1.6442i —0.2403 + 0.2682i



He et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:80
http://asp.eurasipjournals.com/content/2013/1/80

Page 10 of 15

K=10 K=15
10 ; 12 '
X X X X X X X X
Q-X 7 ] 11} XX X X X X X X Y
X
o x  AWCR(Proposed) ° 10t : : E
3 8| O AFD - x  AWCR(Proposed)|
IS O S & AFD
3 7} o 3
5 ¢ b= 8t 7
5 ’ 5 0 °
g 61 6) 1 g 77 6 T
Qo <> o 6 . <> i
= 5f : 1 = o
o o
o 0 o gl ¢ |
= =) :
© 4t . - ©
> > ¢
o al , ]
| - ¢
3 3l 7 |
¢
2 - 2 -
0 5 10 0 5 10
Iteration Iteration
Figure 2 Weighted sum-rates (unit: bits) of AWCR and AFD, as K = 10 and 15.

for K = 4 and K = 5, respectively. Let the normalized
covariances of Cy be the identity matrix. The calculated
weighted sum-rate is plotted as a function of the iterations
in Figure 6. It is shown that Nawcr = 1, keeping the same
least value for both cases; and Napp = 10and 12 as K = 4
and K = 5, respectively.

6 Conclusion
The proposed algorithm AWCR, as a class of iterative
water-filling algorithms, is used to solve the problem of
the weighted sum-rate for the MIMO-MAC in a CR net-
work. By exploiting the concept of variable weighting
factor for covariance update, together with the machinery
of distributed and parallel computation, the proposed
AWCR algorithm can greatly speed up the convergence
rate of the weighted sum-rate maximization computa-
tion. The required number of iterations for convergence
exhibits non-sensitivity to the increase of the number of
the users. Furthermore, a novel GWWFA, as a fundamen-
tal block of the proposed algorithm, is proposed.
Convergence of the proposed algorithm is strictly
proved by the designed fixed point theory. We present an
equivalent optimality condition by Lemma 2, i.e., a point is
one of the optimal solutions to the problem of maximum
weighted sum-rate for the MISO-MAC in the CR network

if and only if the point is a fixed point of the AWCR. In
the derivation, for more general problems, the assumption
used in [9] that the optimal solution is unique to prove
the convergence could be eliminated. Numerical exam-
ples are presented to demonstrate the effectiveness of the
proposed algorithm. In the simulated range, the required
number of iterations for convergence is shown to be fixed
at two, which is a significant reduction compared with the
conventional algorithms.

Appendix 1
Proof of Lemma 1
Note that in the following proof, we use the notation # to
stand for the number of iterations for convenience.

The necessity is proved first. For the limit (S, ..., Sk)
of any convergent subsequence, there is a convergent sub-

o0 o0
sequence {(Si"k), ... ,S;?k))}k . (C {(S(”), ... ,S;?) } 0)
—| n=
such that

(51, ,SK) = limg 0o (ST, ..., S\)), where

[ s)

is the point sequence generated by Algorithm AWCR.
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Assume (S"g""ﬂ),...,g}?kﬂ)) € argmaxs,, . sgeV,
YR LSETR, ST, 8, ST, L, S\)) from the defini-

tion of Algorithm AWCR. The definition of Algorithm
AWCR implies that
K Sn+1
Zi:lf(sﬁn)’ s ’Sz(f)l’sz(n )’Sgi)l’ te ’Sgl)) (28)
- K S(Vl) S(”) S S(”) S(”)
=2 i SSTHS T S S S

for any n and (S1,...,Sk) € Vy. Replacing n with ng, we

obtain:
K (n) (i) S(me+1)  o(ng) (1)
AT I A e
n n n n
> YK P, s s, s, s,

We have the following relationships:

1 1 1 1 1

FD, SO0, S S, s
zf(K,;; (Sin)’ (n) S » %((Sf) . ) S <))>)

n n n n n

=fQizi xS S S; ) »Sig1r Sk )

FXEL s s s )

1 K n (n (n) on (n

e X(:§=1f(51( )’""Si—l’Si »Six1re 0 SK)

=f(S)", ... 8.

IV v

Among the relationships mentioned above, the first
inequality and the first equality hold due to step (3) of
Algorithm AWCR; the second inequality results from the

function f being concave; the third inequality and the sec-
ond equality are true because of step (2) of Algorithm
AWCR, ie., the definition of (S"*V,...,S¥+V).
Thus, f (SY'), ceos S}? ) is monotonically increasing with
respect to #, and
S, 80y < LYK ps™, 8",
S(m+1) o(n) (1)
S8 S
< f(SUHY, sty

(30)

From (30), we obtain:

= 1
LSS, ST, 5D S L S) < K

(S sUFYY From (29), we acquire:

(1
S SRS, S
n n n, n

> YK AU, s s, s sy,
Hence, it is true that Kf(Sink“), e S;?k“)) >
SR AT, S S, ST, SU). Letting k
approach infinity, we may acquire that

Y fGr S0 = Ky, 86

> 3K FGS1 ., 8im1, 80841, -5 SK),
where V(S1,...,8K) € V. Thus,
Eslx cee SL() € argmaxs,,..,Sx)eVy, Zfilf(slﬁ . rSi—lv Sir
Sit1r- - SK)-
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Table 1 Comparison of the convergence rate

K m=4 m=4

Nawcr Narp
10 1 27
15 2 39
20 2 54
25 2 65
30 2 79
50 2 133
60 2 159
80 2 n/a
100 2 n/a
110 2 n/a

Note that the set arg maxs;,....s)ev; Z{i]f@l» Sl
S:,Si+1,...,Sg) does not need to be a single-
point set. However, we may choose (Si,...,Sk)
as one of the optimal solutions to the problem
ey 8i—1, 85, Siv1,. .., SK). This
corresponds to step (2) of Algorithm AWCR. Further,
S1,...,8¢) = B*(S1,...,80) + A — BH)(S1,...,8K),
based on the choice of the optimal solution mentioned
above. This corresponds to step (3) of Algorithm AWCR.
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Therefore, resulting from the two correspondences
mentioned above and the definition of Algorithm AWCR,
it is true that (Sy, ..., Sk) is a fixed point under Algorithm
AWCR, which is viewed as a mapping.

The sufficiency will be proved as follows:

If (S1,...,Sk) is a fixed point under Algorithm
AWCR, it is seen that if (S(O),...,S;?)) is denoted by
(S1,...,8x), then (81V,...,80) = (S1,...,5k), ie,
the former is assigned by the latter, due to (Si,...,Sk)
being a fixed point under Algorithm AWCR. If it is
assumed that (SY'), . ..,S}?)) (S1,...,8k), then

(n+1) (n+1) < < < <
(Sl ""’SK ) (81,...,8k) due to (Sy,...,8k)
being a fixed point under Algorithm AWCR. Accord-
ing to the principle of mathematical induction,
S",...,8¥) = (51,...,5k) € Vg Vn. Furthermore,
lim,Hoo(Sin), ... ,S}?)) = (S1,...,Sk) € V. Therefore,
the sufficiency is true.

Note that in the proving process above, we do not have
the following assumption:

GBS0 = lim (57, s,

Appendix 2
Proof of Lemma 2
The necessity is proved first.

K=4 K=5
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¢
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Figure 6 Weighted sum-rates (unit: bits) of AWCR and AFD, as K = 4 and 5.
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According to definition of Algorithm AWCR, it is easily
known, for the fixed point (Sy,...,Sk) € Vy, that

(S1,...,SKk) € maxcs,, sq)ev,
x YK FS1. . 8im1, 8, Sis1, - -
Sk € Vy.

. ng); (31)

where (S1, . .

Since (31) is a convex optimization problem with a con-
cave objective function, noting the optimality condition
(refer to [29], Proposition 3.1), which is necessary and
sufficient for (31), of the convex optimization problems,
formula (31) implies that

(s 51> »5) oS5 (S1r- - 5)) -

) o (32)

((S1=581)..., Sk —Sk))” =0,
where, V (S1,S,...,8k) € V,;, we denote a transpose of
the gradient with respect to the variables S; of f by the row
vector fs,.

It is seen that formula (32) is just the optimal condition
of the optimization problem (3). Therefore, the fixed point
(S1,...,Sx) € Vy is one of the optimal solutions to the
problem in (3).

The sufficiency will be proved as follows:

SR FSL 81,8, S, - Sk)
=KY K, 21, 821,80, Siets -+, SK)
<Kf(#(S1,. .., Sk) + 5281, ., 86)
< Kf(S1,...,8K) = Xk 1 f(S1,-- -, Sk).

Among the relationships mentioned above, due to
(S1,...,8k) € Vy, the first equality holds; because the
function f is concave and the set of feasible solutions V; is
convex, the first inequality holds; since (S, ..., Sx) € Vy
is the optimal solution to the problem in (3), the second
inequality is true.

Hence, Zf:lf(sl, oS, S5 Sit s - -

K G, 8K), (S, .., SK) € Vy.

According to definition of the optimal solution to (20)
mentioned above,

5 SK) <

< < K
(Sl’ cee SK) € arg maxs;,...,Sg)eVy Zi:l

f(§1) ce )gifl,sir§i+l, e ,EK)'
According to steps (2) and (3) of Algorithm AWCR,
(81,...,8x) € V, is a fixed point under Algorithm

AWCR.
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