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Abstract

Bi-static passive synthetic aperture radar (SAR) systems using ground broadcast and wireless network signals suffer
from a low spatial resolution due to the narrow bandwidths and low carrier frequencies. By exploiting multiple
distributed illuminators, multi-static passive radar has the possibility of producing high-resolution SAR images. In this
paper, a two-stage image formation approach, which combines the Fourier transform and sparse reconstruction
strategies, is proposed to process multi-static SAR data. This method exploits the group sparsity of the sparse scene,
i.e., the observations associated with different bi-static pairs share the same support of the sparse scene but correspond to
aspect-dependent scattering coefficients. Such observations are described as a number of generally disjoint sub-bands in
the two-dimensional spatial frequency domain. In each sub-band, the sampling satisfies the Nyquist criterion, whereas
different sub-bands are sparsely distributed. In the proposed approach, Fourier-based reconstruction is applied to the
sub-band data to produce the coarse-resolution images, which are then combined to produce a high-resolution image
through the exploitation of sparse reconstruction techniques. The proposed approach greatly improves the imaging
quality as compared to Fourier-based reconstruction, whereas it exhibits significant reduction of the computational
complexity when compared to direct application of sparse reconstruction techniques. The exploitation of block
sparsity-based techniques also permits practical treatment of the angle-dependent target scattering characteristics in
SAR image reconstruction. The advantages of the proposed approach are delineated using analysis and simulations.
1 Introduction
Passive radar encompasses a class of radar systems
that detect and track objects by processing reflections
from noncooperative illumination sources of opportunity
in the environment, such as commercial broadcast
and communications signals [1-3]. Due to the inherent
narrow signal bandwidth and low carrier frequency
properties of the transmitted signals, passive radar often
suffers from low spatial resolution [4]a. This makes
object identification a challenging problem. Multi-static
passive synthetic aperture radar (SAR) employs multiple
physical transmitters and a moving receiver with a
synthetic array aperture to provide a higher number
of independent measurements and hence enables
high-resolution image formations. From a tomographic
perspective, the collected data reflected from the scene
provide samples of the Fourier transform of the reflectivity
of the target in the two-dimensional (2-D) spatial frequency
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(wavenumber) domain [5]. Therefore, SAR image
formation can be considered as an image reconstruction
from its Fourier-sampled data.
In the literatures, there are two types of algorithms

that produce image from Fourier samples. One is based
on classical linear reconstruction techniques, such as
backprojection [6,7] and direct Fourier reconstruction
[8,9]. These algorithms are scene-independent and,
therefore, widely used in practical applications due
to their simplicity. They, however, require that the
data are sampled at the Nyquist rate. When the data
are undersampled or otherwise missing samples are
present, the system is underdetermined from the linear
reconstruction viewpoint. In this respect, the resulting
image suffers from undesired artifacts and high sidelobes.
To solve this problem, nonlinear reconstruction

techniques, particularly sparse reconstruction or com-
pressive sensing, have been proposed in recent years
[10,11]. Sparse reconstruction can accurately reconstruct
a sparse scene with very fewer Fourier samples, provided
that the restricted isometry property (RIP) is satisfied
[12,13]. Improved SAR imaging is achieved by using the
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sparse Bayesian learning algorithms that are based on
relevance vector machine [14,15]. Such techniques,
however, may become difficult to implement for processing
a large scene because of the very high dimension of the
associated dictionary matrix.
In this paper, we propose a hybrid SAR imaging

technique that combines the Fourier transform-based
approach with the group sparse signal reconstruction
methods [16]. As such, the proposed technique achieves
high-resolution imaging with a significantly lower
computation costs. We first demonstrate the block
sparsity of the Fourier domain samples in a multi-static
passive SAR. That is, the Fourier sampling patterns
contain a number of generally disjoint sub-bands in
the 2-D spatial frequency domain. In each sub-band,
the sampling satisfies the Nyquist criterion, whereas
different sub-bands are sparsely distributed. By exploiting
this property, we propose a two-stage image formation
approach which combines the Fourier-based imaging
and sparse signal reconstruction strategies. Since the
sampling satisfies the Nyquist criterion in each sub-band,
Fourier-based reconstruction is applied to produce the
coarse-resolution images, which are then combined to
produce a high-resolution image through the exploitation
of group sparse reconstruction techniques. Because the
final SAR image is constructed through sparse signal
reconstruction, the proposed approach can avoid the
artifact effect in Fourier-based reconstructions due to
disjoint and sparse sub-bands. On the other hand, because
the sparse construction is separately applied to segmented
scene areas, it exhibits significant reduction of the
computational complexity when compared to direct
sparse reconstruction. The exploitation of group sparsity-
based techniques also permits practical treatment of the
angle dependency of the scattering characteristics in SAR
image construction.
The remainder of this paper is organized as follows:

Section 2 presents the signal model for multi-static
passive SAR; in Section 3, we examine the relationship
between radar performance and radar configurations; in
Section 4, a two-stage image formation algorithm is
proposed to perform multi-static SAR imaging; and
finally, in Section 5, we validate the effectiveness of
the proposed approach by simulation experiments.

2 Multi-static passive SAR
In this section, we first introduce the tomographic
interpretation for a bi-static passive radar pair and
then extend the model to a multi-static radar case.

2.1 Bi-static radar
Consider a bi-static radar data collection geometry as
shown in Figure 1a. For the clarity of analyses, we
consider the 2-D geometry without loss of generality,
but the results can be easily extended to the 3-D case. In
this geometry, the center of the interested scene is defined
as the origin of coordinate system, while the positions of
transmitter and receiver are determined by their polar ra-
dius and polar angle, i.e., [rTc, θT] and [rRc, θR], respect-
ively. We assume that an arbitrary point target is located
in the scene with coordinate (xt, yt), and its scattering
coefficient is σ. The ranges from the transmitter and re-
ceiver to the target are denoted by rT and rR, respectively.
Let the transmitter emit signal s(τ) = exp(i2πfτ) to

illuminate the service area. The receiver receives the
signal scattered from the target. After demodulation,
the received signal can be expressed as

r τð Þ ¼ σ⋅ exp −i2πf
rT þ rR

c

h i
; ð1Þ

where c is the velocity of light.
After motion compensation to the scene center, it

becomes

r̂ τð Þ ¼ σ⋅ exp i2πf
rTc þ rRc−rT−rR

c

h i
: ð2Þ

Assume that the target point is close to the scene origin
and that transmitter and receiver are in the far field region
of the scene. In this case, the wave front is planar and (2)
can be written as

r̂ τð Þ ¼ σ⋅exp i
2πf
c

xt cosθT þ cosθRð Þ þ yt sinθT þ sinθRð Þ½ �
� �

¼ σ⋅exp i xtkx þ ytky
� �� �

;

ð3Þ
where

kx ¼ 2πf
c

cosθT þ cosθRð Þ

ky ¼ 2πf
c

sinθT þ sinθRð Þ
ð4Þ

are the spatial frequencies in the x and y directions, respect-
ively. They can also be conveniently expressed in the polar
format:

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ 4πf

c
cos

θT−θR
2

	 

;

θb ¼ atan
ky
kx

	 

¼ atan

sinθT þ sinθR
cosθT þ cosθR

	 

¼ θT þ θR

2
:

ð5Þ
From (3), it is clear that the data after preprocessing,

i.e., r̂ τð Þ , is essentially a sample in the wavenumber
domain of the target. The sample position is determined
by the azimuth angles of the transmitter/receiver and the
frequency of transmitted signal. As illustrated in Figure 1,
the azimuth angle of the transmitter and the signal
frequency respectively determine the position and size of
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Figure 1 Data collection geometry and sample position in the wavenumber domain for a bi-static radar. (a) Data collection geometry.
(b) Sample position in wavenumber domain.
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the red circle, whereas the azimuth angles of the
transmitter and receiver determine the dash line.
Then, the sample position is the intersection of the
red circle and the dash line.

2.2 Multi-static passive SAR
From the above analysis, we know that the data collected
by an individual bi-static radar pair with a single frequency
illuminator provide a single sample in the wavenumber
domain. For a general multi-static passive SAR where
multiple transmitters and/or receivers are used, we can
obtain different samples in the wavenumber domain
due to space and frequency diversity. They provide the
opportunity to reconstruct the scene with an improved
resolution. The respective offerings of multiple transmitter
and receivers are summarized below.

2.2.1 Transmitter diversity
Multi-static passive radar with multiple transmitters can
provide both space diversity and frequency diversity. In
general, a passive radar uses multiple spatially separated
commercial illuminators of opportunity as the transmitters.
The observations from different directions by exploiting
these different illuminators can provide the space diversity,
whereas the frequency diversity in multi-static passive
radar is achieved as these illuminators are usually operated
at different carrier frequencies.

2.2.2 Receiver diversity
Multiple apertures located at different positions can
provide space diversity. These multiple apertures can be
either physical or synthetic. For airborne radar, typically
for SAR, the synthetic apertures can be obtained by
exploiting the motion of platform.
Now, we consider the signal model in the multi-static
passive radar. Without loss of generality, we assume J
illuminators, each being operated at a different carrier
frequency. We assume that the jth illuminator transmits
a signal with bandwidth Bj and carrier frequency fcj. The
airborne receiver receives the scattered echo from
the scene at a constant repeat time interval. During
the coherent processing interval (CPI) corresponding
to an accumulated angle Δθ, it collects K sample sets
at K different azimuth positions. Each sample set contains
the scene echo corresponding to the J illuminators.
Because different carrier frequencies are used, the
echo corresponding each illuminator can be separated.
From (3), we obtain the signal model for multi-static
SAR as

r j; k; lð Þ ¼ σ⋅exp i
2π f cj þ f l
� �

c
xt cosθTj þ cosθRk
� �þ yt sinθTj þ sinθRk

� �� �8<:
9=;

¼ σ⋅exp i xtk
jkl
x þ ytk

jkl
y

h in o
;

ð6Þ

where θTj is the azimuth angle of the jth illuminator; fl is
the lth sample frequency in the range of signal bandwidth,
l = 1,⋯, L; and θRk is the azimuth angle of the receiver at
the kth receive interval. In addition,

kjklx ¼ 2π f cjþf lð Þ
c cosθTj þ cosθRk

� �
and kjkly ¼ 2π f cjþf lð Þ

c

sinθTj þ sinθRk
� �

represent the spatial frequencies in the
x and y directions, respectively.
Due to space and frequency diversity, i.e., the variation

of fcj, fl, θTj, and θRk, the data collected by the airborne
multi-static SAR represent multiple samples in the
wavenumber domain. Typically, the samples with respect
to fl and θRk are dense and satisfy the Nyquist sample
requirement, whereas the samples are often sparse with
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respect to fcj and θTj. Therefore, the sample support of
wavenumber domain is often block sparse. This property
is intuitively illustrated in Figure 2. Specifically, Figure 2a
shows the geometry of a multi-static passive radar
configuration, and Figure 2b depicts the corresponding
sample support pattern.
3 Radar configuration and system performance
The performance of sparse scene SAR imaging depends
on the available degrees of freedom (DOFs) of the radar
system and the scene sparsity. A high number of DOFs
yield an improved resolution of the sparse scene. For
a band-limited signal, the number of DOFs is proportional
to the product of its time-domain duration and frequency-
domain bandwidth [17]. For a constant time-domain
duration, the number of DOFs is proportional only to the
size of frequency-domain support.
For the multi-static passive SAR, it is desirable to

increase the area of frequency-domain support in
order to achieve a good scene resolution. Toward
this end, we need to understand how the frequency-
domain support is determined by the radar parame-
ters. We first consider a single illuminator case and
assume the frequency range of the emitted signal to
be [fc, fc + B]. The accumulative angle of the receiver
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Figure 2 Illustration of the sample support pattern for multi-static SA
wavenumber domain.
during the CPI is Δθ, and the corresponding bi-static
angle ranges from 2θbc− Δθ

2 to 2θbc þ Δθ
2 .

According to the geometry depicted in Figure 2, the
size of support pattern is obtained as

S ¼ 4π2

c2
Δθ þ 2 sin

Δθ

2
cos 2θbcð Þ

 �
f c þ

B
2

	 

B: ð7Þ

It is clear from (7) that broadening of the wavenumber
domain support area can be achieved by exploiting the
frequency diversity (due to bandwidth B) and the space
diversity (due to accumulative angle Δθ). Therefore, to
increase the size of the wavenumber domain support
area, a direct way is to select the illuminators with a
high signal bandwidth and/or to increase the coherent
accumulative angle of the receiver. We also observe
from (7) that the carrier frequency of transmitted signal
and the bi-static angle also affect the size of support area.
A higher carrier frequency results in a larger support area,
provided that the bi-static angles remain the same.
That is, whenever possible, it is desirable to choose
the illuminators which are operated in higher carrier
frequencies. In addition, a small bi-static angle will
result in a large support area. In the extreme case,
the support area achieves its maximum value in the
mono-static case, i.e., when the bi-static angle is zero,
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whereas it reaches its minimum value when the bi-static
angle is 180° (θbc = 90°).
When multiple illuminators are used for multi-static

passive SAR, the total observation area provided by the
multi-static SAR is the superposition of the sub-observation
areas provided by all the available bi-static pairs. From the
point of view of Fourier reconstruction, it is desirable that
all the sub-observation areas be seamlessly mosaicked into
a large and connected area. However, this rarely occurs in
actual situations because the illuminators are usually
sparse and noncooperative. As a result, the multiple
sub-observation areas are usually disjoint and sparsely
distributed in the wavenumber domain.
Sparse distributions of the illuminators can benefit the

space diversity effects, e.g., providing the capability to
suppress the angular glint effect. However, their excessive
sparse distributions may have an adverse impact on the
high-resolution reconstruction. As discussed above, the
support area in the frequency domain of an illuminator is
closely related to the bi-static angle between the transmitter
and the receiver. If the bi-static angle is very large,
the corresponding support area becomes small, which
is detrimental to the high-resolution reconstruction.
For an airborne passive radar, the angle of the receiver
usually varies in a small interval. Consequently, if the
illuminators are excessively sparse, the bi-static angles
in some illuminator-receiver pairs will become large and
the corresponding wavenumber domain support area is
reduced. For example, Figure 3 shows two different kinds
of illuminator location configurations. In Figure 3a,
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Figure 3 Radar configurations. (a) Configuration #1. (b) Configuration #2
the spatial distribution of the four illuminators is
approximately uniform, whereas in Figure 3b, these
illuminators are located much closer to the receiver.
The wavenumber domain support areas corresponding
to these two configurations are compared in Figure 4 for a
passive SAR system with identical exemplar parameters.
In Figure 4a, the total support area is 10.3354 (rad/m)2,
whereas it becomes 17.6399 (rad/m)2 in Figure 4b.
Obviously, the configuration corresponding to Figure 4b
will have better reconstruction performance, provided that
all other parameters are equal.

4 Image formation
For the multi-static passive radar, as discussed in the
previous section, the wavenumber domain sample
patterns are block sparse, i.e., the observed support
areas are composed of a number of sparsely distributed
sub-bands. Within each sub-band, the data are sampled
at the Nyquist rate. Considering this specific sampling
pattern, we propose a two-stage image formation
algorithm, which combines the linear and nonlinear
reconstruction techniques together. In the first-stage
of image formation, we produce a series of coarse-
resolution images separately from each sub-band data
by using a linear reconstruction algorithm, since the
sub-band data are Nyquistly sampled. In the second stage,
the information extracted from the coarse-resolution
images is exploited by a group sparse reconstruction
technique to form an image with a finer resolution.
Because the second stage is applied from coarse images
iver
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Figure 4 Wavenumber domain support area. (a) Corresponding
to configuration #1. (b) Corresponding to configuration #2.
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to form a fine image, it allows the group sparse
reconstruction to be applied in segmented image areas so
as to obtain high-resolution image quality with a low
complexity. This two-stage processing strategy is illustrated
in Figure 5 and is detailed below.
4.1 First-stage image formation
From (6), it is evident that the data in each sub-band
are, in essence, group sparse samples of the 2-D Fourier
transform of the terrain reflectivity. In general, the
observed samples are uniformly spaced in the (fl, θRk)
domain. They become nonuniformly spaced when they
are mapped to the wavenumber domain (kx, ky). Therefore,
to exploit the computationally efficient algorithms such as
the fast Fourier transform (FFT), a 2-D interpolation
of the sampled data onto a rectangular grid in the
(kx, ky) domain is performed. This process is referred
to as polar format transformation [17] and is illustrated
in Figure 6.
After performing polar format transformation, the
signal depicted in (6) can be expressed as

r j; k; lð Þ ¼ σ⋅ exp i xtk
jk
x þ ytk

jl
y

h in o
; ð8Þ

where kjkx ¼ kjxc þ k− K
2

� �
Δkx ; k ¼ 1;⋯;K and kjly ¼ kjycþ

l− L
2

� �
Δky ; l ¼ 1;⋯; L are the resampled positions in the kx

and ky domains, respectively. To facilitate the following
processing, all the sub-band outputs are designed to share
the same Cartesian coordinates but with different support
centers. For the jth sub-band, the support center of the
wavenumber domain is set as

kjxc ¼
2πf cj
c

cosθTj þ cosθRc
� �

; kjyc

¼ 2πf cj
c

sinθTj þ sinθRc
� � ð9Þ

where θRc is the nominal angle of the target observed
from the receiver. Performing 2-D FFT on (8) yields a
series of coarse-resolution images, expressed as

r j; n;mð Þ ¼ σ⋅Aj n
KΔkx

−xt;
m

LΔky
−yt

 !
⋅ exp i xtk

j
xc þ ytk

j
yc

h in o
ð10Þ

where Aj(x, y) is the point spread function for the jth
sub-band data, and 1

KΔkx
and 1

LΔky
are the pixel sizes in the

x and y directions, respectively.
From (10), we can obtain a coarse estimate of target

position as

x̂t ¼
n0

KΔkx
; ŷt ¼

m0

LΔky
ð11Þ

whose respective accuracies are 1
KΔkx

and 1
LΔky

. In (11), n0
and m0 are the pixel indexes of the target location in the
x and y directions, respectively.

4.2 Second-stage image formation
Because of the narrow signal bandwidth and small
coherent accumulation angle, the image produced by
each sub-band data often has a poor resolution. However,
there are a number of such coarse-resolution images
corresponding to the available illuminators. By coherently
combining these sub-band images, therefore, the image
resolution can be improved. If all the sub-band data had
the same support and could be mosaicked seamlessly,
performing another Fourier transform across the coarse-
resolution sub-images would directly yield an image with
a higher resolution. For the multi-static passive SAR,
however, as discussed in the previous section, Fourier
reconstruction may not yield desirable imaging perform-
ance with a high resolution and low sidelobes because
the sub-bands are sparsely distributed in the wavenumber
domain. In addition, to obtain the phase information
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underlying the Fourier reconstruction, one must assume
that the target scattering coefficients are independent
of the aspect of the illuminator. That is, the scattering
coefficients must be invariant to the incident angles. As
a matter of fact, however, the radar cross section (RCS)
of most objects changes as a function of the aspect. When
y
k

x
k

output
input

yk
D

xk
D

Figure 6 Illustration of polar format transformation.
the illuminators are sparsely distributed in the aspect,
therefore, the above assumption becomes invalid.
In such situations, the recently developed nonlinear

reconstruction techniques, i.e., sparse signal reconstruc-
tion and compressive sensing approaches, can provide an
effective target reconstruction capability provided that the
scene is sparse. Such sparse scene imaging problems to be
considered herein are important in practice. In many real-
world applications, the scene is itself strictly sparse or can
be approximated with a small number of strong scatterers
whereas the other weak scatterers can be considered
insignificant. In addition, many nonsparse scenes can be
considered as sparse in a transformed representation, such
as the image edges. As such, in the sequel, we employ
sparse reconstruction techniques in the second image
formation stage to fuse the coarse-resolution images.
In this stage, each coarse-resolution image pixel is

divided into N ×N fine-resolution pixels. Therefore, the
size of the new pixel in range and azimuth becomes

1
NKΔkx

and 1
NLΔky

, respectively. For the jth illuminator, the

signals at the coarse-resolution cell and the fine-resolution
cell can be associated by a transform matrix, expressed as

r jð Þ ¼ Φ jð Þw jð Þ; j ¼ 1; 2;⋯; J ; ð12Þ

where r(j) is the value of the pixel generated in the

coarse-resolution image, w jð Þ ¼ wj
1;⋯;wj

N2

h iT
is the fine-

resolution pixel vector to be reconstructed. In addition, Φ(j)
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is the sensing row vector of size 1 ×N2, whose element

located in the nth column can be expressed as

ϕ jð Þ
n ¼ Aj xc−xn; yc−ynð Þ⋅ exp i xnk

j
xc þ ynk

j
yc

h in o
; ð13Þ

where (xc, yc) is the coordinate of the coarse-resolution pixel

cell and (xn, yn) is the coordinate of the nth fine-resolution

pixel in the coarse-resolution cell.
Because of the spreading effects of a point target in the

Fourier-based reconstruction, which can be described as
the extent of the point spread function, the scattering
from a point target contributes to the coarse-resolution
Table 1 Frequencies and azimuth angles of the eight
illuminators

Illuminator fc (MHz) Azimuth angle (degree)

1 450 5

2 570 10

3 510 45

4 480 25

5 660 30

6 540 20

7 630 15

8 600 50
image not only at its true position but also at the neigh-
boring pixels. Such point spreading effects are not fully
accounted for if we construct the fine-resolution images
based on each coarse-resolution pixel alone and, as a
result, will degrade the quality of the resulting fine-
resolution image in two aspects: on one hand, the interfer-
ence from scatterers of the neighboring coarse-resolution
pixels cannot be efficiently mitigated, and on the other
hand, the observations made in the neighboring coarse-
resolution pixels are not fully utilized for the fine-image
construction in the underlying coarse-resolution pixel.
Therefore, it is desirable to exploit multiple coarse-
resolution pixels to construct the fine-resolution images
in the second stage. The size of pixel region should be
consistent with the point spreading function such that the
point spreading function corresponding to each point
target takes insignificant values outside this region. A more
detailed discussion about the pixel region selection is
addressed in [18]. Toward this end, we modify (12) by using
Q coarse-resolution pixels, and the expression is given by

re jð Þ ¼ Φe jð Þwe jð Þ; j ¼ 1; 2;⋯; J ; ð14Þ

where re jð Þ ¼ rj1;⋯; rjQ
� �T

is a vector containing the values
of Q selected neighboring coarse-resolution pixels, we jð Þ

represents a vector of the unknown fine-resolution pixels



Figure 8 Support area in the wavenumber domain.

Figure 10 Image produced by direct Fourier reconstruction.
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contained in the Q coarse-resolution pixels, and Φe jð Þ is a
Q ×QN2 sensing matrix, whose (q,n)th element is

ϕ jð Þ
q;n ¼ Aj xq−xn; yq−yn

� �
⋅ exp i xnk

j
xc þ ynk

j
yc

h in o
;

ð15Þ

with (xq, yq) denoting the position of the qth coarse-
resolution pixel.
As we described earlier, in multi-static passive SAR,

the scattering coefficients of a fine-resolution pixel differ
with respect to different illuminators due to their different
aspect angles. That is, the fine-resolution pixel coefficients
Figure 9 Target locations in the scene.
to be estimated, which are expressed as vectors we jð Þ

in (14), are modeled to be independent for different index
j. Nevertheless, because the same sparse scatterers con-
tribute to the observations corresponding to the different
illuminators, the positions of the nonzero entries in the
vectors we jð Þ are identical or highly overlap. This character-
istic is referred to as the block sparsity or group sparsity
[19], which can be effectively solved using techniques that
take such property into account. Such group sparsity
solvers include block sparsity-based compressed sensing
[20], multi-task Bayesian compressed sensing [21,22], and
distributed compressed sensing [23].
Equation (14) is solved for each coarse-resolution pixel

and repeated until all the coarse-resolution pixels are
processed. Finally, all the obtained fine-resolution sub-
images are mosaicked to obtain the high-resolution
Figure 11 Incoherent summation of sparse reconstruction
image for multiple illuminators.



Figure 12 Eight coarse-resolution images produced by the first-stage processing.

Figure 13 Image produced by the proposed two-stage image
formation algorithm.
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image of the entire scene. The proposed second-stage
processing is illustrated in Figure 7. Note that, while
the fine-resolution pixel coefficients are computed for Q
coarse-resolution pixels each time, only the results obtained
for the underlying coarse-resolution pixel are maintained
and those belonging to the neighboring coarse-resolution
pixels are discarded. This concept can be extended to
process multiple pixels at once by extending the size of Q
such that the contribution of the interested multiple pixels
outside the Q pixel region is insignificant.

4.3 Computational complexity
The proposed sparse image reconstruction technique
divides the SAR image reconstruction into two stages, and
the first stage can be efficiently implemented using the
FFT. As such, while enjoying the high quality of resulting
images as the result of sparse signal reconstruction, the
proposed technique achieves significant reduction of
the computation complexity when compared with direct
sparse image reconstruction from the observed data. In
the following, a quantitative analysis is provided.
Consider a simple model where J illuminators are

present and, for each of the emitted signals, we collect L
samples in the frequency bandwidth dimension and K
samples in azimuth angle dimension. As such, the total
number of data samples is JLK. Also assume that the
dimension of the fine-resolution image pixels to be con-
structed in the entire scene is LN ×KN. We consider that
complexity of the direct sparse image recovery is propor-
tional to the nth power of the dimension of the observation
data and that of the scene pixels. The value of n depends on
the reconstruction algorithms and usually varies between 2
and 3. As such, the computation complexity required for
directly reconstructing image from the observed data is
(JKL ⋅ LN ⋅ KN)n = JnK2nL2nN2n. For the proposed two-stage
imaging technique, the complexity of Fourier-based recon-
struction in the first stage is J L K

2 logK þ K L
2 logL

� � ¼ 1
2

JKL logK þ logLð Þ , whereas the complexity in the second
stage which recovers the fine-resolution pixels of Q coarse-
resolution pixels is KL(QJ ⋅ N2)n, yielding a total complexity
of 1

2 JKL logK þ logLð Þ þ KL QJ ⋅N2
� �n

. For example, when
J = 8, K = 32, L = 32, N= 4, Q = 9, and n = 2, the complexity
for the direct sparse image reconstruction technique is
1.801 × 1016, whereas that of the proposed second-stage
technique is 1.359 × 109, which is a remarkable reduction
from the former.
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5 Simulation results
Simulations are performed to verify the effectiveness of
the proposed technique. Assume that the passive radar
system exploits a moving receiver to collect signals emitted
from eight stationary illuminators and reflected in the scene
of interest. The illuminators use respective frequencies
and azimuth angles, as summarized Table 1, whereas
the bandwidth of each signal is assumed to be
30 MHz. The receiver changes its azimuth angle from
10° to 20° during the observation period. The result-
ing wavenumber domain support is shown in Figure 8.
Furthermore, we assume a sparse scene that consists
of a collection of point targets, as shown in Figure 9,
whose reflection coefficients follow an independent
random complex Gaussian distribution. For each bi-static
pair corresponding to an illuminator, the scattering
coefficients are considered time-invariant during the
observation because of the small azimuth angle of the re-
ceiver. The scattering coefficients, however, vary inde-
pendently for bi-static pairs associated with different
illuminators.
As a baseline for comparison, the result obtained from

direct Fourier-based imaging is shown in Figure 10.
Because of the inapplicability of coherent combination of
the signals corresponding to different illuminators due to
aspect-dependent target scattering, the sub-images
obtained from the eight bi-static pairs are combined
noncoherently. As we discussed earlier, Fourier transform
suffers from several issues: The image resolution is limited
by the poor Fourier resolution due to narrow signal
bandwidth and small azimuth angles, whereas the
grating lobe is high because of the sparse observation
support in the wavenumber domain. It is evident from
Figure 10 that the overall image resolution is undesirable
due to these issues. We also show the results when
conventional compressive sensing techniques, which do
not consider the group sparsity, are used to reconstruct
the image. Figure 11 depicts the noncoherently combined
results of the eight sub-images that are individually
constructed using the orthogonal matching pursuit
(OMP) technique from the respective bi-static pairs to ac-
count for their different scattering coefficients. The
performance degradation, particularly around the regions
with dense scatterers, is evident in Figure 11.
In the proposed two-stage technique, we first obtain

eight coarse-resolution images through the Fourier
transform, as shown in Figure 12. It is clear from
this figure that the image quality is poor because of
the very low resolution. However, high-quality fine-
resolution images are obtained by fusing the eight
coarse-resolution images in the second stage through
sparse image reconstruction. The results are shown
in Figure 13, which recover the high-resolution pixels
with a high fidelity.
6 Conclusions
In this paper, we have analyzed the signal characteristics
in multi-static passive radar SAR and depicted the block
sparsity of the sampling support in the wavenumber
domain. Based on this property, an efficient two-stage
image reconstruction technique is proposed. In this
technique, the Fourier-based approach is used in the
first stage to obtain coarse-resolution images separately
for the signals emitted from each illuminator, whereas
group sparsity-based approaches are used in the second
stage to reconstruct a fine-resolution image. The proposed
technique offers advantages over one-stage approaches:
It yields substantial image quality improvement over
the direct application of Fourier-based approaches to
the observed data, whereas it achieves significant reduction
of the computational complexity and comparable image
quality when compared to direct application of group
sparsity-based approaches to the observed data. The
proposed technique permits effective consideration of
illuminator-dependent scattering coefficients of the targets.

Endnote
aWe recognize that there exist signals from earth

observation SAR satellites, e.g., TerraSAR-X [5], that
occupy a wide signal band at a high carrier frequency.
However, this paper considers ground broadcast and
wireless network signals that are typically narrowband.
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