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Abstract

This paper presents a two-part decomposition of a spatial filter having to optimize the reception of a useful signal
in the presence of an important co-channel interference level. The decomposition highlights the role of two parts
of the filter, one devoted to the maximization of the signal to noise ratio and the other devoted to the interference
cancellation. The two-part decomposition is used in the estimation process of the optimal reception filter. We
propose then an estimation algorithm that follows this decomposition, and the global spatial filter is finally obtained
through an optimal-weighted combination of two filters. It is shown that this two-component-based decomposition
algorithm overcomes other previously published solutions involving eigenvalue decompositions.
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1 Introduction
Increasing capacity demand for wireless communication
networks should lead to a high co-channel interference
level in the future. This interference problem is not new
and has been addressed, for a long time, in wireless
networks. The first solutions, coming from 2G networks,
were based on frequency reuse patterns while, a few years
later, scrambling codes were used, for the same purpose,
in 3G networks. Nowadays, diversity techniques are more
and more considered as one of the best answer for this
interference problem, especially in 4G networks. The work
presented in this paper was initially based on private
mobile radio (PMR) characteristics linked to the TETRA
enhanced data service (TEDS) standard, but it is suitable
also in the context of 4G transmissions which are based on
the Long-Term Evolution (LTE) standard. The presented
work addresses essentially the problem of transmission with
high interference level ratio and fast varying propagation
channels.
In such a context, several previous works have treated

and analyzed the best spatial filter to maximize the
signal to interference plus noise ratio (SINR). The
optimum combining (OC) filter [1-5] can be proposed
as an exploitable solution. It was also proven that, in
the absence of interference, this optimum combining
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filter converges to the well-known maximum ratio
combining (MRC) filter [6].
The main problem, in the estimation of the optimum

combiner filter, resides in the estimation of the covariance
matrix of the interference plus noise in addition to the
estimation of the useful user propagation channel. The
minimum mean square error estimation (MMSE) criterion
can be used to estimate the desired user propagation chan-
nel, while the covariance matrix can be estimated by the
sample matrix inversion (SMI) approach [7-9]. However,
this strategy is suboptimal and requires a large signal
sample set to get a correct smoothing stage [10,11].
Another problem resides in the covariance matrix itself
which will be obviously interpolated to the data locations
since it is estimated on the pilot locations [10].
In this paper, we will prove that under certain condi-

tions, the OC filter can perfectly be decomposed in two
independent components. Hence, when the number of
interferers is smaller than the number of receiving anten-
nas, the OC filter can be split in two weighted components,
namely MRC filter and interference canceller combiner
(ICC). Moreover, for its own scientific interest, it will be
proven that this decomposition leads to a new and efficient
optimum filter estimation algorithm.
More precisely, we will show that for the MRC part of

the OC filter, the classical MMSE can be proposed in order
to obtain the estimation of the useful user propagation
channel. On the other hand, we will show that the ICC part
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can be estimated by modifying the matched desired impulse
response (MDIR) algorithm [12]. This algorithm requires
a null linear system solving, and a constraint is required to
prevent the trivial solution. Following [12], a constraint,
so-called maximum SINR constraint (MSINRC), can be
introduced; it will maximize the SINR at the output of
the filter. The final solution-vector will then be given by
the eigenvector corresponding to the lowest eigenvalue
of a Hermitian matrix generated by the algorithm. Due
to the presence of the noise, the estimation still remains
suboptimal and the result is corrupted by the training
noise estimation. It was proven in [13] that combining all
eigenvectors, weighted by the inverse of their correspond-
ing output SINR, could lead to an enhanced algorithm,
so-called solution-vectors maximum ratio combining
(SoMRC). It was shown that this approach gives better
performance than the single solution-vector [13,14]. Obvi-
ously, such kind of algorithms is based on a complex
eigendecomposition. To simplify this step, we propose
to introduce another constraint, leading to a less complex
algorithm where we can avoid the eigendecomposition.
We will also show that this new constraint keeps the
performance of the algorithm comparable to that of the
SoMRC.
The contribution of the presented work in the study of

the optimum combiner filter consists on identifying the
cases where it can be decomposed to a MRC plus a ICC
independent filters. Another contribution consists of
the modified MDIR algorithm and in the introduction
of the new constraint that does not degrade performances
of the SoMRC. A 16-bit digital signal processor (DSP)
implementation is also presented in order to evaluate the
rounding errors effect on the performance of the algorithm
and to determine the possibility of the algorithm execution
under some real-time constraints.
The paper is organized as follows. The system model

is given in Section 2. Section 3 presents the split of the
OC into two weighted independent parts, namely MRC
and ICC. In Section 4, the estimation algorithm for ICC
is detailed. A simplification of this estimation algorithm
is introduced in Section 5. Numerical results and per-
formance of the algorithms are presented in Section 6. A
performance degradation study, due to a practical 16-bit
fixed point DSP implementation is detailed in Section 7.
Conclusion summarizes the present work in Section 8.

1.1 Notation
Vectors and matrices are boldface small and capital letters;
the transpose, complex conjugate transpose, and inverse
of matrix A are denoted by AT, AH, and A−1, respectively.
The norm of vector a and the diagonal matrix with the

diagonal element extracted from a are denoted respect-
ively by ‖a‖ and diag{a}, IN is the N×N identity matrix,
and E[.] denotes the statistical expectation.
2 System model
We consider a SIMO structure having M receiving anten-
nas, with one desired signal and U interferers, as presented
in Figure 1. Desired user and interferers are transmitting
orthogonal frequency-division multiplexing (OFDM) wave-
forms, and for the sake of simplicity, we will consider that
all users are time and frequency synchronized. This remark
is not restrictive, and all results presented are not
linked to this hypothesis that will nevertheless simplify
some notations in the sequel of the paper.
The OFDM frame of the desired user is composed of

K subcarriers and Ns OFDM symbols. A Ng length cyclic
prefix is inserted. It is assumed that this cyclic prefix is
sufficient to totally suppress intersymbol interferences.
We will focus on one OFDM symbol, and we will avoid
indicating the symbol number in the notations. Algo-
rithms presented will then be able to cope with a unique
OFDM symbol and therefore able to deal with very
high-speed propagation channels.
With this assumption, the received sample, after the

OFDM demodulation, corresponding to the kth subcarrier
on the mth antenna, as presented in Figure 2, can be
modeled by Equation 1:

yk mð Þ ¼ hx;k mð Þxk þ nIk mð Þ ð1Þ

nIk mð Þ denotes an additive noise plus interference term
and can be developed as follows

nIk mð Þ ¼
XU

u¼1
hz;k;u mð Þzk;u þ nk mð Þ ð2Þ

Zk,u is the symbol transmitted by the uth interferer.
hz,k,u(m) denotes the frequency response of the channel

between the uth interferer and the mth antenna. nk(m)
represents a centered additive white Gaussian noise term

with a variance equals to σn
2
.XU

u¼1
hz;k;u mð Þzk;u is then the total contribution of the

U interferers received by the mth antenna on the kth
subcarrier.
In this paper, we have to identify a spatial filter wk able to

estimate the QAM symbol x̂k transmitted by the desired
user. This leads to

x̂k ¼ wH
k yk ð3Þ

In this equation, corresponding to the kth subcarrier,

wk ¼
wk 0ð Þ

⋮
wk M−1ð Þ

0
@

1
A denotes, as illustrated in Figure 3,

M weights of the spatial filter and yk ¼
yk 0ð Þ
⋮

yk M−1ð Þ

0
@

1
A

stands for the kth post-fast Fourier transform (FFT) outputs



Figure 1 Context of the work, one useful user, and U interferers.
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of M antennas. Combining Equations 1, 2, and 3 leads to
Equation 4

x̂k ¼ wH
k hx;kxk þ

XU

u¼1
hz;k;uzk;u þ nk

� �
ð4Þ

where hx; k ¼
hx;k 0ð Þ

⋮
hx;k M−1ð Þ

0
@

1
A denotes the M desired

propagation channel frequency responses of the kth
subcarrier,

hx;k ;u ¼
hx;k ;u 0ð Þ

⋮
hx;k ;u M−1ð Þ

0
@

1
A the M interfering propaga-

tion channel frequency responses between the uth in-
terferer and the receiving antennas, and finally

nk ¼
nk 0ð Þ
⋮

nk M−1ð Þ

0
@

1
A stands for the received noise on the

M receiving antennas.
The spatial filter that maximizes the signal to interfer-

ence plus noise ratio (SINRk) for x̂k was introduced in
Figure 2 Receiving structure in the SIMO context.
[1] and studied in [2,3]. Main steps of this derivation are
presented hereafter.
We could consider, without loss of generality, that

E[|xk|
2] = 1 and E[|zk,u|

2] = 1. According to Equation 4, the
SINRk, at the output of the spatial filter, is then given by

SINRk ¼
wH

k h
�
x;kh

T
x;kwk

wH
k Rnn;kwk

ð5Þ

In this equation, Rnn,k stands for the M×M spatial
covariance matrix of interference plus noise, and it is
expressed by

Rnn;k ¼ E
XU
u¼1

hz;k;uzk;u þ nk

 ! XU
u¼1

hz;k;uzk;u þ nk

 !H" #

ð6Þ
Considering the decorrelation between interferer signals

and noise terms, we have

Rnn;k ¼
XU

u¼1
E h�z;k;uh

T
z;k;u

h i
þ σ2nIM ð7Þ

By introducing the Rzz,k matrix defined by



Figure 3 Receiver spatial filter for the kth subcarrier.
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Rzz;k ¼
XU

u¼1
E h�z;k;uh

T
z;k;u

h i
ð8Þ

we can rewrite Rnn,k as a summation of two parts as
given hereafter

Rnn;k ¼ Rzz;k þ σ2nI ð9Þ

At the output of the combiner, in order to perfectly
equalize the useful channel, we propose to introduce the
following constraint

wH
k h

�
x;k ¼ 1 ð10Þ

Merging Equations 5 and 9, the SINRk becomes

SINRk ¼ 1
wH

k Rnn;kwk
ð11Þ

The optimum spatial filter vector wk that maximizes
the SINRk can then be obtained by minimizing wH

k Rnn;k

wk under the constraint wH
k h

�
x;k ¼ 1 . Using Lagrange

multiplier, the optimum spatial filter is obtained by solving
the following equation

wk ¼ argmin L 1
SINRk

;wk ; λ

� �
ð12Þ

where the Lagrangian is defined such that

L
1

SINRk
;wk ; λ

� �
¼ wH

k Rnn;kwk−λ wH
k h

�
x;k−1

� �
ð13Þ

Under the assumption that det
d2L 1

SNIRk
;wk ;λ

� �
dw2

k

0
@

1
A > 0 ,

the solution is obtained by nulling the derivative of

L 1
SNIRk

;wk ; λ
� �

with respect to wk
dL 1
SINRk

;wk ; λ
� �

dwk
¼ 0 ð14Þ

Solving Equation 14 leads to

Rnn;kwk−λh�x;k ¼ 0 ð15Þ

The optimal [1] solution is then expressed by

wk ¼ λR−1
nn;kh

�
x;k ð16Þ

The minimum of the solution (Equation 12) is justified
by the positive Hermitian characteristic of the covariance
matrix Rnn,k. We have

det
d2L 1

SINRk
;wk ; λ

� �
dw2

k

0
@

1
A ¼ det Rnn;k

� � ð17Þ

As det(Rnn,k) is equal to the product of eigenvalues of
Rnn,k, we have det(Rnn,k) > 0. Finally, wH

k h
�
x;k ¼ 1 leads to

λ ¼ 1

hHx;kR
−1
nn;khx;k

ð18Þ

Therefore,

wk ¼
R−1
nn;kh

�
x;k

hHx;kR
−1
nn;khx;k

ð19Þ

Identifying the spatial filter wk through Equation 19 is a
very complex task involving Rnn,k estimation and inversion
plus hx,k estimation. In order to address this spatial filter
estimation problem, we propose to split it on two sepa-
rated filters. This approach highlights how the optimal
spatial filter works.

3 Spatial filter decomposition
We consider the eigenvector matrix Uk and the diag-
onal matrix Iμk of the eigenvalues defined such that

Iμk ¼
μ0;k 0 0
0 ⋱ 0
0 0 μM−1;k

0
@

1
A . Then, the eigenspace de-

composition of Rzz,k can be written as follows

Rzz;k ¼ UkIμkU
H
k ð20Þ

According to the Rnn,k decomposition, presented in
Equations 7 and 8, we obtain

Rnn;k ¼ UkIμkþσ2nU
H
k ð21Þ

With Iμkþσ2n
¼ Iμk þ σ2nIM , we introduce then Cnn,k as

the transpose adjugate (cofactor) matrix of Rnn, defined
as follows
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R−1
nn;k ¼

Cnn;k

det Rnn;k
� � ð22Þ

Replacing R−1
nn;k by Cnn;k

det Rnn;kð Þ in the denominator of

Equation 19 leads to

wk ¼ 1

hHx;kCnn;khx;k
det Rnn;k R

−1
nn;kh

�
x;k ð23Þ

Knowing that det Rnn;k
� � ¼YM−1

i¼1
μi;k þ σ2n

� �
, we can

write

det Rnn;k
� �

R−1
nn;k ¼ UkIY

μþσ2nð Þ
μþσ2n

UH
k ð24Þ

In this last equation, IY
μþ σ2n
� �

μþσ2n

stands for a diag-

onal matrix such that its mth component is given by

YM−1

i¼0
μi;k þ σ2n

� �
μm;k þ σ2n

¼
Y i≠m

i ¼ 0

M−1

μi;k þ σ2n

� �

Then, Equation 24 can be rewritten as follows

det Rnn;kR
−1
nn;k ¼ Czz;k þ σ2 M−1ð Þ

n I þ Gm;k ð25Þ

where Gm,k is null matrix for M ≤ 2 otherwise is de-
fined by the following expression

Gm;k ¼
XM−2

m1¼0

� −1ð Þm1Rm1
zz;k

XM−m1−1

m2¼1
σ2 M−m2−1ð Þ
n

XM−1

i¼1
μi;k

� �m2−1
� �� �

ð26Þ
As shown in the previous equation, Gm,k is linked to

the interference covariance matrix. We note that in the
case of totally decorrelated interferers, Rzz;k ¼ σ2

c I .
Finally, we obtain the following decomposition of the

spatial filter wk

wk ¼ 1

hHx;kCnn;khx;k
Czz;kh

�
x;k þ σ2 M−1ð Þ

n h�x;k þ Gm;kh
�
x;k

� �
ð27Þ

We conclude that the optimal spatial filter is a combin-
ation of three filters: mainly a filter dedicated exclusively
to the interference, a maximum ratio combiner filter,
and a filter linked to the statistical dependency of the
interferers. Due to the complexity of the third filter, the
estimation of the optimal spatial filter through the sep-
arate estimation of the filters is only interesting in the
case of a two-antenna receiver (Gm,k = 0).
3.1 Analysis for M = 2
If we consider now a two-antenna spatial filter (M = 2), in
this case, the optimal spatial filter given by Equation 27
becomes

wk ¼ 1

hHx;kCnn;khx;k
Czz;kh

�
x;k þ σ2

nh
�
x;k

� �
ð28Þ

With Czz,k ≠ 0 for U ≥M − 1.
From Equation 24, we have

Cnn;k ¼ UkIY μþ σ2n
� �

μþσ2n

UH
k ð29Þ

and

Cnn;k ¼ Czz;k þ σ2nIM ð30Þ
Replacing Equation 30 in Equation 28, we obtain

wk ¼ 1

hHx;kCzz;khx;k þ σ2nh
H
x;khx;k

Czz;kh
�
x;k þ σ2nh

�
x;k

� �
ð31Þ

We introduce now the ρk scalar defined as follows

ρk ¼
hHx;kCzz;khx;k

hHx;khx;k
ð32Þ

After some derivations, we arrive to

wk ¼ 1
ρk þ σ2

ρk
Czz;kh

�
x;k

hHx;kCzz;khx;k
þ σ2n

h�x;k
hHx;khx;k

 !
ð33Þ

This equation can be presented as follows

wk ¼ 1
ρk þ σ2

ρkwz;k þ σ2nwh;k
� � ð34Þ

with

wz;k ¼
Czz;kh

�
x;k

hHx;kCzz;khx;k
ð35Þ

and

wh;k ¼
h�x;k

hHx;khx;k
ð36Þ

Equation 34 expresses the optimum combiner wk

through a weighted combination of two combiners wz,k

and wh,k.
In this two-part decomposition, wz,k represents the

optimum combiner in the case of a noiseless transmis-
sion with interference and wh,k represents the maximum
ratio combiner ρk and σ2

n are two positive scalars repre-
senting the degree of contribution of these two combiners
wz,k and wh,k.
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From this observation, we can derive the following
theorem.

Theorem: In the case of two-antenna SIMO receiver,
the optimum combiner wk can be expressed as a weighted
combination of the optimum combiner wz,k obtained in
the case of null additive white Gaussian noise and the
maximum ratio combiner wh,k.

Furthermore, of the physical interpretation of the optimal
spatial filter, this decomposition can also be used to esti-
mate the optimal spatial filter in two steps: a step devoted
to the optimum combiner without taking into account the
additive noise wz,k and the other to the maximum ratio
combiner wh,k.

4 Spatial filter estimation
4.1 Estimation algorithm for wh,k

The wh,k filter does not depend on interference but only
on the desired signal propagation channel. Its estimation
is then directly linked to the estimation of the propagation
channel hx,k.
In this work, we consider that propagation channels,

i.e., useful and interference channels, can be modeled
as L taps finite impulse response filters and with L <K. We
introduce then these impulse responses, corresponding to
the mth antenna, through the following vectors

ax mð Þ ¼
ax;0 mð Þ

⋮
ax;L−1 mð Þ

0
@

1
A ð37Þ

Thanks to this hypothesis we can introduce the hx(m)
vector that represents the frequency response of the
propagation channel between the useful user and the
mth antenna

hx mð Þ ¼
hx;0 mð Þ

⋮
hx;K−1 mð Þ

0
@

1
A ð38Þ

The two ax(m) and hx(m) vectors are linked by the fol-
lowing equation

hx mð Þ ¼ FK ;Lax mð Þ ð39Þ
where FK,L is the K × L truncated Fourier rectangular
matrix defined as follows

FK ;L k; lð Þ ¼ 1ffiffiffiffi
K

p exp −j
2πkl
K

� �
; 0≤k

< K and 0 ≤ l < L ð40Þ

In the context of a real transmission, a first estimation
~hx mð Þ of hx(m) can be proceeded through the classical
least square as given in the following equation
~hx mð Þ ¼
y0 mð Þ=x0

⋮
yK−1 mð Þ=xK−1

0
@

1
A ð41Þ

As components of ~hx mð Þ have not been averaged over a
great number of observations, they are highly imprecise
and they depend on the additive noise over the yk(m)
received samples. A smoothing operation [15], leading to

a new estimated ĥx mð Þ vector, can be proposed through
the following equation

ĥx mð Þ ¼ FK ;LF
H
K ;Lĥx mð Þ ð42Þ

This estimation algorithm is known as the indirect esti-
mation [16,17], and some papers [18] propose to enhance
it through the introduction of a noise power estimation
and an adaptive weight, able to take this estimation into
consideration.
The main drawback of this algorithm comes from

Equation 41 that involves knowledge of all transmitted
symbols {xk}k ∈ [0, K − 1]. In a real transmission, only pilot
symbols are known. If we consider that we have K′ < K
comb pilots {x0′, x1′, …, xK′}, then Equation 41 becomes

~h′x mð Þ ¼
y0; mð Þ=x0;

⋮
yK′−1 mð Þ=xK′−1

0
@

1
A ð43Þ

where ~h′x mð Þ is a (K′ × 1) vector representing the first
estimation of the propagation channel frequency responses
on the pilot locations.
The first estimation for the propagation channel impulse

response can then be obtained through

~ax mð Þ ¼ FH
K′;L

~h′x mð Þ ð44Þ

Then, an interpolation step is required. It is performed
by the following equation

ĥx mð Þ ¼ FH
K′;L

~h′x mð Þ ð45Þ

Equation 45 is devoted to the mth antenna, and it can
be generalized to all antennas. If we consider now the

kth component ĥx;k mð Þ of all these ĥx mð Þ
n o

m∈ 0; M−1½ �
vectors, we can introduce the ĥx;k vector defined as
follows

ĥx;k ¼
ĥx; k 0ð Þ

⋮
ĥx; k M−1ð Þ

0
@

1
A ð46Þ

The estimation ŵh;k of the wh,k vector is then directly
given by
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ŵh; k ¼ ĥx; k

ĥH
x; k ĥx; k

ð47Þ

4.2 Estimation algorithm for wz,k

The wz,k vector is jointly dependent on interference, and
propagation channels are devoted to interference sources
cancellation. It is well known that a M antenna spatial
filter is able to cancel U =M − 1 interferers. In our par-
ticular case, where we choose M = 2, we have then to cope
with a unique interferer. In the sequel of this section, the
u index that represents the interferer index will be omitted
in equations.
We consider the transmission of a unique OFDM

symbol, the eigendecomposition of Rzz,k is given by

Rzz; k ¼ Uk
μ0; k 0
0 0

� �
UH

k ð48Þ

And the eigendecomposition of Czz,k is given as
follows

Czz; k ¼ Uk
0
0

0
μ0;k

� �
UH

k ¼ μ0; ku2; ku
H
2; k ð49Þ

where μ2,k is the second column vector of Uk orthog-

onal to the interference vector
hz;k 0ð Þ
hz;k 1ð Þ

� �
. Therefore,

the following scalar vector is null uT
2;k

hz;k 0ð Þ
hz;k 1ð Þ

� �
¼ 0 .

Therefore, u2;k ¼ α
hz;k 1ð Þ
−hz;k 0ð Þ

� �
¼ 0, where α is a complex

scalar. In the sequel, we set α = 1.
The filter wz,k will then be rewritten as

wz;k ¼
μ0;ku2;ku

H
2;kh

�
x;k

μ0;kh
T
x;ku2;ku

H
2;kh

�
x;k

¼ u2;k
hTx;ku2;k

ð50Þ

Finally, the solution is given by

wz;k ¼ wz;k;n

wz;k;d
ð51Þ

with

wz;k;n ¼ hz;k 1ð Þ
−hz;k 0ð Þ

� �
ð52Þ

and

wz;k;d ¼ hz;k 1ð Þhx;k 0ð Þ−hz;k 0ð Þhx;k 1ð Þ ð53Þ

The positive scalar ρk in the general formula of the
optimal spatial filter given in Equation 34 becomes
ρk ¼ μ0; k
uH2; khx; k

2

hx; k
2 ð54Þ

Therefore, ρk is the intercorrelation factor between
the desired and the interference channel vectors. From
the theorem stated above and Equation 50, we emit the
following proposition.

Proposition: In the case of two-antenna SIMO transmis-
sion disturbed by an interferer, the optimum combiner wk is
a weighted combination of the interference cancellation filter
wz,k and the maximum ratio combining filter wh,k.

The estimation of wz,k,n and wz,k,d is a complex task
that involves the knowledge of the desired and interferer
propagation channels. Nevertheless, the expression of wz,k,n

and wz,k,d given by Equations 52 and 53, respectively, gives
opportunities to project these components on a reduced
Fourier basis.

4.2.1 wz,k,n estimation
On the first hand, we can notice that the components of
wz,k,n are simply those of the frequency response of the
interferer propagation channels, corresponding to the kth
subcarrier. Therefore, the components of this filter can
then easily be expressed on a reduced Fourier basis. For
that purpose, we introduce the (K × 1), hz(m) vector that
represents the frequency response of the propagation chan-
nel between the interferer and the mth antenna as follows

hz mð Þ ¼
hz;0 mð Þ

⋮
hz;K−1 mð Þ

0
@

1
A ð55Þ

As in the previous section, the hz(m) vector is linked to
the L taps impulse response az(m) through the following
equation

hz mð Þ ¼ FK ;Laz mð Þ ð56Þ
where the (L × 1) az(m) vector is defined as follows

az mð Þ ¼
az;0 mð Þ

⋮
az;L−1 mð Þ

0
@

1
A ð57Þ

Therefore, wz,n can be expressed as

wz;n ¼ FK ;Lvz;n ð58Þ
4.2.2 wz,k,d estimation
On the other hand, we can notice that the wz,k,d is a scalar
obtained by the product of two frequency response terms.
It can then be viewed as the Fourier transform of the
convolution of two impulses responses of propagation
channels, and it can then be linked to a virtual 2 L taps
impulse response.
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If we introduce the (2 L × 1) vz,d vector representing
this virtual impulse response

vz;d ¼
vz;0;d
⋮

vz;2L−1;d

0
@

1
A ð59Þ

Then we can introduce the wz,d vector defined as

wz;d ¼
wz;0;d

⋮
wz; K−1; d

0
@

1
A ð60Þ

with

wz;d ¼ FK ;2Lvz;d ð61Þ

4.2.3 Replica spatial filter structure
The decomposition of wz,k in a numerator part and a de-
nominator part as given by Equation 51 leads to propose a
new spatial filter structure having two weights, represented
by wz,k,n acting over the received signal and a weight, repre-
sented by wz,k, d, acting over the useful signal (Figure 4).
We can then introduce the error ek defined by

ek ¼ wz;k;dxk− yk 0ð Þ yk 1ð Þ½ �wz;k;n ð62Þ
At this stage, knowing that the wz,k filter has to cancel

the interference, we can propose to identify its two com-
ponents through an error square minimization criterion

wz;k ¼ arg min
wz;k;n;wz;k;d

ekj j2 ð63Þ

We have then to insert a constraint ψ(wz,k,n, wz,k,d ) in
order to avoid the trivial solution: (wz,k,n = 0, wz,k,d = 0).
Moreover, the minimization has to be done over all fre-
quencies. It is then necessary to propose a global criterion.
For that purpose, we introduce the X transmitted diagonal
data matrix, where each element xk corresponds to the
desired symbol transmitted over the kth subcarrier

X ¼ diag x0; x1;…; xK−1f g ð64Þ
We introduce also the bi-diagonal matrix Y of the

received signal over the two antennas
Figure 4 Replica spatial filter structure for the kth subcarrier.
Y ¼
y0 0ð Þ 0 0
0 ⋱ 0
0 0 yK−1 0ð Þ

y0 1ð Þ 0 0
0 ⋱ 0
0 0 yK−1 1ð Þ

0
@

1
A

ð65Þ

The e ¼
e0
⋮

eK−1

0
@

1
A vector representing errors over all

subcarriers is then given by

e ¼ Xwz;d−Ywz;n ð66Þ
The filter weights are then given by the following

minimization

wz ¼ arg min
wz;d ;wz;n

e2−μψ wz;n;wz;d
� �� � ð67Þ

where μ is a Lagrange multiplier.
In [12,19] and in a similar context, a constraint called

maximum signal to interference plus noise constraint
(MSINRC) is proposed. It is defined as

ψ wz;n;wz;d
� � ¼ Xwz;d

		 		2−1 ð68Þ

Without loss of generality, we can consider that all
transmitted symbols xk are normalized: |xk|

2 = 1, we have
then XH X = I. The constraint presented in Equation 68
is then equivalent to ‖wz,d‖

2 = 1.
By nulling the partial derivative of ‖e‖2 − μψ(wz,n,wz,d)

with respect to wz,n and wz,d [20], we obtain the following
system of equations

XHYwz;n−wz;d ¼ μwz;d

wz;n ¼ YHY
� �−1

YHXwz;d

(
ð69Þ

Merging the two equations of Equation 68, we arrive to

XH Y YHY
� �−1

YH−I
� �

Xwz;d ¼ μwz;d ð70Þ

It appears then that wz,d is the eigenvector of the
XH(Y(YHY)−1YH − I)X matrix corresponding to the μ
eigenvalue.
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Left multiplying the two sides of Equation 70 by wH
z;d ,

we obtain

wH
z;dX

H Y YHY
� �−1

YH−I
� �

Xwz;d ¼ μwH
z;dwz;d ð71Þ

This last equation leads to

1
μ
¼ wH

z;dwz;d

wH
z;d X

H Y YHY
� �−1

YH−I
� �

Xwz;d

ð72Þ

In the right side of Equation 72, we recognize the
SINR formula; we can then conclude that

1
μ
¼ SINR

Finally, as we have to maximize the SINR at the output
of the filter, wz,d has to be the generalized eigenvector
which corresponds to the minimal eigenvalue μ. Using
Equation 61, Equation 72 becomes

XH Y YHY
� �−1

YH−I
� �

XFK ;2Lvz;d ¼ μFK ;2Lvz;d ð73Þ

Left multiplying the two sides of this equation by
FH
K ;2L yields to

FH
K ;2L X

H Y YHY
� �−1

YH−I
� �

XFK ;2Lvz;d ¼ μvz;d ð74Þ

It appears that from Equation 74, the virtual impulse
response Vz, d is the (2 L × 1) eigenvector of the matrix

FH
K ;2L X

H Y YHY
� �−1

YH−I
� �

XFK ;2L corresponding to the

minimal eigenvalue μ. This result is known and used by
many authors. An enhanced maximum signal to interfer-
ence plus noise constraint (EMSINRC) is proposed in
[13]. It is based on the exploitation of the set Vz,d of all
the eigenvectors of the previous matrix defined as

Vz;d ¼ v0z;d … v2L−1z;d


 � ð75Þ
The EMSINRC algorithm introduces a linear combin-

ation of elements of Vz,d, in order to propose a composite
virtual impulse response vcz;d defined as follows

vcz;d ¼
X2L−1
i¼0

ηi
1
μi
viz;d ð76Þ

where μi is the eigenvalue corresponding to the
eigenvector viz;d . The complex term ηi is defined such

that ηi ¼ argmaxηi vcz;d

			 			2 and |ηi| = 1. This complex

scalar is acting as a phase term that aligns all
eigenvectors.
Concerning the vector vz,n, it is obtained by merging

Equation 58 into the second equation of the system (69).
Hence, vz,n is given as follows
vz;n ¼ FH
KK ;LL YHY

� �−1
YHXFKK ;LLvz;d ð77Þ

vz,n can then directly be obtained once vz,d is
determined.
Finally, having wz, d and wz, n form vz, d and vz, n by per-

forming Equations 61 and 58, respectively, the interferer
cancellation filter wz;k ¼ wz;k;n

wz;k;d
for all subcarriers is obtained.

At this stage, all elements have been established and the
optimal filter, given by Equation 34, can be estimated. The
combination of Equation 34 is based on ρk that can be
obtained directly from Equation 54 noticing that the
interferer power μ0 and σ2n can be obtained through a
noise plus interferer power estimation.

5 Interference cancellation filter simplification
The estimation of wz,d and wz,n involves an eigende-
composition which is a complex task, especially if we
consider a practical implementation of the algorithm in
the real-time context of the receiver. We will show, in
this section, how this eigendecomposition can be avoided
without involving any loss in the global performances of
the algorithm.
The key element comes from the constraint introduced

to avoid the trivial solution. Instead of ‖wz,d ‖
2 = 1, we

propose to introduce a constraint directly applied to the
virtual impulse response vz,d. This constraint consists in
forcing a component of this vector to be equal to 1.
If we denote by kb, the index of this component, the

constraint will be then given by vz,d(kb) = 1.
We will introduce now a square matrix B, with all zero

components except a diagonal component set to 1; the
constraint is then formalized as follows

Bvz;d ¼ 1kb ð78Þ

where 1kb is a vector whose all components are null
except kthb component set to 1. The constraint can then
be formalized with the following function ψ′ (vz,d)

ψ′ vz;d
� � ¼ Bvz;d

		 		2−1 ð79Þ

The interference cancellation filter weights are then
given by the new following minimization

vz;n; vz;d
� � ¼ arg min

vz;n;vz;d
ek k2−μ′ψ′ vz;d

� �� � ð80Þ

The derivation of Equation 80 with respect to vz,d
leads to the new solution (v′z,n, v′z,d) given by

v′z;d−FH
K ;2LX

HYFKK ;LLv′z;n−μ′BHBv′z;d ¼ 0 ð81Þ

Due to its structure, we have BHB = B. Merging this
equation and Equation 78 in Equation 81 leads to



Figure 5 Pilots distribution over the OFDM symbol.
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v′z;d−FH
K ;2LX

HYFKK ;LLv′z; n−μ1kb ¼ 0 ð82Þ

The derivation of Equation 80 with respect to vz,n
leads to

−FH
KK ;LLY

HXFK ;2Lv′z;d þ FH
KK ;LLY

HYFKK ;LLv′z;n ¼ 0

ð83Þ
By developing Equation 83, we obtain

v′z;n ¼ FH
KK ;LLY

HYFKK ;LL

� �−1
FH
KK ;LLY

HXFK ;2Lv′z;d

ð84Þ
Merging Equation 84 in Equation 82, we obtain

FH
K ;2LX

H I−Y YHY
� �−1

YH
� �

XFk;2Lv′z;d ¼ μ′1kb ð85Þ

This last equation can be rewritten as

v′z;d ¼ μ′Ω−11kb ð86Þ

with Ω ¼ FH
K ;2L X

H I−Y YHY
� �−1

YH
� �

XFK ;2L and where
μ′ is a scalar chosen such that v′z,d(kb) = 1.
Finally, the solution obtained from the proposed con-

straint leads to a solution given by Equations 84 and 86.
With these two equations, the eigendecomposition is
avoided and the implementation complexity is widely
reduced. The question of the optimality of this new
solution has then to be analyzed in details. For that
purpose, we propose to decompose the vector v′z,d in
the Vz,d orthogonal basis introduced in Equation 75.
We can then define a (2 L × 1) vector αd representing
the image of v′z,d in the Vz,d basis as hereafter

v′z;d ¼ Vz; dαd ð87Þ

As Vz,d are eigenvectors of the Ω matrix, we have

Ω v′z;d ¼ Vz;dIμαd ð88Þ

where Iμ is the diagonal matrix of eigenvalue of Ω.
Considering Equation 86, the αd vector is then given by
Table 1 OFDM parameters

Symbol Name Value

K Number of subcarriers 32

NFFT FFT size 32

Ncp Cyclic prefix NFFT
8 ¼ 4

W Total bandwidth 100 kHz

Δf Subcarrier spacing 3,125 kHz

TOFDM OFDM symbol duration 360 μs

TFrame Frame duration 18.36 ms
αd ¼ I−1μ VH
z;dμ′1kb ð89Þ

Finally, Equation 89 becomes

v′z;d
X2L−1

i¼0
η′i

1
μi
viz;d ð90Þ

where η′i is the ith component of the kthb column vector
of the matrix VH

z;d .
This last equation has to be compared to Equation 76

related to the EMSINRC algorithm. It leads to the
conclusion that the EMSINRC algorithm is in fact
equivalent to a constraint modification leading to a
new constraint given by Equation 79.

6 Simulation results
In this section, we first evaluate performance of the vari-
ous solutions presented in Sections 4 and 5. We will then
compare:

– The solution based on (vz,n, vz,d) that will be referred
as maximum signal to interference plus noise ratio
constraint (MSINRC)

– The solution based on vcz;n; v
c
z;d

� �
that will be

referred as enhanced maximum signal to
interference plus noise ratio constraint (EMSINRC)

– The solution based on (v′z,n, v′z,d) that will be
referred as coefficient constraint (CC)
Figure 6 Replica spatial filter structure BER for the various
constraints in TU50 channel propagation environment



Figure 9 Replica spatial filter structure NMSE of v for various
constraints in HT200 channel propagation environment.

Figure 7 Replica spatial filter structure BER for the various
constraints in HT200 channel propagation environment.
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The simulation parameters based on OFDM waveform
are summarized in Table 1, hereafter.
The modulation used is 4-QAM with the same

power for pilots and data. The propagation channels
used follow the Jakes model [21] with a propagation
channel impulse response described in GSM standard
[22], namely TU50 (typical urban with a mobile vel-
ocity of 50 km/h) and HT200 (hilly terrain with a
mobile velocity of 200 km/h). The pilots are uniformly
distributed along the frequency axis with a rate of 1

2 as
depicted in Figure 5 and along the time axis with a
rate of 1

5.
Algorithm's weights are estimated on the plots position

for each OFDM symbol containing pilots. An interpolation
within the subspace generated by the reduced DFT FL and
Figure 8 Replica spatial filter structure NMSE of v for various
constraints in TU50 channel propagation environment.
F2L is followed to extend the weights to the whole OFDM
symbol.
However, along the time axis, the interpolation method

used is the spline cubic [23].
Performance assessment is performed by comparing the

uncoded BER (bit error rate before channel decoding) vs.
EbN0 (signal to noise ratio) at signal to interference ratio
(SIR) equal to 0 and 6 dB. As in [24,25], an additional
comparison is done to confirm the previous one and con-
sists on the study of the normalized mean square error

(NMSE) of v̂ expressed as NMSE ¼ v̂−vk k
vk k2

2
; where v is the

exact weight vector cancelling totally the interference, and

v̂ ¼ v̂n
v̂d

� 

is the estimation of v using the constraints

studied in Section 4.
Figure 10 BER performance of EOC vs. MRC and OC in TU50
channel propagation environment.



Figure 11 BER performance of EOC vs. MRC and OC in HT200
channel propagation environment.

Figure 12 BER performance replica filter on 16-bit fixed point
in TU50 channel propagation environment.
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Figures 6 and 7 depict the uncoded BER obtained for the
different constraints used in the weight vector estimation v̂.
The observation of the curves confirms the theoretical ana-
lysis where the CC outperforms the MSINRC in the both
cases of propagation channel environment. The difference
in the performance is more pronounced for low EbN0 level,
and obviously, the curves converge when EbN0 becomes
high. Moreover, as expected in the theoretical analysis, the
curves of CC and EMSINRC are superposed.
We conclude that CC is not only the best choice in

the sense of bit error rate performance but also achieves
very low complexity in its implementation. As shown in
Equation 90, the solution is obtained by a simple matrix
inversion unlike the other methods which need an
eigendecomposition.
This difference of BER performance between the con-

straints studied in Section 5 is confirmed by the NMSE
as depicted by Figures 8 and 9. It is clearly shown that
for CC constraint, the NMSE is less important than the
MSINRC and close to the EMSINRC.
In the sequel, we discuss the performance of the esti-

mated optimum combiner (EOC) based on the weighted
combination of the estimated replica spatial filter using
CC and the estimated MRC. EOC is then compared to
the exact MRC (propagation channel hd is perfectly
Table 2 Execution time and memory use

Step Memory used
[bytes]

DSP cycle
count

Execution
time (μs)

Weights estimation
(with Gauss)

2,348 1,859,684 1,860

Gauss (with prescaling) 420 84,770 (97,205) 84

Cholesky (with prescaling) 1,280 70,306 (83,777) 70

Channel equalization 28 458,725 458
known) and the exact optimum combiner (OC) where
the covariance matrix Rnn and propagation channel hd are
perfectly known. Furthermore, additive white Gaussian
noise (AWGN) power is assumed known.
Figures 8 and 9 show that the EOC in TU50 propaga-

tion environment is better than in HT200 conditions.
In TU50, the EOC presents a good performance com-
paring to OC, and there is only 2 dB of difference at
EbN0 = 20 dB. However, in HT200 environment, this
difference is more significant and is approximately about
4 dB at EbN0 = 20 dB. This degradation is attributed to
the estimation error of the EOC, which is proportional
to the size of the weight vector. For example, in our
case, the total weight vector length is equal to 4LTU = 8 for
TU50 and 4LHT = 12 for HT200. We denote by LTU = 2
and LHT = 3 the maximum impulse response length of the
propagation channels in TU50 and HT200 environments,
respectively (Figures 10 and 11).
Figure 13 BER performance replica filter on 16-bit fixed point
in HT200 channel propagation environment.
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7 Real-time implementation
The complexity of an algorithm is often quantified in
terms of the number of arithmetic operations. This quan-
tification provides an estimate of the use of memory and
execution time necessary to execute the algorithm.
Generally, algorithms are designed for real-time use

and have to be performed by finite precision processors
then the study of complexity raised above can meet the
first requirement, but not enough to satisfy the second.
In this section, we have performed a 16-bit DSP imple-
mentation in order to insure a full analysis, namely to
check that the real-time constraint and 16-bit fixed
points degradation tolerance are respected.
EOC using CC constraint is implemented into the 16-

bit fixed-point DSP (TMS 320C6474) which works at
frequency clock of 1G Hz [26]. The whole of the receive
chain is implemented, but we will show only the results
of the part where the discussed algorithms are involved,
namely the channel equalization.
Table 2 shows the execution time and memory uses

performance of the algorithm. The main complexity cost
in the EOC algorithm steels the relatively high dimension
matrix to be inverted. Two methods of matrix inversion
are implemented, namely Gauss-Jordan and Cholesky
decomposition. The difference in the sense of execution
time is negligible. The total execution time for the
channel equalization is 210.7 μs per OFDM symbol
which represents 1.15% of the frame duration.
The degradation caused by the 16-bit fixed-point format

over the full precision floating point is shown in Figures 12
and 13 for TU50 and HT200 environments, respectively.
These results are given in terms of uncoded BER vs.
signal to interference ratio (SIR) at EbN0 = 20 dB. One
can observe that we have obtained satisfactory results
in both cases of Gauss and Cholesky implementation.

8 Conclusions
This paper presents a new expression for the optimum
combining filter for the case of a two-antenna based
receiver. This expression is a weighted combination of
two components. The first component is the combiner
obtained in the case of null additive white Gaussian
noise and the second is the combiner obtained in the case
of null interference. This decomposition is important
because it allows the optimal combining estimation
through two filters of known sizes, so the problem of
the size of the filters is avoided. A detailed study dedicated
to a SIMO transmission in the case of one interferer and
two receive antennas is presented in order to confirm the
importance of this decomposition. A DSP implementation
is also investigated to quantify the algorithm complexity.
The success of this implementation is a proof that this
algorithm is ready to use at least in cases close to the
given example.
We note that all developments presented in the estima-
tion part of the OC study have been based on one dimen-
sion estimation, mainly the frequency axis of the OFDM
frame. However, the proposed method can be done on the
time axis of the frame such as in [27,28] or on both axis.
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