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Abstract

We consider in this paper the problem of reconstructing block-sparse signals with unknown block partitions. In the
first part of this work, we extend the block-sparse Bayesian learning (BSBL) originally developed for recovering a single
block-sparse signal in a single compressive sensing (CS) task scenario to the case of multiple CS tasks. A newmulti-task
signal recovery algorithm, called the extended multi-task block-sparse Bayesian learning (EMBSBL), is proposed.
EMBSBL exploits the statistical correlation among multiple signals as well as the intra-block correlation within
individual signals to improve performance. Besides, it does not need a priori information on block partition. As the
second part of this paper, we develop the EMBSBL-based synthesized multi-task signal recovery algorithm, namely
SEMBSBL, to make it applicable to the single CS task case. The idea is to synthesize new CS tasks from the single CS task
via circular-shifting operations and utilizes the minimum description length principle to determine the proper set of
the synthesized CS tasks for signal reconstruction. SEMBSBL can achieve better signal reconstruction performance over
other algorithms that recover block-sparse signals individually. Simulations corroborate the theoretical developments.
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1 Introduction
Compressive sensing (CS) enables reconstructing a signal
that is sparse in a certain domain from its measurements
obtained at a rate significantly lower than the Nyquist fre-
quency [1]. If in addition to sparsity, the signal representa-
tion is also structured in the form of clustered non-zeros,
the signal would be referred to as being block-sparse. In
practice, block-sparsity can be found inmulti-band signals
[2] or in the measurements of gene expression levels [3]. It
has been shown that exploring the block-sparsity enables
robust signal recovery from fewer compressive measure-
ments [4]. We shall consider in this paper the efficient
recovery of block-sparse signals.
Several block-sparse signal reconstruction algorithms

have been developed in literature. Based on the compres-
sive sampling matching pursuit (CoSaMP) [5], the block
compressive sampling matching pursuit (BCoSaMP) was
proposed in [4]. It utilizes the knowledge on the number
of non-zero blocks to achieve signal recovery. On the basis
of the orthogonal matching pursuit (OMP) [6], the block
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orthogonal matching pursuit (BOMP) was developed in
[7]. Zou et al. proposed a block fixed-point continua-
tion algorithm in [8] for block-sparse signal recovery.
Elhamifar and Vidal approached the problem via the
application of convex relaxation and convex optimization
[9]. The two methods developed in [8] and [9] require
the availability of the information on the block size. In
[10], the dictionary optimization for block-sparse signal
representation was studied and the work assumed that
the maximum block length was known. More recently,
CluSS-MCMC [11] and BM-MAP-OMP [12] have been
proposed, which require little a priori knowledge on the
block partition. On the basis of Bayesian sparse learn-
ing for temporally correlated signals [13,14] proposed two
block-sparse signal recovery algorithms, the block-sparse
Bayesian learning (BSBL) and its extended version, the
EBSBL algorithm. The BSBL algorithm utilizes the block
partition information while EBSBL handles signals with
unknown block partitions. Most techniques reviewed
above fall under the category of the single-task CS, where
the focus is on recovering a block-sparse signal from its
compressive measurements.
The contribution of this paper is twofold. We shall

first consider the block-sparse signal reconstruction in a
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multi-task scenario, where the signals in different CS tasks
are statistically correlated. The multi-task compressive
sensing (MCS) was originally developed in [15]. Mathe-
matically, we have L CS tasks

yi = �iθ i + ni, i = 1, · · · , L, (1)

where yi is the compressive measurement vector of the
ith task and �i is the Mi × N measurement matrix
(Mi << N). θ i is the original signal in the ith task to
be recovered and ni represents the measurement noise.
In MCS, the correlation among θ i is explored so that θ i
are reconstructed jointly. MCS outperforms the single-
task CS algorithm in terms of the reduced number of
compressive measurements needed for efficient signal
recovery. However, existing MCS techniques do not take
into account the structural information in signals, such as
block-sparsity. We shall therefore propose in this paper an
extended version of the EBSBL algorithm from [14]. The
original EBSBL method does not assume the knowledge
on the block partition information, and it exhibits bet-
ter block-sparse signal reconstruction performance over
methods such as CluSS-MCMC and BM-MAP-OMP. We
shall generalize EBSBL to the MCS scenario and obtain a
new technique, referred to as extended multi-task block-
sparse Bayesian learning (EMBSBL). Besides using the
statistical correlation among θ i as in MCS, EMBSBL
also utilizes the intra-block correlation within each sig-
nal to improve performance. Simulations show that the
block-sparse signal recovery performance of EMBSBL is
superior to that of the benchmark algorithms.
When there is only one CS task, the proposed EMB-

SBL algorithmwould become inapplicable. To address this
problem, in the second part of this work, we shall augment
EMBSBL with the concept of the synthesized multi-task-
based signal recovery. The new algorithm is referred to
as SEMBSBL in the rest of the paper. SEMBSBL first syn-
thesizes multiple CS tasks from the single-task CS and
then applies EMBSBL to recover the block-sparse signal.
The multiple CS tasks are produced via simply circular-
shifting the columns of the measurement matrix of the
original CS model, which corresponds to circular-shifting
the elements in the original signal vector and creates sig-
nals that have overlapping clusters, or equivalently speak-
ing, correlated signals. The number of synthesized tasks
is determined by the minimum description length (MDL)
principle. With increase in the computational complexity,
the newly proposed SEMBSBL technique outperforms the
previously developed block-sparse signal recovery meth-
ods in terms of significantly reduced reconstruction errors
and the removal of the needs for detailed information on
the sparsity structure. Computer simulations are provided
to demonstrate the good performance of the proposed
SEMBSBL method.

The remainder of this paper is organized as follows.
Section 2 presents the new EMBSBL algorithm for recov-
ering multiple correlated block-sparse signals jointly.
Section 3 illustrates the idea of synthesizing multiple CS
tasks from a single one and presents the proposed SEM-
BSBL algorithm. Simulation results are given in Section 4
and Section 5 concludes the paper.

2 EMBSBL algorithm
The development of EMBSBL starts with extending BSBL-
BO in [14] to the case of multiple CS tasks. The resulting
algorithm, calledMBSBL, can jointly recover block-sparse
signals when their non-zero blocks all have the same size.
We next generalize MBSBL to obtain EMBSBL that does
not need the information on the signal sparsity structure.

2.1 MBSBL
Let S be the block size and K be the number of blocks
in every signal to be recovered. If the measurement noise
ni in (1) follows an i.i.d. Gaussian distribution with zero
mean and covariance matrix β−1I, the conditional likeli-
hood function of yi is

p
(
yi |θ i,β

) = N
(
yi

∣∣�iθ i,β−1I
)
, (2)

where N
(
yi|�iθ i,β−1I

)
represents a Gaussian distribu-

tion withmean�iθ i and covariancematrix β−1I. In BSBL,
each block θ i,j ∈ RS×1 is assumed to satisfy a zero-mean
multivariate Gaussian distribution

p
(
θ i,j

∣∣γj,Bj
) = N

(
θ i,j

∣∣0, γjBj
)
, j = 1, . . . ,K . (3)

If we further assume that blocks are mutually uncor-
related, the prior for θ i is given by p (θ i |γ ,B0 ) =
N (θ i |0,�0 ), where γ = {

γj
}
j=1,...,K , B0 = {

Bj
}
j=1,...,K ,

�0 =
⎡⎢⎣ γ1B1

. . .
γKBK

⎤⎥⎦ . (4)

Here, Bj is a positive definite matrix, capturing the corre-
lation structure within the jth block, and γj is a nonnega-
tive parameter controlling the block-sparsity of θ i,j. When
γj = 0, the jth block becomes zero. During the learning
process, most γj tend to be zero, due to the mechanism of
automatic relevance determination [13].
To avoid overfitting, we set Bj= B, j = 1, . . . ,K . Thus,

�0 = � ⊗ B, where �
�= diag (γ1, . . . , γK ) and ⊗ denotes

the Kronecker product. The posterior distribution of θ i is
then given by

p
(
θ i

∣∣yi,β , γ ,B ) = p
(
yi |θ i,β

)
p (θ i |γ ,B )∫

p
(
yi |θ i,β

)
p (θ i |γ ,B ) dθ i

= N
(
θ i

∣∣μθ i ,�θ i

) (5)
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where

μθ i = �0�
T
i

(
β−1I + �i�0�

T
i

)−1
yi (6)

�θ i =
(
�−1

0 +β�T
i �i

)−1
. (7)

From (5), we note that β , γ , and B are the sharing param-
eters of all CS tasks. To estimate them, let Y= {

y1, . . . , yL
}

be the measurement set of the L CS tasks. We have

p (Y |β , γ ,B ) =
L∏

i=1
p
(
yi |β , γ ,B

)
. (8)

The logarithm of p (Y |β , γ ,B ) is

L (β , γ ,B)
�=

L∑
i=1

log p
(
yi |β , γ ,B

)
=

L∑
i=1

log
∫

p
(
yi |θ i,β

)
p (θ i |γ ,B ) dθ i

= − 1
2

L∑
i=1

[
Mi log (2π) + log (det (Ci)) + yTi C

−1
i yi

]
,

(9)

where Ci = β−1I + �i�0�
T
i . Maximizing L (β , γ ,B)

would yield the estimates of the sharing parameters β , γ
and B. We shall adopt the approach used in [14] to iden-
tify γ via the bound-optimization method, and find β and
B via expectation maximization (EM).

2.1.1 Estimating γ

Maximizing (9) is equivalent to the minimization of
L∑

i=1

[
log (det (Ci)) + yTi C

−1
i yi

]
. For this purpose, we

replace the term log (det (Ci)) with an upper bound and
apply a surrogate function for the term yTi C

−1
i yi and then

minimize their summation.
The upper bound of log (det (Ci)) depends on its sup-

porting hyperplane. Let γ ∗ be a given point in the γ -space
and we have

log (det (Ci))

= log
(
det

(
β−1I + �i�0�

T
i

))
≤ log

(
det

(
β−1I + �i�

∗
0�

T
i

))
+

K∑
j=1

Tr
((

�∗
yi

)−1
�

j
iB

(
�

j
i

)T)(
γj − γ ∗

j

)
= log

(
det

(
�∗

yi

))
+

K∑
j=1

Tr
((

�∗
yi

)−1
�

j
iB

(
�

j
i

)T)(
γj − γ ∗

j

)
,

(10)

where �∗
yi = β−1I + �i�

∗
0�

T
i and �∗

0
�= �0

∣∣
γ=γ ∗ . �j

i ∈
RMi×S is a submatrix of �i =[�1

i ,�2
i , ...,�K

i ], which cor-
responds to the jth block of θ i. We next introduce the
surrogate function for the term yTi C

−1
i yi. The purpose is

to facilitate evaluating the partial derivatives of yTi C
−1
i yi

with respect to the sharing parameters β and γ . Orig-
inally, the sharing parameters appear in the inverse of
the matrix Ci (see the definition of Ci under (9)). The
surrogate function for yTi C

−1
i yi is

yTi C
−1
i yi = yTi

(
β−1I + �i�0�

T
i

)−1

yi = min
θ i

(
1
β

∥∥yi − �iθ i
∥∥2
2 + θ i

T�−1
0 θ i

)
.

(11)

It can be easily verified that the cost function to be min-
imized on the rightmost of (11) is the logarithm of the
numerator of (5), p

(
yi |θ i,β

)
p (θ i |γ ,B ), and the solution

to the minimization problem is μθ i defined in (6).
Putting (10) and (11) into (9), we have

L∑
i=1

[
log (det (Ci)) + yTi C

−1
i yi

]

≤
L∑

i=1

⎡⎣ log
(
det

(
�∗

yi

))

+
K∑
j=1

Tr
((

�∗
yi

)−1
�

j
iB

(
�

j
i

)T)(
γj − γ ∗

j

)⎤⎦
+

L∑
i=1

min
θi

(
1
β

∥∥yi − �iθ i
∥∥2
2 + θ i

T�−1
0 θ i

)
.

(12)

Let �= {θ1, . . . , θL} be the set of original signals from
the L CS tasks. We can express the upper bound of
L∑

i=1

[
log (det (Ci)) + yTi C

−1
i yi

]
as

G (γ ,�)
�=

L∑
i=1

⎡⎣ log
(
det

(
�∗

yi

))

+
K∑
j=1

Tr
((

�∗
yi

)−1
�

j
iB

(
�

j
i

)T)(
γj − γ ∗

j

)⎤⎦
+

L∑
i=1

[
1
β

∥∥yi − �iθ i
∥∥2
2 + θ i

T�−1
0 θ i

]
.

(13)
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Taking the partial derivative of G (γ ,�) with respect to γj
and setting the result to zero yield the desired estimate of
γj, the jth element in γ , which is given by

γj =
√√√√ L∑

i=1

[(
θ
j
i

)T
B−1θ

j
i

]/ L∑
i=1

Tr
((

�
j
i

)T (
�∗

yi

)−1
�

j
iB

)
, j = 1, . . . ,K .

(14)

2.1.2 Estimating B and β

The EM technique is used to find 	 = {B,β}. We pro-
ceed by first treating θ i as hidden variables and then
maximizing

W (β ,B) = E�

∣∣∣Y,�(old)
[
log p (Y,� |� )

]
= E�

∣∣∣Y,�(old)
[
log p (Y |�,β )

]
+ E

�

∣∣∣Y,�(old)
[
log p (� |B )

]
,

(15)

where 	(old) denotes the evaluated parameters in the
previous iteration,

log p (� |B ) =
L∑

i=1
log p (θ i |B )

= −1
2

L∑
i=1

[
Mi log (2π)

+ log (det (�0)) + θTi �−1
0 θ i

]
.

(16)

Here, we only consider the terms relating to B inW (β ,B)

and use the notation

W1 (B)
�= E

�

∣∣∣Y,�(old)
[
log p (� |B )

]
= − 1

2

L∑
i=1

[
Mi log (2π)

+ log
(
(det (	))S (det (B))K

)
+ E

[
θTi

(
�−1 ⊗ B−1) θ i

]]
= − 1

2

L∑
i=1

[
Mi log (2π) + S log (det (�))

+ K log (det (B))

+ Tr
[(

�−1 ⊗ B−1) (�θ i + μθ iμ
T
θ i

)]]
.

(17)

The partial derivative of (17) with respective to B, which
is symmetric and positive definite because it characterizes

the covariance matrix of every signal block (see the defi-
nition given above (5)), is

∂W1(B)

∂B
= − 1

2

L∑
i=1

⎡⎣KB−1 −
K∑
j=1

(
1
γj
B−1

(
�

j
θ i

+ μ
j
θ i

(
μ
j
θ i

)T)
B−1

)⎤⎦
= − 1

2

⎡⎣KLB−1 − B−1

⎛⎝ L∑
i=1

K∑
j=1

(
1
γj

(
�

j
θ i

+ μ
j
θ i

(
μ
j
θ i

)T))⎞⎠B−1

⎤⎦ ,

(18)

where μ
j
θ i

�= μθ i

((
j − 1

)
S + 1 : jS

)
, �

j
θ i

�= �θ i

((
j − 1

)
S + 1 : jS,

(
j − 1

)
S + 1 : jS

)
. Setting (18) to zero yields

B = 1
KL

L∑
i=1

K∑
j=1

(
1
γj

(
�

j
θ i

+ μ
j
θ i

(
μ
j
θ i

)T))
. (19)

Similar to [14], we improve the performance of the algo-
rithm by restraining the matrix B. Specifically, we attempt
to find a positive definite and symmetric matrix B̂ to
approximate B. Mathematically, we set B̂ to be a Toeplitz
matrix equal to

B̂ = Toeplitz
(
[ 1, r, · · · , rS−1]

)
=

⎡⎢⎣ 1 r · · · rS−1

...
...

rS−1 rS−2 · · · 1

⎤⎥⎦ ,

where r = m1
m0

, m0, and m1 are obtained by averag-
ing the elements along the main diagonal and the main
sub-diagonal of B in (19). As a result, the approximated
version of B is fully characterized by r. This method
can also be applied with some modifications to the case
where signal blocks have different sizes. In particular,
in this case, we first compute r̄ = m̄1

m̄0
, where m̄0 =

K∑
j=1

mj
0 and m̄1 =

K∑
j=1

mj
1. m

j
0 and mj

1 are obtained by

averaging the elements along the main diagonal and the
main sub-diagonal of Bj, where it can be shown that

Bj = 1
Lγj

L∑
i=1

(
�

j
θ i

+ μ
j
θ i

(
μ
j
θ i

)T)
. Bj are approximated

with B̂j = Toeplitz
([
1, r̄, · · · , r̄Sj−1]) such that again, B̂j

depend on the value of r̄ only. Here, Sj is the size of block j.
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We next evaluate β . Consider the terms relating to β in
W (β ,B) and use the notation

W2 (β)
�= E�

∣∣Y,	(old)
[
log p (Y |�,β )

]
= − 1

2

L∑
i=1

[
MiS log (2π) − MiS log (β)

+ βEθ i|yi,	(old)

[∥∥yi − �iθ i
∥∥2
2

]]
= − 1

2

L∑
i=1

[
MiS log (2π) − MiS log (β)

+ β
[∥∥yi − �iμθ i

∥∥2
2 + E

[∥∥�i
(
θ i − μθ i

)∥∥2
2

]]]
= − 1

2

L∑
i=1

[
MiS log (2π) − MiS log (β)

+ β
[∥∥yi − �iμθ i

∥∥2
2 + Tr

(
�θ i�

T
i �i

)]]
.

(20)

Differentiating W2 (β) with respect to β and then setting
the result to zero, we obtain

∂W2
∂β

= − 1
2

[
− 1

β

L∑
i=1

MiS + β

L∑
i=1

[∥∥yi − �iμθ i

∥∥2
2

+ Tr
(
�θ i�

T
i �i

)]]
= 0.

(21)

We have, after some manipulations,

β =

L∑
i=1

MiS

L∑
i=1

[∥∥yi − �iμθ i

∥∥2
2 + Tr

(
�θ i�

T
i �i

)] . (22)

The iterative process for estimating β , γ , and B starts
with initial solution guesses of μθ i , �θ i , γj, B, and β . We
then evaluate sequentially (6), (7), and (14) to find γj and
proceed to find the updated estimates of B and β using
(19) and (22). With the obtained estimates of the sharing
parameters, the original signals θ i of the L CS tasks can be
reconstructed by following the MCS technique [15]. This
completes the development of MBSBL.

2.2 EMBSBL
We shall present the new EMBSBL algorithm that is based
on the developed MBSBL technique. Similar to [14], we
first assume that all the blocks are of equal size h and the
non-zero blocks are arbitrarily located. We will show via
simulations that EMBSBL is not sensitive to the choice of
h. There are p �= N − h+ 1 possible blocks in every signal
θ i. The jth block starts at the jth element of θ i and con-
tinues until the

(
j + h − 1

)
th element. All the non-zero

elements of θ i lie within a subset of these blocks. From the
analysis above, we can have the decomposition of θ i

θ i =
p∑

j=1
Ejzi,j, (23)

where zi,j ∈ Rh×1; E
(
zi,jzTi,k

)
= δj,kγjB (δj,k = 1 if

j = k; otherwise, δj,k = 0); and zi =
[
zTi,1, . . . , z

T
i,p

]T ∼
Nzi

(
0, �̃0

)
, �̃0 = diag

(
γ1B, . . . ,γpB

) ∈ Rph×ph; Ej ∈
RN×h is a zero matrix except that the submatrix com-
posed of its jth row to

(
j + h − 1

)
th row is replaced by the

identity matrix I, and Ej is the same for every θ i. The CS
model (1) can then be re-expressed as

yi =
p∑

j=1
�iEjzi,j + ni = Aizi + ni, (i = 1, · · · , L) (24)

where

Ai = [
Ai,1, . . . ,Ai,p

]
(25)

and

Ai,j = �iEj. (26)

The new CS model (24) has its signals with the prop-
erty of block-sparsity and the intra-block correlation is
explicit. zi can be recovered using MBSBL and by uti-
lizing (23), the original signals θ i of the CS tasks can
then be found, which finishes the development of EMB-
SBL for recovering block-sparse signals under the MCS
framework.

3 SEMBSBL algorithm
The EMBSBL cannot be directly applied to recover a sin-
gle block-sparse signal in the single CS task scenario, due
to its nature of being an MCS technique. We shall aug-
ment it with the idea of synthesized MCS to address this
difficulty. CS task synthesis via circular-shifting operation
is developed below. This section ends with the improved
EMBSBL algorithm, namely synthesized EMBSBL (SEM-
BSBL), which utilizes the MDL principle to determine
the optimal number of synthesized CS tasks to achieve
satisfactory signal recovery performance.

3.1 Synthesis of multiple CS tasks
Figure 1 illustrates synthesizing multiple CS tasks from a
single one. The absence of measurement noise is assumed
here to improve clarity. The original CS task is y1 = �1θ1,
where θ1 is the block-sparse signal to be recovered and
it has two non-zero clusters (shadowed). The columns of
the measurement matrix �1 corresponding to the non-
zero elements in θ1 are also shadowed for illustration.
Figure 1 indicates that a new CS task can be synthesized
from the original one by circularly shifting the columns of
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1
y

2 1
=y y

= =× ×

1
Φ

2
Φ

1
θ

2
θ

Figure 1 Synthesis of a new CS task via circular shifting.

�1 to the right by one column. In this way, the new CS
task has a new measurement matrix �2 and a new signal
θ2 whose the elements are generated by circularly shift-
ing θ1 downward by one sample. The new CS task has
the same compressive measurements as the original one.
We assume that this observation holds also for the case
where measurement noise is present. Comparing θ1 with
θ2 reveals that the locations of their non-zero elements
have overlaps. This implies that θ1 and θ2 are correlated.
This forms the basis for utilizing EMBSBL in block-
sparse signal recovery. Additional CS tasks can be synthe-
sized by following a similar approach but with different
directions and shifting amounts of the circular-shifting
operations.
It can be expected that due to the block-sparsity of

the signal to be recovered, the signals of some synthe-
sized CS tasks may not be well correlated with others.
In other words, they only have few overlapping non-zero
elements. The utilization of these CS tasks in recover-
ing the original signal via EMBSBL would lead to poor
signal reconstruction performance. To address this prob-
lem, we propose to utilize theMDL principle to determine
the number of synthesized CS tasks for the block-sparse
signal reconstruction, as will be detailed in the following
subsection.

3.2 SEMBSBL
This section presents the proposed SEMBSBL algorithm.
We shall first provide a method for evaluating the signal
recovery quality of EMBSBL for a given set of synthesized
CS tasks. This is essential for selecting the optimal set
of synthesized CS tasks for block-sparse signal recovery.
For this purpose, we apply the MDL principle. Basically,
it states that among a set of competing statistical mod-
els, the best model is the one having the minimum code
length for the given data [16,17]. This is mathematically
equivalent to solving Q̂ = arg min

Q∈M
CL

(
y,Q

)
, where M

denotes the set of possible models and CL
(
y,Q

)
is the

code length function. We set CL
(
y,Q

)
to be the Shannon

code length [18], i.e., CL
(
y,Q

) = − log2 p
(
y,Q

)
, where

p
(
y,Q

)
is the probability density function of y under the

model Q.

For the problem of applying EMBSBL to recovering the
block-sparse signal in a single CS task scenario (without
loss of generality, we assume the task is y1 = �1 + n1),
we denote the estimates of the sharing parameters β ,γ ,B
as β̂ ,̂γ ,̂B. They are output by the EMBSBL algorithm for a
given set of synthesized CS tasks. The description length
for y1, CL

(
y1

)
, can be then expressed as, after using (9)

and setting L = 1,

CL
(
y1

) = CL
(
y1

∣∣β̂ , γ̂ , B̂ ) + CL
(
β̂ , γ̂ , B̂

)
= − log2 p

(
y1

∣∣β̂ , γ̂ , B̂ )
− log2 p

(
β̂
) − log2 p (γ̂ ) − log2 p

(
B̂
)

= 1
2

(
M1 log2 (2π) + log2 (det (C1))

+yT1 C
−1
1 y1 log2 e

)
+ const,

(27)

where CL
(
y1

∣∣β̂ , γ̂ , B̂ ) = − log2 p
(
y1

∣∣β̂ , γ̂ , B̂ )
measures

the goodness of fit between the data and the current
model,CL

(
β̂ , γ̂ , B̂

) = − log2 p
(
β̂
)−log2 p (γ̂ )−log2 p

(
B̂
)

represents the model complexity, and p
(
β̂
)
, p (γ̂ ), and

p
(
B̂
)
denote the prior distributions of β̂ , γ̂ , B̂, e which

are the base of the natural logarithm. Because we do not
impose any specific distributions on β̂ , γ̂ , B̂, their prior
probability distributions are thus set to be the uniform
distributions. In other words, − log2 p

(
β̂
) − log2 p (γ̂ ) −

log2 p
(
B̂
)
is a constant. C1 = β̂−1I + A1�̂0AT

1 , �̂0 =
diag

(
γ̂1B̂, . . . , γ̂K B̂

)
.

We are now ready to present the proposed SEMBSBL
algorithm. It is an iterative method that improves the sig-
nal recovery quality gradually. In each iteration, a new
CS tasks is synthesized using the circular-shifting opera-
tion as illustrated in Figure 1. The newly produced task
is applied together with the previously synthesized CS
tasks as well as the original CS task in EMBSBL for
jointly reconstructing the block-sparse signal. The above
process continues until the number of synthesized CS
tasks reaches a pre-specified value or including the newly
synthesized CS task does not lead to better signal recon-
struction quality (or equivalently, reduced code length for
describing the data, which is given in (27)).
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The algorithm is summarized in Algorithm 1. lmax is
the user-specified maximum number of the synthesized
CS tasks. EMBSBLl (Y,A) represents the application of
EMBSBL for signal reconstruction in the lth iteration
and it uses l CS tasks. Y and A collect the compressive
measurements and their associated measurement matri-
ces of the l CS tasks. The output of EMBSBLl (Y,A)

is β̂ l, γ̂ l, B̂l, θ̂1
l, which are the estimates of the sharing

parameters β ,γ ,B and the original signal θ1. The oper-
ators Left (A1, l) and Right (A1, l) denote circular shift-
ing the columns of A1 to the left and to the right by l
columns.

Algorithm 1 SEMBSBL
1 Inputs: y1, �1, lmax.
2 Output: θ̂1.
3 Initialize Y ← {

y1
}
; calculate A1 using (25) and (26),

A ← {A1}; l ← 2;
β̂1, γ̂ 1, B̂1, θ̂1

1 ← EMBSBL1 (Y,A); calculate CL1
(
y1

)
using (27).

4 Y ← {
Y, y1

}
; A ← {A, Left (A1, l − 1)} if l is even, or

A ← {
A, Right (A1, l − 1)

}
if l is odd; β̂ l, γ̂ l, B̂l, θ̂1

l ← EMBSBLl (Y,A); calculate
CLl

(
y1

)
using (27).

5 If CLl
(
y1

)
< CLl−1

(
y1

)
or l = lmax, θ̂1 ← θ̂

l
1and

terminate the algorithm; otherwise,
l ← l + 1 and goto step 4.

4 Simulations
We shall provide simulation results to demonstrate the
performance of the EMBSBL algorithm proposed in
Section 2 and the SEMBSBL algorithm developed in
Section 3. The signal reconstruction error is quantified
using

∥∥∥θ i − θ̂ i

∥∥∥
2

/‖θ i‖2 , where θ i and θ̂ i are the true
and the estimated signals. The elements of the measure-
ment matrix �i are initially drawn from the standard
normal distribution N (0, 1) and each row of �i is then
normalized to have a unit norm.
In the first experiment, we simulate a two CS task sce-

nario (L = 2) where the original signals both have a length
of N = 500 and each contains 50 spikes with differ-
ent amplitudes at random locations. The two signals also
have six non-zero blocks with random sizes and they are
at non-overlapping random locations. We consider two
cases where 80% and 100% of the spikes of the two signals
are at the same positions.
The signal-to-noise ratio (SNR) in log scale is defined

as SNR �= 20log10
(√

β ‖�iθ i‖2
)
and zero-mean Gaussian

noise is added to every CS measurement vector. We set
SNR = 15 dB and use MCS, BSBL-BO, and EBSBL-BO

as benchmark techniques for comparison. When imple-
menting BSBL-BO, EBSBL-BO, and EMBSBL, we set
the block size parameter h to be h = 4 and h = 8 to
illustrate the impact of different choice of h on their per-
formance. The signal reconstruction error results shown
are obtained via averaging over 50 ensemble runs.
Figure 2 compares MCS, BSBL-BO, EBSBL-BO, and

EMBSBL in terms of their signal reconstruction errors as a
function of the number of the compressivemeasurements.
In this simulation, the intra-block correlation coefficient
for each block is uniformly distributed between 0 and 0.1.
Simulation results indicate that for BSBL-BO and EBSBL-
BO, the performance curves when 80% and 100% of the
spikes of the two original signals are at the same loca-
tions are very similar to each other. Therefore, to improve
the clarity of the figures, we only provide in Figure 2 and
the following Figures 3 and 4 the results when 80% of the
spikes have the same locations.
We can see from Figure 2a that the proposed EMB-

SBL has the least signal recovery error and its perfor-
mance improves as more spikes of the original signals
share the same locations. More importantly, EMBSBL is
less sensitive to the choice of the block size parameter h
than BSBL-BO and EBSBL-BO. This is because the new
EMBSBL technique is an MCS algorithm that recovers
the original signals of multiple CS tasks jointly. Com-
pared with BSBL-BO and EBSBL-BO that are single-task
CS algorithms, EMBSBL explores the inter-correlation
among original signals to improve performance, besides
the intra-block correlation. The use of this additional
information improves the robustness of EMBSBL to the
deviation of the presumed block size from the true value.
Finally, as shown in Figure 2b, EMBSBL has the compa-
rable complexity as EBSBL-BO, despite of being an MCS
technique.
We repeat the simulation that produced Figure 2 but

this time, we allow the intra-block correlation coefficient
for each block to be uniformly distributed between 0.4
and 0.5. The obtained results are summarized in Figure 3.
It can be seen that the proposed EMBSBL continues to
offer the best signal recovery performance. Besides, the
increase in the intra-block correlation improves the per-
formance of the EBSBL-BO.
In producing Figure 4, we further increase the intra-

block correlation coefficient for each block to be uni-
formly distributed from 0.8 to 0.9. The performance curve
of MCS is excluded from the figure for sake of clarity,
because in this case, the signal reconstruction error of
MCS is large. We can find in Figure 4 that under sig-
nificant intra-block correlation, the proposed EMBSBL
still has the best signal recovery performance. Besides,
comparing Figure 4 with Figures 2 and 3 reveals that
higher intra-block correlation leads to improved perfor-
mance of the proposed EMBSBL method. This is because
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Figure 2 Comparison of MCS, BSBL-BO, EBSBL-BO, and EMBSBL as a function of the number of compressive measurements.When the
intra-block correlation coefficient for each block is uniformly distributed between 0 and 0.1. (a) Signal reconstruction error performance,
(b) algorithm running time.
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Figure 3 Comparison of MCS, BSBL-BO, EBSBL-BO, and EMBSBL as function of the number of compressive measurements.When the
intra-block correlation coefficient for each block is uniformly distributed between 0.4 and 0.5. (a) Signal reconstruction error performance,
(b) algorithm running time.
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Figure 4 Comparison of MCS, BSBL-BO, EBSBL-BO, and EMBSBL as function of the number of compressive measurements.When the
intra-block correlation coefficient for each block is uniformly distributed between 0.8 and 0.9. (a) Signal reconstruction error performance,
(b) algorithm running time.
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Figure 5 Signal reconstruction performance of EBSBL-BO and EMBSBL as function of the number of compressive measurements. Under
different signal inter-correlation levels. (a) Intra-block correlation coefficient uniformly distributed in [0, 0.1], (b) intra-block correlation coefficient
uniformly distributed in [0.4, 0.5], (c) intra-block correlation coefficient uniformly distributed in [0.8, 0.9].

it explicitly utilizes the intra-block correlation for better
signal recovery (see Section 2).
We next study the impact of different signal inter-

correlation levels on the signal recovery performance of
EMBSBL. The simulation setup is the same as that leading
to Figure 2 except that the percentage of overlapping non-
zeros of the two original signals is set to be 40%, 60%, 80%,
and 100%. Three sets of simulation results are produced.
They correspond to the intra-block correlation coefficient
being uniformly distributed within [0, 0.1], [0.4, 0.5], and
[0.8, 0.9]. The obtained simulation results are summarized
in Figure 5. We find that EMBSBL can recover the origi-
nal signals with reduced signal reconstruction error as the
inter-correlation among original signals increases. This
observation holds for different intra-block correlation
coefficients. The performance improvement is somewhat

expected, because the EMBSBL algorithm is anMCS tech-
nique and its signal recovery performance would benefit
from increased inter-correlation among original signals.
To validate the development of SEMBSBL (see

Section 3), we consider a single CS task scenario. Again,
the original signal has a length of N = 500 and it contains
50 spikes at random locations. Besides, the signal include
six non-zero blocks with random sizes and random but
non-overlapping locations. We set SNR = 15 dB in the
simulation and use BSBL-BO and EBSBL-BO as bench-
marking techniques. For BSBL-BO, EBSBL-BO, and the
proposed SEMBSBL, we generate signal recovery error
performance curves with the block size parameter setting
to be h = 4 and h = 8. The results are averaged over
50 runs. For the proposed SEMBSBL, we set the pre-
specified maximum number of the synthesized CS tasks
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Figure 6 Comparison of reconstruction performance of BSBL-BO, EBSBL-BO, and SEMBSBL. In the original CS task when the intra-block
correlation value for each block is uniformly randomly varied from 0 to 0.1 (a), from 0.4 to 0.5 (b), from 0.8 to 0.9 (c).
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lmax to be six. We consider three cases, where the intra-
block correlation coefficient for each block is uniformly
distributed within [0, 0.1], [0.4, 0.5], and [0.8, 0.9]. The
obtained simulation results are shown in Figure 6. It can
be observed that the proposed SEMBSBL outperforms
benchmark algorithms and SEMBSBL is less sensitive to
the choice of the parameter h than EBSBL-BO. But the
running time of SEMBSBL is high, since it executes the
EMBSBL algorithm a couple of times before it finds an
optimal set of synthesized CS tasks for signal recovery.

5 Conclusion
In this paper, a novel algorithm for jointly recover-
ing multiple block-sparse signals from their compressive
measurements, termed as the EMBSBL algorithm, was
developed. EMBSBL exploits both the statistical corre-
lation among signals and signals’ intra-block correlation
to achieve superior signal recovery performance. More-
over, the new algorithm eliminates the requirement on
the availability of a priori information on the sparsity
structure of the original signal. We also developed in this
paper SEMBSBL that applies EMBSBL to the single CS
task case. It synthesizes new CS tasks from the single
CS task via simple circular-shifting operations to make
EMBSBL applicable. The MDL principle was adopted to
determine the proper set of the synthesized CS tasks for
reconstructing the block-sparse signal. Computer simu-
lations were carried out and revealed that the proposed
EMBSEBL and SEMBSBL are able to outperform exist-
ing techniques in providing greatly enhanced block-sparse
signal reconstruction performance at the cost of increased
computational complexity.
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