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Abstract

In this paper, we present an overview of constrained parallel factor (PARAFAC) models where the constraints model
linear dependencies among columns of the factor matrices of the tensor decomposition or, alternatively, the pattern
of interactions between different modes of the tensor which are captured by the equivalent core tensor. Some tensor
prerequisites with a particular emphasis on mode combination using Kronecker products of canonical vectors that
makes easier matricization operations, are first introduced. This Kronecker product-based approach is also formulated
in terms of an index notation, which provides an original and concise formalism for both matricizing tensors and
writing tensor models. Then, after a brief reminder of PARAFAC and Tucker models, two families of constrained tensor
models, the co-called PARALIND/CONFAC and PARATUCK models, are described in a unified framework, for Nth-order
tensors. New tensor models, called nested Tucker models and block PARALIND/CONFAC models, are also introduced.
A link between PARATUCK models and constrained PARAFAC models is then established. Finally, new uniqueness
properties of PARATUCK models are deduced from sufficient conditions for essential uniqueness of their associated
constrained PARAFAC models.
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1 Review
1.1 Introduction
Tensor calculus was introduced in differential geometry,
at the end of the nineteenth century, and then tensor
analysis was developed in the context of Einstein’s the-
ory of general relativity, with the introduction of index
notation, the so-called Einstein summation convention, at
the beginning of the twentieth century, which allows to
simplify and shorten physics equations involving tensors.
Index notation is also useful for simplifying multivariate
statistical calculations, particularly those involving cumu-
lant tensors [1]. Generally speaking, tensors are used
in physics and differential geometry for characterizing
the properties of a physical system, representing funda-
mental laws of physics, and defining geometrical objects
whose components are functions. When these functions
are defined over a continuum of points of a mathemati-
cal space, the tensor forms what is called a tensor field,
a generalization of vector field used to solve problems
involving curved surfaces or spaces, as it is the case of
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curved space-time in general relativity. From a mathemat-
ical point of view, two other approaches are possible for
defining tensors, in terms of tensor products of vector
spaces, or multilinear maps. Symmetric tensors can also
be linked with homogeneous polynomials [2].
After the first tensor developments by mathematicians

and physicists, the need of analyzing collections of data
matrices that can be seen as three-way data arrays gave
rise to three-way models for data analysis, with the
pioneering works of Tucker in psychometrics [3], and
Harshman in phonetics [4], who proposed what is now
referred to as the Tucker and parallel factor (PARAFAC)
decompositions, respectively. The PARAFAC decomposi-
tion was independently proposed by Carroll and Chang
[5] under the name canonical decomposition (CANDE-
COMP) and then called CANDECOMP/PARAFAC (CP)
in [6]. For a history of the development of multi-way mod-
els in the context of data analysis, see [7]. Since the 1990s,
multi-way analysis has known a growing success in chem-
istry and especially in chemometrics (see Bro’s thesis [8]
and the book by Smilde et al. [9] for a description of var-
ious chemical applications of three-way models, with a
pedagogical presentation of these models and of various
algorithms for estimating their parameters). At the same
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period, tensor tools were developed for signal processing
applications, more particularly for solving the so-called
blind source separation (BSS) problem using cumulant
tensors (see [10-12] and De Lathauwer’s thesis [13] where
the concept of high-order singular value decomposition
(HOSVD) is introduced, a tensor tool generalizing the
standard matrix SVD to arrays of order higher than two).
A recent overview of BSS approaches and applications
can be found in the handbook co-edited by Comon and
Jutten [14].
Nowadays, (high-order) tensors, also called multi-way

arrays in the data analysis community, play an impor-
tant role in many fields of application for representing
and analyzing multidimensional data, as in psycho-
metrics, chemometrics, food industry, environmental
sciences, signal/image processing, computer vision, neu-
roscience, information sciences, data mining, pattern
recognition, among many others. Then, they are simply
considered as multidimensional arrays of numbers, con-
stituting a generalization of vectors and matrices that are
first- and second-order tensors, respectively, to orders
higher than two. Tensor decompositions, also called ten-
sormodels, are very useful for analyzingmultidimensional
data under the form of signals, images, speech, music
sequences, or texts and also for designing new systems
as it is the case of wireless communication systems since
the publication of the seminal paper by Sidiropoulos et al.
[15]. Besides the references already cited, overviews of
tensor tools, models, algorithms, and applications can be
found in [16-19].
Tensor models incorporating constraints (sparsity; non-

negativity; smoothness; symmetry; column orthonormal-
ity of factor matrices; Hankel, Toeplitz, and Vandermonde
structured matrix factors; allocation constraints...) have
been the object of intensive works, during the last years.
Such constraints can be inherent to the problem under
study or the result of a system design. An overview of
constraints on components of tensor models most often
encountered in multi-way data analysis can be found in
[7]. Incorporation of constraints in tensor models may
facilitate physical interpretability of matrix factors. More-
over, imposing constraints may allow to relax uniqueness
conditions and to develop specialized parameter estima-
tion algorithms with improved performance both in terms
of accuracy and computational cost, as it is the case of
CPmodels with a column-wise orthonormal factor matrix
[20]. One can classify the constraints into three main cat-
egories: i) sparsity/non-negativity, ii) structural, and iii)
linear dependencies/mode interactions. It is worth not-
ing that the three categories of constraints involve specific
parameter estimation algorithms, the first two generally
inducing an improvement of uniqueness property of the
tensor decomposition, while the third category implies a
reduction of uniqueness, named partial uniqueness. We

briefly review the main results concerning the first two
types of constraints, Section 1.3 of this paper being dedi-
cated to the third category.
Sparse and non-negative tensor models have recently

been the subject of many works in various fields of appli-
cations like computer vision [21,22], image compression
[23], hyperspectral imaging [24], music genre classifica-
tion [25] and audio source separation [26], multi-channel
EEG (electroencephalography) and network traffic anal-
ysis [27], fluorescence analysis [28], data denoising and
image classification [29], among many others. Two non-
negative tensor models have been more particularly
studied in the literature, the so-called non-negative ten-
sor factorization (NTF), i.e., PARAFAC models with
non-negativity constraints on the matrix factors, and
non-negative Tucker decomposition (NTD), i.e., Tucker
models with non-negativity constraints on the core ten-
sor and/or the matrix factors. The crucial importance of
NTF/NTD formulti-way data analysis applications results
from the very large volume of real-world data to be ana-
lyzed under constraints of sparseness and non-negativity
of factors to be estimated, when only non-negative param-
eters are physically interpretable. Many NTF/NTD algo-
rithms are now available. Most of them can be viewed
as high-order extensions of non-negative matrix factor-
ization (NMF) methods, in the sense that they are based
on an alternating minimization of cost functions incorpo-
rating sparsity measures (also named distances or diver-
gences) with application of NMF methods to matricized
or vectorized forms of the tensor to be decomposed (see
for instance [16,23,28,30] for NTF and [29,31] for NTD).
An overview of NMF and NTF/NTD algorithms can be
found in [16].
The second category of constraints concerns the case

where the core tensor and/or some matrix factors of the
tensor model have a special structure. For instance, we
recently proposed a nonlinear CDMA scheme for mul-
tiuser SIMO communication systems that is based on
a constrained block-Tucker2 model whose core tensor,
composed of the information symbols to be transmitted
and their powers up to a certain degree, is character-
ized by matrix slices having a Vandermonde or a Hankel
structure [32,33]. We also developed Volterra-PARAFAC
models for nonlinear system modeling and identifica-
tion. These models are obtained by expanding high-order
Volterra kernels, viewed as symmetric tensors, by means
of symmetric or doubly symmetric PARAFAC decompo-
sitions [34,35]. Block structured nonlinear systems like
Wiener, Hammerstein, and parallel-cascade Wiener sys-
tems can be identified from their associated Volterra
kernels that admit symmetric PARAFAC decompositions
with Toeplitz factors [36,37]. Symmetric PARAFAC mod-
els with Hankel factors and symmetric block PARAFAC
models with block Hankel factors are encountered for
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blind identification of multiple-input multiple-output
(MIMO) linear channels using fourth-order cumulant
tensors, in the cases of memoryless and convolutive chan-
nels, respectively [38,39]. In the presence of structural
constraints, specific estimation algorithms can be derived
as it is the case for symmetric CP decompositions [40], CP
decompositions with Toeplitz factors (in [41], an iterative
solution was proposed, whereas in [42], a non-iterative
algorithm was developed), Vandermonde factors [43],
circulant factors [44], banded and/or structured matrix
factors [45,46], and also for Hankel and Vandermonde
structured core tensors [33].
The rest of this paper is organized as follows: In

Section 1.2, we present some tensor prerequisites with
a particular emphasis on mode combination using
Kronecker products of canonical vectors that makes
easier the matricization operations, especially to derive
matrix representations of tensor models. This Kronecker
product-based approach is also formulated in terms of
an index notation, which provides an original and con-
cise formalism for both matricizing tensors and writing
tensor models. Then, we present the two most common
tensor models, the so-called Tucker and PARAFAC mod-
els, in a general framework, i.e., for Nth-order tensors. In
Section 1.3, two families of constrained tensor models, the
co-called PARALIND/CONFAC and PARATUCK mod-
els, are described in a unified way, with a generalization
to Nth-order tensors. New tensor models, called nested
Tucker models and block PARALIND/CONFAC models,
are also introduced. A link between PARATUCK models
and constrained PARAFAC models is also established. In
Section 1.4, uniqueness properties of PARATUCK mod-
els are deduced using this link. The paper is concluded in
Section 2.
Notations and definitions. R and C denote the fields of

real and complex numbers, respectively. Scalars, column
vectors, matrices, and high-order tensors are denoted by
lowercase, boldface lowercase, boldface uppercase, and
calligraphic uppercase letters, e.g., a, a, A, and A, respec-
tively. The vector Ai. (resp. A.j) represents the ith row
(resp. jth column) of A.
IN , 1TN , and e

(N)
n stand for the identity matrix of orderN,

the all-ones row vector of dimensions 1 × N , and the nth
canonical vector of the Euclidean space RN , respectively.
AT ,AH ,A†, tr(A), and rA denote the transpose, the con-

jugate (Hermitian) transpose, theMoore-Penrose pseudo-
inverse, the trace, and the rank ofA, respectively.Di(A) =
diag(Ai.) represents the diagonal matrix having the ele-
ments of the ith row of A on its diagonal. The operator
bdiag(.) forms a block diagonal matrix from its matrix
arguments, while the operator vec(.) transforms a matrix
into a column vector by stacking the columns of its
matrix argument one on top of the other one. In case of a
tensor X , the vec(.) operation is defined in (6).

The outer product (also called tensor product), and the
matrix Kronecker, Khatri-Rao (column-wise Kronecker),
and Hadamard (element-wise) products are denoted by ◦,
⊗, �, and �, respectively.
Let us consider the set S = {n1, . . . , nN } obtained by

permuting the elements of the set {1, . . . ,N}. For A(n) ∈
C
In×Rn and u(n) ∈ C

In×1, n = 1, . . . ,N , we define

⊗
n∈S

A(n) = A(n1)⊗A(n2)⊗ · · · ⊗A(nN ) ∈C
In1 ···InN ×Rn1 ···RnN ;

(1)

�
n∈S

A(n) = A(n1) � A(n2) � · · · � A(nN ) ∈ C
In1 ···InN ×R,

when Rn = R,∀n = 1, . . . ,N ; (2)

�
n∈S

A(n) = A(n1) � A(n2) � · · · � A(nN ) ∈ C
I×R,

when In = I, and Rn = R, ∀n = 1, . . . ,N ;

◦
n∈Su

(n) = u(n1) ◦ u(n2) ◦ · · · ◦ u(nN ) ∈ C
In1×···×InN .

The outer product ofN non-zero vectors defines a rank-
one tensor of order N.
By convention, the order of dimensions is directly

related to the order of variation of the associated indices.
For instance, in (1) and (2), the product In1 In2 · · · InN of
dimensions means that n1 is the index varying the most
slowly while nN is the index varying the most fastly in the
Kronecker products computation.
For S = {1, . . . ,N}, we have the following identities:
(

◦
n∈Su

(n)

)
i1,...,iN

=
(

N◦
n=1

u(n)

)
i1,...,iN

=
N∏

n=1
u(n)
in ,

(
⊗
n∈S

u(n)

)
i
=
(

N⊗
n=1

u(n)

)
i
=

N∏
n=1

u(n)
in

with i = iN +
N−1∑
n=1

(in − 1)
N∏

j=n+1
Ij. (3)

In particular, for u ∈ C
I×1, v ∈ C

J×1,w ∈ C
K×1

X = u ◦ v ◦ w ∈ C
I×J×K ⇔ xijk = uivjwk ,

x = u ⊗ v ⊗ w ∈ C
IJK×1 ⇔ xk+( j−1)K+(i−1) JK = uivjwk .

Some useful matrix formulae are recalled in Appendix 1.

1.2 Tensor prerequisites
In this paper, a tensor is simply viewed as a multidimen-
sional array of measurements. Depending that these mea-
surements are real- or complex-valued, we have a real- or
complex-valued tensor, respectively. The orderN of a ten-
sor refers to the number of indices that characterize its
elements xi1,...,iN , each index in (in = 1, . . . , IN , for n =
1, . . . ,N) being associated with a dimension, also called a
way, or a mode, and In denoting the mode-n dimension.
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An Nth-order complex-valued tensor X ∈ C
I1×···×IN ,

also called an N-way array, of dimensions I1 × · · · × IN ,
can be written as

X =
I1∑

i1=1
· · ·

IN∑
iN=1

xi1,...,iN
N◦

n=1
e(In)
in . (4)

The coefficients xi1,...,iN represent the coordinates ofX in

the canonical basis
{

N◦
n=1

e(In)
in , in = 1, . . . , In; n = 1, . . . ,N

}
of the space CI1×···×IN .
The identity tensor of order N and dimensions

I × · · · × I, denoted by IN ,I or simply I , is a diagonal
hypercubic tensor whose elements δi1,...,iN are defined by
means of the generalized Kronecker delta, i.e., δi1,...,iN ={
1 if i1 = · · · = iN
0 otherwise , and In = I,∀n = 1, . . . ,N . It can

be written as

IN ,I =
I∑

i=1
e(I)
i ◦ · · · ◦ e(I)

i︸ ︷︷ ︸
N terms

.

Different reduced order tensors can be obtained by slic-
ing the tensor X ∈ C

I1×···×IN along one mode or pmodes,
i.e., by fixing one index in or a set of p indices {in1 , . . . , inp},
which gives a tensor of order N − 1 or N − p, respectively.
For instance, by slicing X along its mode-n, we get the ithn
mode-n slice of X , denoted by X...in..., that can be written
as

X...in... =
I1∑

i1=1
· · ·

In−1∑
in−1=1

In+1∑
in+1=1

· · ·
IN∑

iN=1
xi1,...,in,...,iN

× e(In+1)
in+1

◦ · · · ◦ e(IN )
iN ◦ e(I1)

i1 ◦ · · ·
· · · ◦ e(In−1)

in−1
∈ C

In+1×···×IN×I1×···×In−1 .

For instance, by slicing the third-order tensor X ∈
C
I×J×K along each mode, we get three types of matrix

slices, respectively called horizontal, lateral, and frontal
slices:

Xi.. ∈ C
J×K ,X.j. ∈ C

K×I and X..k ∈ C
I×J ,

with i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,K .

1.2.1 Tensor Hadamard product
ConsiderA∈C

R1×···×RN×I1×···×IP1 andB∈C
R1×···×RN×IP1+1×···×IP ,

where {i1, . . . , iP1} and {iP1+1, . . . , iP} are two disjoint
ordered subsets of the set of indices {i1, . . . , iP} and R =
{r1, . . . , rN }.
We define the Hadamard product of A with B

along their common modes, as the tensor C ∈
C
R1×···×RN×I1×···×IP such that

C=A�
R
B⇔cr1,...,rN ,i1,...,iP =ar1,...,rN ,i1,...,iP1br1,...,rN ,iP1+1,...,iP

For instance, given two third-order tensors A ∈
C
R1×R2×I1 and B ∈ C

R1×R2×I2 , the Hadamard product
A �

{r1,r2}
B gives a fourth-order tensor C ∈ C

R1×R2×I1×I2

such that

cr1,r2,i1,i2 = ar1,r2,i1br1,r2,i2 .

Such a tensor Hadamard product can be calculated by
means of the matrix Hadamard product of matrix unfold-
ings of extended tensors, as defined in (21) and (22) (see
also (94) to (96) in Appendix 2). For the example above,
we have

CR1R2×I1I2 = AR1R2×I1

(
II1 ⊗ 1TI2

)
�BR1R2×I2

(
1TI1 ⊗ II2

)

Example: For AR×I1 =
[
a1 a2
a3 a4

]
, BR×I2 =

[
b1 b2
b3 b4

]
, and

the tensor C such as cr,i1,i2 = ar,i1br,i2 , a mode-1 flat matrix
unfolding of C is given by

CR×I1I2 = AR×I1

(
I2 ⊗ 1T2

)
� BR×I2

(
1T2 ⊗ I2

)
=
[
a1 a1 a2 a2
a3 a3 a4 a4

]
�
[
b1 b2 b1 b2
b3 b4 b3 b4

]

=
[
a1b1 a1b2 a2b1 a2b2
a3b3 a3b4 a4b3 a4b4

]

1.2.2 Mode combination
Different contraction operations can be defined depend-
ing on the way according to which the modes are
combined. Let us partition the set {1, . . . ,N} in N1
ordered subsets Sn1 , constituted of p(n1) elements with
N1∑

n1=1
p(n1) = N . Each subset Sn1 is associated with a

combined mode of dimension Jn1 = ∏
In

n∈Sn1
. These mode

combinations allow to rewrite the Nth-order tensor X ∈
C
I1×···×IN under the form of an N th

1 -order tensor Y ∈
CJ1×···×JN1 as follows

Y =
J1∑

j1=1
· · ·

JN1∑
jN1=1

xj1,...,jN1
N1◦

n1=1
e(Jn1 )

jn1
with e(Jn1 )

jn1
= ⊗

n∈Sn1
e(In)
in .

(5)

Two particular mode combinations corresponding to
the vectorization and matricization operations are now
detailed.

1.2.3 Vectorization
The vectorization of X ∈ C

I1×···×IN is associated with
a combination of the N modes into a unique mode of
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dimension J =
N∏

n=1
In, which amounts to replace the outer

product in (4) by the Kronecker product

vec(X ) =
I1∑

i1=1
· · ·

IN∑
iN=1

xi1,...,iN
N⊗

n=1
e(In)
in ∈ C

I1···IN×1 (6)

the element xi1,...,iN ofX being the ith entry of vec(X )with
i defined as in (3).
The vectorization can also be carried out after a permu-

tation of indices π(in), n = 1, . . . ,N .

1.2.4 Matricization or unfolding
There are different ways of matricizing the tensor X
according to the partitioning of the set {1, . . . ,N} into two
ordered subsets S1 and S2, constituted of p and N − p
indices, respectively. A general formula for the matriciza-
tion, for p ∈ [1,N − 1], is

XS1;S2 =
I1∑

i1=1
· · ·

IN∑
iN=1

xi1,...,iN
(

⊗
n∈S1

e(In)
in

)(
⊗

n∈S2
e(In)
in

)T
∈C

J1×J2

(7)

with Jn1 = ∏
In

n∈Sn1
, for n1 = 1 and 2. From (7), we can

deduce the following expression of the element xi1,...,iN in
terms of the matrix unfolding XS1;S2

xi1,...,iN =
(

⊗
n∈S1

e(In)
in

)T
XS1;S2

(
⊗

n∈S2
e(In)
in

)
. (8)

1.2.5 Particular case: mode-nmatrix unfoldingsXn
A flat mode-n matrix unfolding of the tensor X corre-
sponds to an unfolding under the form XS1;S2 with S1 =
{n} and S2 = {n + 1, . . . ,N , 1, . . . , n − 1}, which gives

XIn×In+1···IN I1···In−1 = Xn

=
I1∑

i1=1
· · ·

IN∑
iN=1

xi1,...,iN e
(In)
in

(
⊗

n∈S2
e(In)
in

)T
∈C

In×In+1···IN I1···In−1 .

(9)

We can also define a tall mode-n matrix unfolding of
X , by choosing S1 = {n + 1, . . . ,N , 1, . . . , n − 1} and
S2 = {n}. Then, we have XIn+1···IN I1···In−1×In = XT

n ∈
C
In+1···IN I1···In−1×In .
The column vectors of a flat mode-n matrix unfolding

Xn are the mode-n vectors of X , and the rank of Xn, i.e.,
the dimension of the mode-n linear space spanned by the
mode-n vectors, is called mode-n rank of X , denoted by
rankn(X ).

In the case of a third-order tensorX ∈ C
I×J×K , there are

six different flat unfoldings, denoted XI×JK , XI×KJ , XJ×KI ,
XJ×IK , XK×IJ , and XK×JI . For instance, we have

XI×JK = X{1};{2,3} =
I∑

i=1

J∑
j=1

K∑
k=1

xi,j,k e(I)
i

(
e(J)
j ⊗ e(K)

k

)T
.

(10)

Using the properties (84), (85), and (87) of the Kro-
necker product gives

XI×JK =
J∑

j=1

(
e(J)
j

)T ⊗
I∑

i=1

K∑
k=1

xi,j,ke(I)
i

(
e(K)

k

)T

=
J∑

j=1

(
e(J)
j

)T ⊗ (X.j.)
T = [XT

.1. · · · XT
.J .
] ∈ C

I×JK .

Similarly, there are six tall matrix unfoldings, denoted
XJK×I ,XKJ×I ,XKI×J ,XIK×J ,XIJ×K ,XJI×K , like for instance

XJK×I =
I∑

i=1

J∑
j=1

K∑
k=1

xi,j,k
(
e(J)
j ⊗e(K)

k

)
e(I)
i

T =XT
I×JK ∈C

JK×I .

(11)

Applying (8) to (10) gives

xi,j,k =
(
e(I)
i

)T
XI×JK

(
e(J)
j ⊗ e(K)

k

)
= [XI×JK

]
i,(j−1)K+k .

1.2.6 Mode-n product of a tensor with amatrix or a vector
The mode-n product of X ∈ C

I1×···×IN with A ∈ C
Jn×In

along the nth mode, denoted by X×nA, gives the tensor
Y of orderN and dimensions I1 × · · ·× In−1 × Jn × In+1 ×
· · · × IN , such as [47]

yi1,...,in−1,jn,in+1,...,iN =
In∑

in=1
ajn,inxi1,...,in−1,in,in+1,...,iN (12)

which can be expressed in terms ofmode-nmatrix unfold-
ings of X and Y

Yn = AXn.

This operation can be interpreted as the linear map
from the mode-n space of X to the mode-n space of Y ,
associated with the matrix A.
Themode-n product ofX ∈ C

I1×···×IN with the row vec-
tor uT ∈ C

1×In along the nth mode, denoted by X×nuT ,
gives a tensor Y of order N − 1 and dimensions I1 × · · · ×
In−1 × In+1 × · · · × IN , such as

yi1,...,in−1,in+1,...,iN =
In∑

in=1
uinxi1,...,in−1,in,in+1,...,iN

that can be written in vectorized form as vecT (Y) =
uTXn ∈ C

1×In+1···IN I1···In−1 .
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When multiplying a Nth-order tensor by row vectors
along p different modes, we get a tensor of orderN−p. For
instance, for a third-order tensor X ∈ C

I×J×K , we have

xij.=X×1e(I)
i

T×2 e(J)
j

T
, xijk =X×1e(I)

i
T×2 e(J)

j
T×3 e(K)

k
T
.

Considering an ordered subset S = {m1, . . . ,mP} of the
set {1, . . . ,N}, a series of mode-mp products of X ∈
C
I1×···×IN with A(mp) ∈ C

Jmp×Imp , p ∈ {1, . . . ,P}, P ≤ N ,
will be concisely noted as

X×m1A(m1) · · · ×mPA(mP) = X×mP
m=m1A

(m).

Properties

• For any permutation π(.) of P distinct indices
mp ∈ {1, . . . ,N} such as qp = π(mp), p ∈ {1, . . . ,P},
with P ≤ N , we have

X×qP
q=q1A(q) = X×mP

m=m1A
(m)

which means that the order of the mode-mp products
is irrelevant when the indicesmp are all distinct.

• For two products of X ∈ C
I1×···×IN along the same

mode-n, with A ∈ C
Jn×In and B ∈ C

Kn×Jn , we have
[13]

Y = X×nA×nB
= X×n(BA) ∈ C

I1×···×In−1×Kn×In+1×···×IN .
(13)

1.2.7 Kronecker product-based approach using index
notation

In this subsection, we propose to reformulate our
Kronecker product-based approach for tensor matriciza-
tion in terms of an index notation introduced in [48].
Using this index notation, for u ∈ C

I×1, vT ∈ C
1×J , and

X ∈ C
I×J , we can write

u =
I∑

i=1
uie(I)

i = uiei

vT =
J∑

j=1
vj
(
e(J)
j

)T = vjej

X =
I∑

i=1

j∑
j=1

xij
(
e(I)
i ⊗

(
e(J)
j

)T) = xije
j
i

XT = xijeij
vec(X) = xijeji

Aswith Einstein summation convention, the index nota-
tion allows to drop summation signs. If an index i ∈[1, I] is
repeated in an expression (or more generally in a term of
an equation), it means that this expression (or this term)

must be summed over that index from 1 to I. However,
it is worth noting the two differences between the index
notation used in this paper and Einstein summation con-
vention: (i) each index can be repeated more than twice
in any expression and (ii) the index notation can be used
with ordered sets of indices. We have to notice that the
index notation can be interpreted in terms of two sep-
arate combinations of indices, one associated with the
column (superscript) indices and the other one with the
row (subscript) indices, with the following rules:

• the ordering of the column indices is independent of
that of the row indices;

• the ordering of the column and row indices cannot be
changed.

Considering the set S = {n1, . . . , nN } obtained by
permuting the elements of {1, . . . ,N} and defining the
ordered set of indices I = {in1 , . . . , inN } associated with S,
we denote by eI and eI the Kronecker products ⊗

n∈S
ein and

⊗
n∈S

eTin , respectively. So, we have

�
n∈S

u(n) =
(∏
n∈S

u(n)
in

)
eI (14)

Partitioning two ordered sets of indices I and J into
two subsets (I1, I2) and (J1,J2), respectively, the rules
enounced previously imply the following identities:

eJI = eI ⊗ eJ = eJ ⊗ eI = eJ1J2
I1I2

= eI1 ⊗ eI2 ⊗ eJ1 ⊗ eJ2 = eI1 ⊗ eJ1 ⊗ eI2 ⊗ eJ2

= eI1 ⊗ eJ1 ⊗ eJ2 ⊗ eI2
= eJ1 ⊗ eJ2 ⊗ eI1 ⊗ eI2 = eJ1 ⊗ eI1 ⊗ eJ2 ⊗ eI2
= eJ1 ⊗ eI1 ⊗ eI2 ⊗ eJ2

These identities directly result from the property that
the Kronecker product of a column vector with a row vec-
tor is independent of the order of the vectors (u ⊗ vT =
vT ⊗ u), which implies that in a sequence of Kronecker
products of column and row vectors, a column vector
can be permuted with a row vector without altering the
final result, if the proper ordering of the column vectors
and of the row vectors is not changed in the sequence
(u1⊗u2⊗vT = u1⊗vT⊗u2 = vT⊗u1⊗u2 
= vT⊗u2⊗u1
if u1 
= u2).
Using the index notation, the horizontal, lateral, and

frontal slices of a third-order tensor X ∈ C
I×J×K can be

written as

Xi.. = xijkekj ; X.j. = xijkeik ; X..k = xijke
j
i.
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The Kronecker products of vectors (u ∈ C
I×1, v ∈ C

J×1)
and matrices (A ∈ C

I×J ,B ∈ C
K×L) can be concisely

written as

u ⊗ v = (uiei) ⊗ (vjej) = uivjeij
uT ⊗ vT = uivjeij

u ⊗ vT = uivje
j
i

A ⊗ B =
(
aije

j
i

)
⊗
(
bklelk

)
= aijbkle

jl
ik

AT ⊗ BT = aijbkleikjl

For U = [
u(1) · · ·u(N)

] ∈ C
I×N and V = [v1 · · · vN ] ∈

C
J×N , we have

UVT =
N∑

n=1
u(n)(v(n))T = u(n)

i v(n)
j eji (15)

where the summation over n is to be done after the
matricization u(n)(v(n))T .
Using the index notation, the Khatri-Rao product can be

written as follows:

A � B = aikbjkekij
(A � B)T = aikbjke

ij
k

(16)

The Kronecker and Khatri-Rao products defined in (1)
and (2), with a(n)

in,rn as entry of A
(n), can then be defined as

⊗
n∈S

A(n) =
(∏
n∈S

a(n)
in,rn

)
ern1 ,...,rnNin1 ,...,inN

=
(∏
n∈S

a(n)
in,rn

)
eRI

(17)

�
n∈S

A(n) =
(∏
n∈S

a(n)
in,r

)
erin1 ,...,inN =

(∏
n∈S

a(n)
in,r

)
erI (18)

whereR = {rn1 , . . . , rnN }.
Applying these results, the unfoldings (7), (10), and (11)

and the formula (8) can be rewritten respectively as

XS1;S2 = xi1,...,iN e
I2
I1

(19)

XI×JK = xi,j,ke
jk
i

XJK×I = xi,j,keijk
xi1,...,iN = eI1XS1;S2eI2 (20)

where I1 and I2 represent the sets of indices in associated
with the sets S1 and S2 of index n, respectively.
We can also use the index notation for deriving matrix

unfoldings of tensor extensions of a matrix B ∈ C
I×J .

For instance, if we define the tensor A ∈ C
I×J×K such as

ai,j,k = bi,j for k = 1, . . . ,K , mode-1 flat unfoldings of A
are given by

AI×JK =
∑
i,j,k

ai,j,kei ⊗ ej ⊗ ek = ai,j,ke
jk
i

=
∑
i,j

bi,je
j
i ⊗

K∑
k=1

ek = B ⊗ 1TK = B
(
IJ ⊗ 1TK

)
(21)

AI×KJ = ai,j,ke
kj
i =

K∑
k=1

ek ⊗ bi,je
j
i

= 1TK ⊗ B = B
(
1TK ⊗ IJ

)
(22)

These two formulae will be used later for establish-
ing the link between PARATUCK-(2,4) models and con-
strained PARAFAC-4 models.

1.2.8 Basic tensormodels
We now present the two most common tensor models,
i.e., the Tucker [3] and PARAFAC [4] models. In [7],
these models are introduced in a constructive way, in the
context of a three-way data analysis. The Tucker models
are presented as extensions of the matrix singular value
decomposition (SVD) to three-way arrays, which gave
rise to the generalization as HOSVD [13,49], whereas the
PARAFAC model is introduced by emphasizing Cattell’s
principle of parallel proportional profiles [50] that under-
lies this model, so explaining the acronym PARAFAC. In
the following, we adopt a more general presentation for
multi-way arrays, i.e., tensors of any order N.

Tucker models For a Nth-order tensor X ∈ C
I1×···×IN , a

Tucker model is defined in an element-wise form as

xi1,...,iN =
R1∑

r1=1
· · ·

RN∑
rN=1

gr1,...,rN
N∏

n=1
a(n)
in,rn (23)

with in = 1, . . . , In for n = 1, . . . ,N , where gr1,...,rN is an
element of the core tensor G ∈ C

R1×···×RN and a(n)
in,rn is an

element of the matrix factor A(n) ∈ C
In×Rn .

Using the index notation and defining the set of indices
R = {r1, . . . , rN }, the Tucker model can also be written
simply as

xi1,...,iN = gr1,...,rN
∏
R

a(n)
in,rn (24)

Taking the definition (4) into account and noting that
In∑

in=1
a(n)
in,rne

(In)
in = A(n)

.rn , this model can be written as a
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weighted sum of
N∏

n=1
Rn outer products, i.e., rank-one

tensors

X =
R1∑

r1=1
· · ·

RN∑
rN=1

gr1,...,rN
N◦

n=1
A(n)
.rn

= gr1,...,rN ◦
R
A(n)
.rn (with the index notation) (25)

Using the definition (12) allows to write (23) in terms of
mode-n products as

X = G×1A(1)×2A(2)×3 · · · ×NA(N)

= G×N
n=1A

(n).
(26)

This expression evidences that the Tucker model can be
viewed as the transformation of the core tensor resulting
from its multiplication by the factor matrix A(n) along its
mode-n, which corresponds to a linear map applied to the
mode-n space of G, for n = 1, . . . ,N , i.e., a multilinear
map applied to G. From a transformation point of view,
G and X can be interpreted as the input tensor and the
transformed tensor, or output tensor, respectively.
Matrix representations of the Tucker model. A matrix

representation of a Tucker model is directly linked with
a matricization of tensor like (7), corresponding to the
combination of two sets of modes S1 and S2. These com-
binations must be applied both to the tensor X and its
core tensor G.
The matrix representation (7) of the Tucker model (23)

is given by

XS1;S2 =
(

⊗
n∈S1

A(n)

)
GS1;S2

(
⊗

n∈S2
A(n)

)T
(27)

with GS1;S2 ∈ C
J1×J2 , and Jn1 =∏Rn

n∈Sn1
, for n1 = 1 and 2.

Proof. See Appendix 3.

For the flat mode-n unfolding, defined in (9), the for-
mula (27) gives

Xn = A(n)Gn
(
A(n+1)⊗· · ·⊗A(N)⊗ A(1)⊗· · ·⊗A(n−1)

)T
.

(28)
Applying the vec formula (92) to the right-hand side of

(28), we obtain the vectorized form of X associated with
its mode-n unfolding Xn

vec(X ) = vec(Xn)

=
(
A(n+1) ⊗ · · · ⊗ A(N) ⊗ A(1) ⊗ · · · ⊗ A(n)

)
vec(Gn).

Tucker-(N1,N) models A Tucker-(N1,N) model for a
Nth-order tensor X ∈ C

I1×···×IN , with N ≥ N1, corre-
sponds to the case whereN −N1 factor matrices are equal

to identity matrices. For instance, assuming that A(n) =
IIn , which implies Rn = In, for n = N1 +1, . . . ,N , (23) and
(26) become

xi1,...,iN =
R1∑

r1=1
· · ·

RN1∑
rN1=1

gr1,...,rN1 ,iN1+1,...,iN

N1∏
n=1

a(n)
in,rn

X = G×1A(1)×2 · · · ×N1A(N1)×N1+1IIN1+1 · · · ×N IIN
(29)

= G ×N1
n=1A

(n). (30)

One such model that is currently used in applications
is the Tucker-(2,3) model, usually denoted Tucker2, for
third-order tensors X ∈ C

I×J×K . Assuming A(1) = A ∈
C
I×P ,A(2) = B ∈ C

J×Q, and A(3) = IK , such a model is
defined by the following equations:

xijk =
P∑

p=1

Q∑
q=1

gpqkaipbjq (31)

X = G×1A×2B (32)

with the core tensor G ∈ C
P×Q×K .

PARAFAC models A PARAFAC model for a Nth-order
tensor corresponds to the particular case of a Tucker
model with an identity core tensor of order N and dimen-
sions R × · · · × R

G = IN ,R = I ⇔ gr1,...,rN = δr1,...,rN

(23) to (26) then become, respectively

xi1,...,iN =
R∑

r=1

N∏
n=1

a(n)
in,r (33)

=
N∏

n=1
a(n)
in,r (with the index notation) (34)

X =
R∑

r=1

(
N◦

n=1
A(n)
.r

)

X = IN ,R×N
n=1A

(n) (35)

with the factor matrices A(n) ∈ C
In×R, n = 1, . . . ,N .

Remarks

• The expression (33) as a sum of polyads is called a
polyadic form of X by Hitchcock [51].

• The PARAFAC model (33, 34 and 35) amounts to
decomposing the tensor X into a sum of R
components, each component being a rank-one
tensor. When R is minimal in (33), it is called the
rank of X [52]. This rank is related to the mode-n
ranks by the following inequalities
rankn(X ) ≤ R,∀n = 1, . . . ,N . Furthermore, contrary
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to the matrices for which the rank is always at
most equal to the smallest of the dimensions, for
higher-order tensors, the rank can exceed any
mode-n dimension In.
There exists different definitions of rank for tensors,
like typical and generic ranks, or also symmetric rank
for a symmetric tensor (see [53,54] for more details).

• In telecommunication applications, the structure
parameters (rank, mode dimensions, and core tensor
dimensions) of a PARAFAC or Tucker model are
design parameters that are chosen in function of the
performance desired for the communication system.
However, in most of the applications, as for instance
in multi-way data analysis, the structure parameters
are generally unknown and must be determined a
priori. Several techniques have been proposed for
determining these parameters (see [55-58] and
references therein).

• The PARAFAC model is also sometimes defined by
the following equation

xi1,...,iN =
R∑

r=1
gr

N∏
n=1

a(n)
in,r with gr > 0. (36)

In this case, the identity tensor IN ,R in (35) is
replaced by the diagonal tensor G ∈ C

R×···×R whose
diagonal elements are equal to scaling factors gr , i.e.

gr1,...,rN =
{
gr if r1 = · · · = rN = r
0 otherwise

and all the column vectors A(n)
.r are normalized, i.e.,

with a unit norm, for 1 ≤ n ≤ N .
• It is important to notice that the PARAFAC model

(33) is multilinear (more precisely N-linear) in its
parameters in the sense that it is linear with respect
to each matrix factor. This multilinearity property is
exploited for parameter estimation using the
standard alternating least squares (ALS) algorithm
[4,5] that consists in alternately estimating each
matrix factor by minimizing a least squares error
criterion conditionally to the knowledge of the other
matrix factors that are fixed with their previously
estimated values.

Matrix representations of the PARAFAC model. The
matrix representation (7) of the PARAFAC model (33)-
(35) is given by

XS1;S2 =
(

�
n∈S1

A(n)

)(
�

n∈S2
A(n)

)T
. (37)

Proof. See Appendix 4.

Remarks

• From (37), we can deduce that a mode combination
results in a Khatri-Rao product of the corresponding
factor matrices. Consequently, the tensor contraction
(5) associated with the PARAFAC-N model (35)
gives a PARAFAC-N1 model whose factor matrices
are equal to �

n∈Sn1
A(n) ∈ C

Jn1×R, n1 = 1, . . . ,N1, with

Jn1 = ∏
In

n∈Sn1
.

• For the PARAFAC model, the flat mode-n unfolding,
defined in (9), is given by

Xn = A(n)
(
A(n+1) � · · · � A(N) � A(1) � · · · � A(n−1)

)T
,

(38)

and the associated vectorized form is obtained in
applying the vec formula (93) to the right-hand side
of the above equation, with IR = diag(1R)

vec(X ) = vec(Xn) =
(
A(n+1)�· · ·�A(N)�A(1)�· · ·�A(n)

)
1R

(39)

• In the case of the normalized PARAFAC model (36),
(37) and (39) become, respectively,

XS1;S2 =
(

�
n∈S1

A(n)

)
diag(g)

(
�

n∈S2
A(n)

)T

vec(X ) = vec(Xn)

=
(
A(n+1) � · · · � A(N) � A(1) � · · · � A(n)

)
g

where g = [g1 · · · gR
]T ∈ C

R×1.
• For the PARAFAC model of a third-order tensor

X ∈ C
I×J×K with factor matrices (A,B,C), the

formula (37) gives for S1 = {i, j} and S2 = {k}

XIJ×K =
⎡
⎢⎣
X1..
...

XI..

⎤
⎥⎦ = (A � B)CT ∈ C

IJ×K .

Noting that A � B =
⎡
⎢⎣
BD1(A)

...
BDI(A)

⎤
⎥⎦, we deduce the

following expression for mode-1 matrix slices

Xi.. = BDi(A)CT .

Similarly, we have

XJK×I = (B � C)AT , XKI×J = (C � A)BT ,
X.j. = CDj(B)AT , X..k = ADk(C)BT .
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• For the PARAFAC model of a fourth-order tensor
X ∈ C

I×J×K×L with factor matrices (A,B,C,D), we
obtain

XIJK×L = (A � B � C)DT

=
⎡
⎢⎣

(B � C)D1(A)
...

(B � C)DI(A)

⎤
⎥⎦DT

=
⎡
⎢⎣
CD1(B)D1(A)

...
CDJ (B)DI(A)

⎤
⎥⎦DT ∈ C

IJK×L

Xij.. = CDj(B)Di(A)DT ∈ C
K×L (40)

Other matrix slices can be deduced from (40) by
simple permutations of the matrix factors.

In the next section, we introduce two constrained
PARAFAC models, the so-called PARALIND and CON-
FAC models, and then PARATUCK models.

1.3 Constrained PARAFACmodels
The introduction of constraints in tensor models can
result from the system itself that is under study or from
a system design. In the first case, the constraints are
often interpreted as interactions or linear dependencies
between the PARAFAC factors. Examples of such depen-
dencies are encountered in psychometric and chemo-
metric applications that gave origin, respectively, to the
PARATUCK-2 model [59] and the parallel profiles with
linear dependencies (PARALIND) model [60,61], intro-
duced in [47] under the name canonical decomposition
with linear constraints (CANDELINC), for the multiway
case. A first application of the PARATUCK-2 model in
signal processing was made in [62] for blind joint iden-
tification and equalization of Wiener-Hammerstein com-
munication channels. The PARALINDmodel was applied
for identifiability and propagation parameter estimation
purposes in a context of array signal processing [63,64].
In the second case, the constraints are used as

design parameters. For instance, in a telecommunications
context, we proposed two constrained tensor models:
the CONFAC (constrained factor) model [65] and the
PARATUCK-(N1,N) model [66,67]. The PARATUCK-
2 model was also applied for designing space-time
spreading-multiplexing MIMO systems [68]. For these
telecommunication applications of constrained tensor
models, the constraints are used for resource allocation.
We are now going to describe these various constrained
PARAFAC models.

1.3.1 PARALINDmodels
Let us define the core tensor of the Tucker model (26) as
follows:

G = IN ,R ×N
n=1�

(n) (41)

where �(n) ∈ R
Rn×R, n = 1, . . . ,N , with R ≥ max

n
(Rn),

are constraint matrices. In this case, G will be called the
‘interaction tensor’, or ‘constraint tensor’.
The PARALIND model is obtained by substituting (41)

into (26) and applying the property (13), which gives

X = G×N
n=1A

(n) = IN ,R ×N
n=1

(
A(n)�(n)

)
. (42)

This equation leads to two different interpretations of
the PARALIND model, as a constrained Tucker model
whose core tensor admits a PARAFAC decomposition
with factor matrices�(n), called ‘interactionmatrices,’ and
as a constrained PARAFACmodel with constrained factor
matrices Ā(n) = A(n)�(n).
The interaction matrix �(n) allows taking into account

linear dependencies between the columns of A(n), imply-
ing a rank deficiency for this factor matrix. When the
columns of �(n) are formed with 0’s and 1’s, the depen-
dencies simply consist in a repetition or an addition of
certain columns of A(n). In this particular case, the diag-
onal element ξ

(n)
r,r ≥ 1 of the matrix �(n) = �(n)T�(n) ∈

R
R×R represents the number of columns of A(n) that are

added to form the rth column of the constrained factor
A(n)�(n). The choice �(n) = IR means that there is no
such dependency among the columns of A(n).
Note that (42) can be written element-wise as

xi1,...,iN =
R1∑

r1=1
. . .

RN∑
rN=1

gr1,...,rN
N∏

n=1
a(n)
in,rn

=
R∑

r=1

N∏
n=1

ā(n)
in,r with ā(n)

in,r =
Rn∑

rn=1
a(n)
in,rnφ

(n)
rn,r .

with gr1,...,rN =
R∑

r=1

N∏
n=1

φ(n)
rn,r (43)

This constrained PARAFAC model constitutes an N-
way form of the three-way PARALIND model, used for
chemometric applications in [60,61].

1.3.2 CONFACmodels
When the constraint matrices �(n) ∈ R

Rn×R are full row
rank and their columns are chosen as canonical vectors of
the Euclidean spaceRRn , for n = 1, . . . ,N , the constrained
PARAFACmodel (42) constitutes a generalization toNth-
order of the third-order CONFAC model, introduced in
[65] for designing MIMO communication systems with
resource allocation. This CONFACmodel was used in [69]
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for solving the problem of blind identification of under-
determined mixtures based on cumulant generating func-
tion of the observations. In a telecommunications context
where X represents the tensor of received signals, such a
constraint matrix �(n) can be interpreted as an ‘allocation
matrix’ allowing to allocate resources, like data streams,
codes, and transmit antennas, to the R components of the
signal to be transmitted. In this case, the core tensor G will
be called the ‘allocation tensor.’ By assumption, each col-
umn of the allocation matrix �(n) is a canonical vector of
R
Rn , which means that there is only one value of rn such

that φ
(n)
rn,r = 1, and this value of rn corresponds to the nth

resource allocated to the rth component.
Each element xi1,...,iN of the received signal tensor X

is equal to the sum of R components, each component
r resulting from the combination of N resources, each
resource being associated with a column of the matrix fac-
tor A(n), n = 1, . . . ,N . This combination, determined by
the allocation matrices, is defined by a set of N indices

{r1, . . . , rN } such that
N∏

n=1
φ

(n)
rn,r = 1. As for any r ∈ [1,R],

there is one and only one N-uplet (r1, . . . , rN ) such as
N∏

n=1
φ

(n)
rn,r = 1, we can deduce that each component r of

xi1,...,iN in (43) is the result of one and only one combi-
nation of the N resources under the form of the product
N∏

n=1
a(n)
in,rn . For the CONFAC model, we have

Rn∑
rn=1

Drn

(
�(n)

)
= IR, ∀n = 1, . . . ,N

meaning that each resource rn is allocated at least once,
and the diagonal element of �(n) = �(n)T�(n) is such
as ξ

(n)
r,r = 1,∀n = 1, . . . ,N , because only one resource

rn is allocated to each component r. Moreover, we have
to notice that the assumption R ≥ max

n
(Rn) implies that

each resource can be allocated several times, i.e., to several
components. Defining the interaction matrices

�(n) =�(n)�(n)T ∈R
Rn×Rn ,�(n1,n2) =�(n1)�(n2)T ∈R

Rn1×Rn2

the diagonal element γ
(n)
rn,rn ∈ [1,R − Rn + 1] represents

the number of times that the rthn column of A(n) is
repeated, i.e., the number of times that the rthn resource
is allocated to the R components, whereas γ

(n1,n2)
rn1 ,rn2 deter-

mines the number of interactions between the rthn1 column
of A(n1) and the rthn2 column of A(n2), i.e., the number of
times that the rthn1 and rthn2 resources are combined in the R
components. If we choose Rn = R and �(n) = IR,∀n =
1, . . . ,N , the PARALIND/CONFAC model (42) becomes
identical to the PARAFAC one (35).

The matrix representation (7) of the PARALIND/
CONFAC model can be deduced from (37) in replacing
A(n) by A(n)�(n)

XS1;S2 =
(

�
n∈S1

A(n)�(n)

)(
�

n∈S2
A(n)�(n)

)T
.

Using the identity, (86) gives

XS1;S2 =
(

⊗
n∈S1

A(n)

)(
�

n∈S1
�(n)

)(
�

n∈S2
�(n)

)T(
⊗

n∈S2
A(n)

)T
,

(44)

or, equivalently,

XS1;S2 =
(

⊗
n∈S1

A(n)

)
GS1;S2

(
⊗

n∈S2
A(n)

)T
,

where the matrix representation GS1;S2 of the con-
straint/allocation tensor G, defined by means of its
PARAFAC model (41), can also be deduced from (37) as

GS1;S2 =
(

�
n∈S1

�(n)

)(
�

n∈S2
�(n)

)T
.

1.3.3 Nested Tuckermodels
The PARALIND/CONFAC models can be viewed as par-
ticular cases of a new family of tensor models that we
shall call nested Tucker models, defined by means of the
following recursive equation:

X (p) = X (p−1)×N
n=1A

(p,n) for p = 1, . . . ,P

= G×N
n=1

1∏
q=P

A(q,n)

with the factor matrices A(p,n) ∈ C
R(p,n)×R(p−1,n) for p =

1, . . . ,P, such as R(0,n) = Rn and R(P,n) = In, for
n = 1, . . . ,N , the core tensor X (0) = G ∈ C

R1×···×RN ,
and X (P) ∈ C

I1×···×IN . This equation can be interpreted
as P successive linear transformations applied to each
mode-n space of the core tensor G. So, P nested Tucker
models can then be interpreted as a Tucker model for
which the factor matrices are products of P matrices.
When G = IN ,R, which implies R(0,n) = Rn = R for
n = 1, . . . ,N , we obtain nested PARAFAC models. The
PARALIND/CONFAC models correspond to two nested
PARAFAC models (P = 2), with A(1,n) = �(n), A(2,n) =
A(n), R(0,n) = R, R(1,n) = Rn, and R(2,n) = In, for n =
1, . . . ,N .
By considering nested PARAFAC models with P = 3,

A(1,n) = �(n) ∈ C
Kn×R, A(2,n) = A(n) ∈ C

Jn×Kn , and
A(3,n) = �(n) ∈ C

In×Jn , for n = 1, . . . ,N , we deduce
doubly PARALIND/CONFAC models described by the
following equation:

X = IN ,R ×N
n=1

(
�(n)A(n)�(n)

)
.
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Such a model can be viewed as a doubly constrained
PARAFAC model, with factor matrices �(n)A(n)�(n), the
constraint matrix �(n), assumed to be full column rank,
allowing to take into account linear dependencies between
the rows of A(n). A third-order nested Tucker model is
visualized in Figure 1.

1.3.4 Block PARALIND/CONFACmodels
In some applications, the data tensor X ∈ C

I1×···×IN is
written as a sum of P sub-tensors X (p), each sub-tensor
admitting a tensor model with a possibly different struc-
ture. So, we can define a block-PARALIND/CONFAC
model as

X =
P∑

p=1
X (p), (45)

X (p) = G(p)×N
n=1A(p,n), (46)

G(p) = IN ,R(p) ×N
n=1�

(p,n),

where A(p,n) ∈ C
In×R(p,n) , �(p,n) ∈ C

R(p,n)×R(p) , and G(p) ∈
C
R(p,1)×···×R(p,N) are the mode-n factor matrix, the mode-

n constraint/allocation matrix, and the core tensor of
the PARALIND/CONFAC model of the pth sub-tensor,
respectively. Thematrix representation (44) then becomes

XS1;S2 =
P∑

p=1

(
⊗

n∈S1
A(p,n)

)(
�

n∈S1
�(p,n)

)

×
(

�
n∈S2

�(p,n)

)T (
⊗

n∈S2
A(p,n)

)T
.

(47)

Defining the following block partitioned matrices

A(n) = [A(1,n) · · ·A(P,n)
] ∈ C

In×R(n)

(48)

where R(n) =
P∑

p=1
R(p,n), (47) can be rewritten in the

following more compact form

XS1;S2 =
(

⊗b
n∈S1

A(n)

)
GS1;S2

(
⊗b
n∈S2

A(n)

)T

where ⊗b denotes the block-wise Kronecker product
defined as

A(n)⊗bA(q) = [A(1,n) ⊗ A(1,q) · · ·A(P,n) ⊗ A(P,q) ]
A(q) being partitioned in P blocks as in (48), and

GS1;S2 = bdiag(G(1)
S1;S2 · · ·G(P)

S1;S2) ∈ C
J1×J2

G(p)
S1;S2 =

(
�b
n∈S1

�(p,n)

)(
�b
n∈S2

�(p,n)

)T

∈ C
J(p)1 ×J(p)2

where �b denotes the block-wise Khatri-Rao product
defined in the same way as the block-wise Kronecker

product, with Jn1 =
P∑

p=1
J(p)n1 and J(p)n1 = ∏

n∈Sn1
R(p,n) for

n1 = 1 and 2.
In the case of a block PARAFAC model, (46) is replaced

by

X (p) = IN ,R(p)×N
n=1A

(p,n) with A(p,n) ∈ C
In×R(p)

and the matrix representation (37) then becomes

XS1;S2 =
(

�b
n∈S1

A(n)

)(
�b
n∈S2

A(n)

)T

with A(n) = [
A(1,n) · · ·A(P,n)

] ∈ C
In×R, and R =

P∑
p=1

R(p).

Block constrained PARAFACmodels were used in [70-72]
for modeling different types of multiuser wireless commu-
nication systems. Block constrained Tucker models were
used for space-time multiplexing MIMO-OFDM systems
[73] and for blind beamforming [74]. In these applications,
the symbol matrix factor is in Toeplitz or block-Toeplitz
form.
The block tensor model defined by (45) and (46)

can be viewed as a generalization of the block term
decomposition introduced in [75] for third-order tensors
X ∈ C

I×J×K that are decomposed into a sum of P Tucker

Figure 1 Visualization of a third-order nested Tucker model.
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models of rank-(L,M,N), which corresponds to the par-
ticular case where all the factor matrices are full column
rank, with A(p,1) ∈ C

I×L, A(p,2) ∈ C
J×M, A(p,3) ∈ C

K×N ,
for p = 1, . . . ,P, G ∈ C

L×M×N , and each sub-tensor X (p)

is decomposed by means of its HOSVD.
A third-order block PARALIND/CONFAC model is

visualized in Figure 2. This figure is to be compared with
Figure five in [76] representing a block term decomposi-
tion of a third-order tensor into rank-(Lp,Mp,Np) terms,
when each term has a PARALIND/CONFAC structure.

1.3.5 PARALIND/CONFAC-(N1,N)models
Now, we introduce a variant of PARALIND/CONFAC
models that we shall call PARALIND/CONFAC-(N1,N)

models. This variant corresponds to PARALIND/
CONFAC models (42) with only N1 constrained matrix
factors, which implies Rn = R and A(n) ∈ C

In×R for
n = N1 + 1, . . . ,N

X = IN ,R ×N1
n=1

(
A(n)�(n)

)
×N

n=N1+1A
(n). (49)

In [77], a block PARALIND/CONFAC-(2,3) model that
can be deduced from (49) was used for modeling uplink
multiple-antenna code division multiple access (CDMA)
multiuser systems.
The block term decomposition (BTD) in rank-(1, Lp, Lp)

terms of a third-order tensor X ∈ C
I×J×K , which is com-

pared to a third-order PARATREE model in [78], can also
be viewed as a particular CONFAC-(1,3) model. Indeed,
such a decomposition can be written as [79]

X =
P∑

p=1
ap ◦ (BpCT

p ) (50)

where the matrices Bp ∈ C
J×Lp and Cp ∈ C

K×Lp are rank-
Lp, and ap ∈ C

I×1. Defining B = [B1 · · ·BP] ∈ C
J×R, C =

[C1 · · ·CP] ∈ C
K×R, and A = [a1 · · · aP] ∈ C

I×P , with

R =
P∑

p=1
Lp, it is easy to verify that the BTD (50) can be

rewritten as the following CONFAC-(1,3) model:

X = I3,R ×1 A� ×2 B ×3 C (51)

with the constraint matrix � =
⎡
⎢⎣
1TL1

. . .
1TLP

⎤
⎥⎦ ∈ C

P×R.

1.3.6 PARATUCKmodels
A PARATUCK-(N1,N)model for aNth-order tensorX ∈
C
I1×···×IN , with N > N1, is defined in scalar form as

follows [66,67]:

xi1,...,iN1+1,...,iN =
R1∑

r1=1
· · ·

RN1∑
rN1=1

cr1,...,rN1 ,iN1+2,...,iN

×
N1∏
n=1

a(n)
in,rnφ

(n)
rn,iN1+1

(52)

where a(n)
in,rn and φ

(n)
rn,iN1+1

are entries of the factor matrix
A(n) ∈ C

In×Rn and of the interaction/allocation matrix
�(n) ∈ C

Rn×IN1+1 , ∀n = 1, . . . ,N1, respectively, and C ∈
C
R1×···×RN1×IN1+2×···×IN is the (N − 1)th-order input ten-

sor. Defining the core tensor G ∈ C
R1×···×RN1×IN1+1×···×IN

element-wise as

gr1,...,rN1 ,iN1+1,...,iN = cr1,...,rN1 ,iN1+2,...,iN

N1∏
n=1

φ
(n)
rn,iN1+1

,

the PARATUCK-(N1,N) model can be rewritten as a
Tucker-(N1,N) model (29)-(30).
Defining the allocation/interaction tensor F ∈

C
R1×···×RN1×IN1+1 of order N1 + 1, such as

fr1,...,rN1 ,iN1+1 =
N1∏
n=1

φ
(n)
rn,iN1+1

, (53)

the core tensor G can then be written as the Hadamard
product of the tensors C and F along their first N1 modes

G = C �
{r1,...,rN1 }

F . (54)

Remarks

• The PARATUCK-(N1,N) model can be interpreted
as the transformation of the input tensor C via its
multiplication by the factor matrices
A(n), n = 1, . . . ,N1, along its first N1 modes,

Figure 2 Visualization of a third-order block PARALIND/CONFACmodel.



Favier and de Almeida EURASIP Journal on Advances in Signal Processing 2014, 2014:142 Page 14 of 25
http://asp.eurasipjournals.com/content/2014/1/142

combined with a mode-n resource allocation
(n = 1, . . . ,N1) relatively to the mode-(N1 + 1) of
the transformed tensor X , by means of the allocation
matrices �(n).

• In telecommunications applications, the output
modes will be called diversity modes because they
correspond to time, space, and frequency diversities,
whereas the input modes are associated with
resources like transmit antennas, codes, and data
streams. For these applications, the matrices �(n) are
formed with 0’s and 1’s, and they can be interpreted
as allocation matrices used for allocating some
resources rn to the output mode-(N1 + 1). Another
way to take resource allocations into account consists
in replacing the N1 allocation matrices �(n) by the
(N1 + 1)th-order allocation tensor
F ∈ C

R1×···×RN1×IN1+1 defined in (53).
• Special cases:

– For N1 = 2 and N = 3, we obtain the
standard PARATUCK-2 model introduced in
[59]. (52) then becomes

xi1,i2,i3 =
R1∑

r1=1

R2∑
r2=1

cr1,r2a
(1)
i1,r1a

(2)
i2,r2φ

(1)
r1,i3φ

(2)
r2,i3

(55)

The allocation tensor F defined in (53) can be
rewritten as

fr1,r2,i3 = φ
(1)
r1,i3φ

(2)
r2,i3 =

I3∑
j=1

φ
(1)
r1,jφ

(2)
r2,jδi3,j

(56)

which corresponds to a PARAFAC model
with matrix factors (�(1),�(2), II3 ). The
PARATUCK-2 model (55) can then be viewed
as a Tucker-2 model X = G×1A(1)×2A(2)

with the core tensor G ∈ C
R1×R2×I3 given by

the Hadamard product of C ∈ C
R1×R2 and

F ∈ C
R1×R2×I3 along their common modes

{r1, r2}

G = C �
{r1,r2}

F

This combination of a Tucker-2 model for X
with a PARAFAC model for F gave rise to the
name PARATUCK-2. The constraint matrices
(�(1),�(2)) define interactions between
columns of the factor matrices (A(1),A(2)),
along the mode-3 of X , while the matrix C
contains the weights of these interactions.

– For N1 = 2 and N = 4, we obtain the
PARATUCK-(2,4) model introduced in [66]

xi1,i2,i3,i4 =
R1∑

r1=1

R2∑
r2=1

cr1,r2,i4a
(1)
i1,r1a

(2)
i2,r2φ

(1)
r1,i3φ

(2)
r2,i3

(57)

As for the PARATUCK-2 model, the
PARATUCK-(2,4) can be viewed as a
combination of a Tucker-(2,4) model
X = G×1A(1)×2A(2) ∈ C

I1×I2×I3×I4 with a
core tensor G ∈ C

R1×R2×I3×I4 given by the
Hadamard product of the tensors
C ∈ C

R1×R2×I4 and F ∈ C
R1×R2×I3 along their

common modes {r1, r2}
G = C �

{r1,r2}
F

with the same allocation tensor F defined in
(56).

1.3.7 Rewriting of PARATUCKmodels as constrained
PARAFACmodels

This rewriting of PARATUCK models as constrained
PARAFAC models can be used to deduce both matrix
unfoldings by means of the general formula (37) and
sufficient conditions for essential uniqueness of such
PARATUCK models, as will be shown in Section 1.4.

Link between PARATUCK-(2,4) and constrained
PARAFAC-4 models We now establish the link between
the PARATUCK-(2,4) model (57) and the fourth-order
constrained PARAFAC model

xi1,i2,i3,i4 =
R∑

r=1
ai1,rbi2,rfi3,rdi4,r with R = R1R2

(58)

whose matrix factors (A ∈ C
I1×R, B ∈ C

I2×R, F ∈ C
I3×R,

D ∈ C
I4×R), and constraint matrices (�(1),�(2)) acting on

the original factors (A(1),A(2)), are given by

A = A(1)�(1), B = A(2)�(2), F = (�(1) � �(2))T ,
D = CI4×R1R2 (59)

�(1) = IR1 ⊗ 1TR2 ∈ C
R1×R1R2 ,

�(2) = 1TR1 ⊗ IR2 ∈ C
R2×R1R2 (60)

where CI4×R1R2 ∈ C
I4×R1R2 is a mode-3 unfolded matrix

of the tensor C ∈ C
R1×R2×I4 .

Proof. See Appendix 5.
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Remarks

• Application of the formula (38) to the constrained
PARAFAC model (58), with the matrix factors
(A,B,F,D) = (A(1)�(1),A(2)�(2), (�(1) � �(2))T ,
CI4×R1R2), gives the following flat mode-1 and
mode-2 matrix unfoldings for the PARATUCK-(2,4)
model (57)

XI1×I2I3I4 = A(1)�(1)
(
A(2)�(2) � F � D

)T ∈C
I1×I2I3I4 ,

XI2×I3I4I1 = A(2)�(2)
(
F � D � A(1)�(1)

)T ∈C
I2×I3I4I1 .

• The constrained PARAFAC-4 model (58)-(60) can be
written in mode-n product notation as

X = I4,R×1A(1)�(1)×2A(2)�(2)×3F×4D. (61)

Defining the core tensor G ∈ C
R1×R2×I3×I4 as

G = I4,R×1�
(1)×2�

(2)×3F×4D (62)

the constrained PARAFAC-4 model can also be
viewed as the following Tucker-(2,4) model

X = G×1A(1)×2A(2). (63)

It can also be viewed as a CONFAC-(2,4) model with
matrix factors (A(1),A(2),F,D), and constraint
matrices �(1) and �(2) defined in (60).

• Choosing S1 = {i1, i2} and S2 = {i3, i4}, the matrix
unfolding (37) of the PARAFACmodel (61) is given by

XI1I2×I3I4 =
(
A(1)�(1) � A(2)�(2)

)
(F � D)T

=
(
A(1) ⊗ A(2)

)
(F � D)T ∈ C

I1I2×I3I4

(64)

Proof. Using the identity (90) gives

A(1)�(1) �A(2)�(2) =
(
A(1) ⊗ A(2)

) (
�(1) � �(2)

)
(65)

Replacing �(1) and �(2) by their expressions (102)
and (103) leads to

�(1) � �(2) =
(
IR1 ⊗ 1TR2

)
�
(
1TR1 ⊗ IR2

)

=
⎡
⎢⎣
IR2

. . .
IR2

⎤
⎥⎦

︸ ︷︷ ︸
R1 blocks

= IR1R2 (66)

which implies

A(1)�(1) � A(2)�(2) = A(1) ⊗ A(2), (67)

and consequently (64) can be deduced.

This equation can also be obtained from the
equivalent Tucker-(2,4) model (62)-(63) as

XI1I2×I3I4 =
(
A(1) ⊗ A(2)

)
GR1R2×I3I4 (68)

with

GR1R2×I3I4 =
(
�(1) � �(2)

)
(F � D)T

Using the identity (66), we obtain

GR1R2×I3I4 = (F � D)T (69)

and replacing GR1R2×I3I4 by its expression (69) into
(68) gives (64).

When the allocation matrices
(
�(1),�(2)) and the

input tensor C are known, the matrix factors(
A(1),A(2)) can be estimated through the LS
estimation of their Kronecker product using the
matrix unfolding (64).

• The product φ
(1)
r1,i3φ

(2)
r2,i3 in (57) can be replaced by

fi3,r1,r2 , which amounts to replace the allocation
matrices �(1) and �(2) by the third-order allocation
tensor F ∈ C

I3×R1×R2 , the matrix F = (�(1) � �(2))T
∈ C

I3×R1R2 being equivalent to FI3×R1R2 ∈ C
I3×R1R2 ,

i.e., a mode-1 flat matrix unfolding of the allocation
tensor F .

Link between PARATUCK-2 and constrained
PARAFAC-3 models By proceeding in the same way as
for the PARATUCK-(2,4) model, it is easy to show that
the PARATUCK-2 model (55) is equivalent to a third-
order constrained PARAFAC model whose matrix factors
A ∈ C

I1×R, B ∈ C
I2×R, and F ∈ C

I3×R, with R = R1R2, are
given by

A = A(1)�(1), B = A(2)�(2),

F =
(
�(1) � �(2)

)T
diag

(
vec
(
CT
)) (70)

with the same constraint matrices �(1) and �(2) defined
in (60).
By analogy with the PARATUCK-(2,4) model, (61), (63),

and (64) become for the PARATUCK-2 model

X = I3,R×1A(1)�(1)×2A(2)�(2)×3F

= G×1A(1)×2A(2) (71)

with the core tensor G ∈ C
R1×R2×I3 defined as

G = I3,R×1�
(1)×2�

(2)×3F, (72)

and

XI1I2×I3 = (A(1) ⊗ A(2))FT ∈ C
I1I2×I3 .
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Remarks

• Note that (71) and (72) allow interpreting the
PARATUCK-2 model as a Tucker-(2,3) model,
defined in (31)-(32). If we choose cr1,r2 = 1,∀rk = 1,
. . . ,Rk , for k = 1 and 2 and define the allocation
tensor F ∈ C

R1×R2×I3 such as fr1,r2,i3 = φ
(1)
r1,i3φ

(2)
r2,i3 ,

the PARATUCK-2 model (55) becomes the following
Tucker-(2,3) model:

xi1,i2,i3 =
R1∑

r1=1

R2∑
r2=1

fr1,r2,i3a
(1)
i1,r1a

(2)
i2,r2

and the associated constrained PARAFAC-3 model
can be deduced from (70)

A = A(1)�(1), B = A(2)�(2),

F = FI3×R1R2 =
(
�(1) � �(2)

)T

with the same constraint matrices �(1) and �(2) as
those defined in (60). A block Tucker-(2,3) model
transformed into a block constrained PARAFAC-3
model was used in [72] for modeling in a unified
way three multiuser wireless communication
systems.

• Now, we show the equivalence of the expressions
(72) and (54) of the core tensor. Applying the formula
(38) to the PARAFAC model (72) gives

GI3×R1R2 = (�(1)��(2))Tdiag(vec(CT ))(�(1)��(2))T .
(73)

Using the identity (66) in (73) gives
GI3×R1R2 = (�(1) � �(2))Tdiag(vec(CT )).
For the formula (54), withN = 3 andN1 = 2, we have

G = F �
{r1,r2}

C

or equivalently in terms of matrix Hadamard product

GI3×R1R2 = FI3×R1R2 � 1I3cT

with FI3×R1R2 = (�(1) � �(2))T , and
c = vec(CT ) ∈ C

R1R2×1, which gives

GI3×R1R2 = FI3×R1R2 �
⎡
⎢⎣
cT
...
cT

⎤
⎥⎦}I3 rows

and consequently GI3×R1R2 = (�(1) � �(2))Tdiag(c),
showing the equivalence of the two core tensor
expressions (72) and (54).

Link between PARATUCK-(N−2,N) and constrained
PARAFAC-N models Let us consider the PARATUCK-
(N1,N) model (52) in the case N1 = N − 2

xi1,...,iN1+1,...,iN =
R1∑

r1=1
· · ·

RN1∑
rN1=1

cr1,...,rN1 ,iN
N1∏
n=1

a(n)
in,rnφ

(n)
rn,iN1+1

(74)

and let us define the change of variables r = rN1 +
N1−1∑
n=1

(rn − 1)
N1∏

i=n+1
Ri corresponding to a combination of

the N1 modes associated with the constraints/allocations.
Then, (74) can be written as the following constrained
PARAFAC-N model:

xi1,...,iN =
R∑

r=1

N∏
n=1

ā(n)
in,r , R =

N1∏
i=1

Ri (75)

with the following matrix factors

Ā(n) = A(n)�(n), n = 1, . . . ,N1; F =
(

N�
n=1

�(n)

)T
;

D = CIN×R1···RN1 ,

where CIN×R1···RN1 ∈ C
IN×R1···RN1 is a mode-(N1 + 1)

unfolded matrix of the tensor C ∈ C
R1×···×RN1×IN , and the

constraint matrices are given in (94) as

�(n) = 1TR1 ⊗ · · · ⊗ 1TRn−1 ⊗ IRn ⊗ 1TRn+1 ⊗ · · · ⊗ 1TRN1
∈ C

Rn×R, n = 1, . . . ,N1.

The constrained PARAFACmodel (75) can also be writ-
ten as a Tucker-(N1,N) model (30) with the core tensor
defined in (54) or, equivalently,

G = IN ,R×N−2
n=1 �(n)×N−1F×ND.

1.3.8 Comparison of constrained tensormodels
To conclude this presentation, we compare the so-called
CONFAC-(N1,N) and PARATUCK-(N1,N) constrained
tensor models, introduced in this paper with a resource
allocation point of view. Due to the PARAFAC structure
(41) of the core tensor of CONFAC models, each element
xi1,...,iN of the output tensorX is the sum of R components



Favier and de Almeida EURASIP Journal on Advances in Signal Processing 2014, 2014:142 Page 17 of 25
http://asp.eurasipjournals.com/content/2014/1/142

as shown in (43). Moreover, due to the special structure
of the allocation matrices �(n) whose columns are unit
vectors, each component r is the result of a combination

of N resources, under the form of the product
N∏

n=1
a(n)
in,rn ,

the N resources being fixed by the allocation matrices
�(n) ∈ C

Rn×R.
With the CONFAC-(N1,N) model (49), each compo-

nent r is a combination of N1 resources (r1, . . . , rN1)

determined by the allocation matrices �(n) ∈ C
Rn×R for

n = 1, . . . ,N1.
There are two main differences between the

PARATUCK-(N1,N) models (52) and the CONFAC
models (42). The first one is that the allocation matrices
of PARATUCK models, formed with 0’s and 1’s, have
not necessarily unit vectors as column vectors, which

means that it is possible to allocate γn =
Rn∑

rn=1
φ

(n)
rn,iN1+1

resources rn to the (N1 + 1)th mode of the output ten-
sor X . The second one results from the interpretation
of PARATUCK-(N1,N) models as Tucker-(N1,N) mod-
els, implying that each element xi1,...,iN of X is equal

to the sum of
R1∑

r1=1
· · ·

RN1∑
rN1=1

fr1,...,rN1 ,iN1+1 terms, where

fr1,...,rN1 ,iN1+1 is an entry of the allocation tensor F defined
in (53), each term being a combination of resources

under the form of products
N1∏
n=1

a(n)
in,rn . Moreover, in

telecommunication applications, the input tensor C can
be used as a code tensor.
Another way to compare PARALIND/CONFAC

and PARATUCK models is in terms of dependen-
cies/interactions between their factor matrices. In the
case of PARALIND/CONFAC models, as pointed out by
(42), the constraint matrices act independently on each
factor matrix, expliciting linear dependencies between
columns of these matrices. For PARATUCKmodels, their
writing as Tucker-(N1,N) models with the core tensor
defined in (54) allows to interpret the tensor F as an
interaction tensor which defines interactions between N1
factor matrices, the tensor C providing the strength of
these interactions.
The main constrained PARAFAC models are summa-

rized in Tables 1 and 2.

1.4 Uniqueness issue
Several results exist for essential uniqueness of PARAFAC
models, i.e., uniqueness of factor matrices up to column
permutation and scaling. These results concern both
deterministic and generic uniqueness, i.e., uniqueness
for a particular PARAFAC model or uniqueness with
probability one in the case where the entries of the factor
matrices are drawn from continuous distributions. An
overview of main uniqueness conditions of PARAFAC
models of third-order tensors can be found in [80] for
the deterministic case and in [81] for the generic case.
Hereafter, we briefly summarize some basic results on

Table 1 Main tensor models

Models Scalar writings Mode-n product-based writings

PARAFAC-3 xi1,i2,i3 =
R∑
r
a(1)
i1,r a

(2)
i2,r a

(3)
i3,r X = I3,R ×1 A(1) ×2 A(2) ×3 A(3)

Tucker-3 xi1,i2,i3 =
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

gr1,r2,r3a
(1)
i1,r1a

(2)
i2,r2a

(3)
i3,r3 X = G ×1 A(1) ×2 A(2) ×3 A(3)

Tucker-(2,3) xi1,i2,i3 =
R1∑

r1=1

R2∑
r2=1

gr1,r2,i3a
(1)
i1,r1a

(2)
i2,r2 X = G ×1 A(1) ×2 A(2)

PARALIND/CONFAC-3 xi1,i2,i3 =
R1∑

r1=1

R2∑
r2=1

R3∑
r3=1

gr1,r2,r3a
(1)
i1,r1a

(2)
i2,r2a

(3)
i3,r3 X = G ×1 A(1) ×2 A(2) ×3 A(3)

gr1,r2,r3 =
R∑
r
ϕ

(1)
r1,rϕ

(2)
r2,rϕ

(3)
r3,r G = I3,R ×1 �(1) ×2 �(2) ×3 �(3)

PARATUCK-2 xi1,i2,i3 =
R1∑

r1=1

R2∑
r2=1

gr1,r2,i3a
(1)
i1,r1a

(2)
i2,r2 X = G ×1 A(1) ×2 A(2)

gr1,r2,i3 = cr1,r2ϕ
(1)
r1,i3ϕ

(2)
r2,i3 G = I3,R×1�

(1)×2�
(2)×3F, R = R1R2

�(1) = IR1 ⊗ 1TR2 , �(2) = 1TR1 ⊗ IR2

F = (�(1) � �(2))Tdiag(vec(CT ))

PARATUCK-(2,4) xi1,i2,i3,i4 =
R1∑

r1=1

R2∑
r2=1

gr1,r2,i3,i4a
(1)
i1,r1a

(2)
i2,r2 X = G ×1 A(1) ×2 A(2)

gr1,r2,i3,i4 = cr1,r2,i4ϕ
(1)
r1,i3ϕ

(2)
r2,i3 G = I4,R×1�

(1)×2�
(2)×3F×4D, R = R1R2

�(1) = IR1 ⊗ 1TR2 , �(2) = 1TR1 ⊗ IR2

F = (�(1) � �(2))T , D = CI4×R1R2
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Table 2 Equivalent constrained PARAFACmodels

Models Equivalent constrained PARAFACmodel Matrix unfoldings

PARAFAC-3 XI1×I2 I3 = A(1)(A(2) � A(3))T

Tucker-3 XI1×I2 I3 = A(1)GR1×R2R3 (A
(2) ⊗ A(3))T

Tucker-(2,3) X = I3,R ×1 A(1)�(1) ×2 A(2)�(2) ×3 GI3×R1R2 XI1×I2 I3 = A(1)�(1)(A(2)�(2) � GI3×R1R2 )
T

�(1) = IR1 ⊗ 1TR2 , �(2) = 1TR1 ⊗ IR2

PARALIND/CONFAC-3 X = I3,R ×1 A(1)�(1) ×2 A(2)�(2) ×3 A(3)�(3) XI1×I2 I3 = A(1)�(1)(A(2)�(2) � A(3)�(3))T

= A(1)�(1)(�(2) � �(3))T (A(2) ⊗ A(3))T

PARATUCK-2 X = I3,R×1A(1)�(1)×2A(2)�(2)×3F

�(1) = IR1 ⊗ 1TR2 , �(2) = 1TR1 ⊗ IR2 XI1×I2 I3 = A(1)�(1)(A(2)�(2) � F)T

F = (�(1) � �(2))Tdiag(vec(CT ))

PARATUCK-(2,4) X = I4,R×1A(1)�(1)×2A(2)�(2)×3F×4D XI1×I2 I3 I4 = A(1)�(1)(A(2)�(2) � F � CI4×R1R2 )
T

�(1) = IR1 ⊗ 1TR2 , �(2) = 1TR1 ⊗ IR2 XI1 I2×I3 I4 = (A(1) ⊗ A(2))

F = (�(1) � �(2))T , D = CI4×R1R2

(
(�(1) � �(2))T � CI4×R1R2

)T

uniqueness of PARAFAC models. The case with linearly
dependent loadings is also discussed. Then, we present
new results concerning the uniqueness of PARATUCK
models. These results are directly deduced from sufficient
conditions for essential uniqueness of their associated
constrained PARAFAC models, as established in the pre-
vious section. As these conditions involve the notion of
k-rank of a matrix, we first recall the definition of k-rank.

Definition of k-rank
The k-rank (also called Kruskal’s rank) of a matrix A ∈

C
I×R, denoted by kA, is the largest integer such that any

set of kA columns of A is linearly independent.
It is obvious that kA ≤ rA.

1.4.1 Uniqueness of PARAFAC-N models [82]
The PARAFAC-N model (33)-(35) is essentially unique,
i.e., its factor matrices A(n) ∈ C

In×R, n = 1, . . . ,N , are
unique up to column permutation and scaling, if

N∑
n=1

kA(n) ≥ 2R + N − 1 (76)

Essential uniqueness means that two sets of factor
matrices are linked by the following relations Â(n) =
A(n)��(n), for n = 1, . . . ,N , where � is a permutation
matrix and �(n) are non-singular diagonal matrices such

as
N∏

n=1
�(n) = IR.

In the generic case, the factormatrices are full rank, with
kA(n) = rA(n) = min(In,R), and Kruskal’s condition (76)
becomes

N∑
n=1

min(In,R) ≥ 2R + N − 1 (77)

Case of third-order PARAFAC models. Consider a third-
order tensorX ∈ C

I×J×K of rankR, satisfying a PARAFAC
model with matrix factors (A,B,C). Kruskal’s condition
(76) becomes

kA + kB + kC ≥ 2R + 2 (78)

Remarks

• The condition (76) is sufficient but not necessary for
essential uniqueness. This condition does not hold
when R = 1. It is also necessary for R = 2 and R = 3
but not for R > 3 (see [83]).

• The first sufficient condition for essential
uniqueness of third-order PARAFAC models was
established by Harshman [84] and then generalized
by Kruskal [52] using the concept of k-rank. A more
accessible proof of Kruskal’s condition is provided
in [85]. Kruskal’s condition was extended to
complex-valued tensors in [15] and to N-way arrays,
with N > 3, in [82].

• Necessary and sufficient uniqueness conditions
more relaxed than the Kruskal’s one were established
for third- and fourth-order tensors, under the
assumption that at least one matrix factor is full
column rank [86,87]. These conditions are
complicated to apply. Other more relaxed conditions
have been derived independently by Stegeman [88]
and Guo et al. [89], for third-order PARAFAC models
with a full column rank matrix factor.

• From the condition (78), we can conclude that if two
matrix factors (A and B) are full column rank
(kA = kB = R) , then the PARAFAC model is
essentially unique if the third matrix factor (C) has no
proportional columns (kC > 1).
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• If one matrix factor (C for instance) is full column
rank, then (78) gives

kA + kB ≥ R + 2 (79)

In [88] and [89], it is shown that the PARAFAC
model (A,B,C), with C of full column rank, is
essentially unique if the other two matrix factors A
and B satisfy the following conditions:

1) kA, kB ≥ 2
2) rA + kB ≥ R + 2 or rB + kA ≥ R + 2

(80)

Conditions (80) are more relaxed than (79). Indeed,
if for instance kA = 2 and rA = kA + δ with δ > 0,
application of (79) implies kB = R, i.e., Bmust be full
column rank, whereas (80) gives kB ≥ R − δ which
does not require that B be full column rank.

• When one matrix factor (C for instance) is known
and Kruskal’s condition (78) is satisfied, as it is
often the case in telecommunication applications,
essential uniqueness is ensured without permutation
ambiguity and with only scaling ambiguities (�A,�B)
such as �A�B = IR.

1.4.2 Uniqueness of PARAFACmodels with linearly
dependent loadings

If one matrix factor contains at least two proportional
columns, i.e., its k-rank is equal to one, then Kruskal’s
condition (78) cannot be satisfied. In this case, partial
uniqueness can be ensured, i.e., some columns of some
matrix factors are essentially unique while the others are
unique up to multiplication by a non-singular matrix [90].
To illustrate this result, let us consider the case of the
PARAFAC model of a fourth-order tensor X ∈ C

I×J×K×L

with factor matrices (A,B,C,D) whose two of them have
two identical columns at the same position

A = [A1 a a
]
,B = [ B1 b b

]
,C = [C1 C2

]
,

D = [D1 D2
]

with A1 ∈ C
I×(R−2), a ∈ C

I×1,B1 ∈ C
J×(R−2),b ∈

C
J×1,C1 ∈ C

K×(R−2),C2 ∈ C
K×2,D1 ∈ C

L×(R−2),D2 ∈
C
L×2. We have kA = kB = 1, and consequently, the

uniqueness condition (76) for N = 4 becomes kC + kD ≥
2R + 1, which cannot be satisfied. In this case, we have
partial uniqueness. Indeed, the matrix slices (40) can be
developed as follows:

Xij.. = CDj(B)Di(A)DT

= [C1 C2
] [Dj(B1)Di(A1) 0(R−2)×2

02×(R−2) aibjI2

] [
DT

1
DT

2

]
= C1Dj(B1)Di(A1)DT

1 + aibjC2DT
2 .

From this expression, it is easy to conclude that the last
two columns ofC andD are unique up to a rotational inde-
terminacy. Indeed, if one replaces the matrices (C2,D2)
by (C2T,D2T−T ), where T ∈ C

2×2 is a non-singular
matrix, the matrix slices Xij.. remain unchanged. So, the
PARAFAC model is said partially unique in the sense
that only the blocks (A1,B1,C1,D1) are essentially unique,
the blocks C2 and D2 being unique up to a non-singular
matrix. Essential uniqueness means that any alternative
blocks (Â1, B̂1, Ĉ1, D̂1) are such as Â1 = A1��a, B̂1 =
B1��b, Ĉ1 = C1��c, D̂1 = D1��d, where � is a per-
mutation matrix and �a, �b, �c, and �d are diagonal
matrices such as �a�b�c�d = IR−2. In [91], suffi-
cient conditions are provided for essential uniqueness of
fourth-order PARAFACmodels with one full column rank
factor matrix and at most three collinear factor matri-
ces, i.e., having one (or more) column(s) proportional to
another column. Note that this type of model can be inter-
preted as a fourth-order CONFACmodel with constraints
on at most three matrix factors. Uniqueness is ensured if
any pair of proportional columns cannot be common to
two collinear factors, which is not the case of the example
above due to the fact that the two equal columns of A and
B are in the same position.
The PARALIND and CONFACmodels represent a class

of constrained PARAFAC models where the columns of
one or more matrix factors are linearly dependent or
collinear. In the case of CONFACmodels, such a collinear-
ity takes the form of repeated columns, the repetitions
being explicitly modeled by means of constraint matri-
ces. The work [92] derived both essential uniqueness
conditions and partial uniqueness conditions for PAR-
ALIND/CONFACmodels of third-order tensors. Therein,
the relation with uniqueness of constrained Tucker3 mod-
els and the block decomposition in rank-(L, L,1) terms is
also discussed. The essential uniqueness condition for a
given matrix factor in PARALIND models makes use of
Kruskal’s permutation lemma [52,86].
Consider a third-order tensor X ∈ C

I×J×K satisfying a
PARALIND model with matrix factors (A,B,C) and con-
straint matrices �(i), i = 1, 2, 3. Suppose (B⊗C)GR2R3×R1
and A have full column rank and let ω(·) denote the num-
ber of nonzero elements of its vector argument. Define
Ni = rank(�(2) diag(�(1)

i, . ) �(3)T ), i = 1, . . . ,R1. If for any
vector d

rank
[
B�(2) diag(dT�(1)) (C�(3))T

]
≤ max(N1, . . . ,NR1)

implies ω(d) ≤ 1 , (81)

then A is essentially unique [92]. The uniqueness con-
dition for B and C is analogous to condition (81) by
interchanging the roles of �(1), �(2), and �(3).
When PARALIND model reduces to PARAFAC model,

condition (81) is identical to Condition B of [86] for the
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essential uniqueness of the PARAFAC model in the case
of a full column rank matrix factor. More recently in
[93], improved versions of themain uniqueness conditions
of PARALIND/CONFAC models have been derived. The
results presented therein involve simpler proofs than
those of [92]. Moreover, the associated uniqueness con-
ditions are easy to check in comparison with the ones
presented earlier in [92].
In [94], a ‘uni-mode’ uniqueness condition is derived

for a PARAFAC model with linearly dependent (pro-
portional/identical) columns in one matrix factor. This
condition is particularly useful for a subclass of PAR-
ALIND/CONFAC models with �(2) = �(3) = IR, i.e.,
when collinearity is confined within the first matrix fac-
tor. Let Ā = A�(1), where Ā ∈ C

I1×R contains collinear
columns, the collinearity pattern being captured by �(1).
Assuming that Ā does not contain an all-zero column, if

rĀ + kB + kC ≥ 2R + 2, (82)

then A is essentially unique. Generalizations of this con-
dition can be obtained by imposing additional constraints
on the ranks and k-ranks of the matrix factors (see [94] for
details).

1.4.3 Uniqueness of Tuckermodels
Contrary to PARAFAC models, the Tucker ones are gen-
erally not essentially unique. Indeed, the parameters of
Tucker models can be only estimated up to non-singular
transformations characterized by non-singular matrices
T(n) that act on the mode-nmatrix factorsA(n) and can be
cancelled in replacing the core tensor by G×N

n=1
[
T(n)

]−1.
This result is easy to verify by applying the property (13)
of mode-n product

G×N
n=1

[
T(n)

]−1 ×N
n=1A

(n)T(n) = G×N
n=1A

(n)T(n)
[
T(n)

]−1

= G×N
n=1A

(n).

Uniqueness can be obtained by imposing some con-
straints on the core tensor or thematrix factors (see [9] for
a review of main results concerning uniqueness of Tucker
models, with discussion of three different approaches for
simplifying core tensors so that uniqueness is ensured).
Uniqueness can also result from a core with information
redundancy and structure constraints as in [33] where
the core is characterized by matrix slices in Hankel and
Vandermonde forms.

1.4.4 Uniqueness of the PARATUCK-(2,4) model
Let us consider the PARATUCK-(2,4) model defined by
(57), withmatrix factorsA(1) andA(2), constraint matrices
�(1) and �(2) and core tensor C. As previously shown, this
model is equivalent to the constrained PARAFAC model
(58) whose matrix factors are

A = A(1)�(1), B = A(2)�(2), F = (�(1) � �(2))T ,
D = CI4×R1R2

with �(1) and �(2) defined in (60). Due to the repetition
of some columns ofA(1) andA(2) and assuming that these
matrices do not contain an all-zero column, we have kA =
kB = 1, and application of Kruskal’s condition (76), with
N = 4, gives

kA+kB+kF+kD ≥ 2R1R2+3 ⇒ kF+kD ≥ 2R1R2+1,

which can never be satisfied. However, more relaxed suf-
ficient conditions can be established for essential unique-
ness of the PARATUCK-(2,4) model. For that purpose,
we consider the contracted constrained PARAFAC model
obtained by combining the first twomodes and using (67),
which leads to a third-order PARAFACmodel with matrix
factors

(A � B,F,D) = (A(1) ⊗ A(2), (�(1) � �(2))T ,CI4×R1R2)

(83)

Note that uniqueness of the matrix factors of the con-
tracted PARAFAC model (83) implies uniqueness of the
matrix factors A(1) and A(2) of the original PARATUCK-
(2,4) model. This comes from the fact that A(1) and
A(2) can be recovered (up to a scaling factor) from their
Kronecker product [95]. Application of the conditions (80)
to the contracted PARAFAC model (83) allows deriving
the following theorem.

Theorem: The PARATUCK-(2,4) model defined by (57)
is essentially unique

• 1) When A(1) and A(2) are full column rank
(rA(1)⊗A(2) = R1R2 ⇒ kA(1)⊗A(2) = R1R2)

If
{
k(�(1)��(2))T ≥ 2
kCI4×R1R2

≥ 2 and⎧⎨
⎩
r(�(1)��(2))T + kCI4×R1R2

≥ R1R2 + 2
or
rCI4×R1R2

+ k(�(1)��(2))T ≥ R1R2 + 2
• 2) When (�(1) � �(2))T is full column rank

If
{
kA(1)⊗A(2) ≥ 2
kCI4×R1R2

≥ 2 and⎧⎨
⎩
rA(1)rA(2) + kCI4×R1R2

≥ R1R2 + 2
or
rCI4×R1R2

+ kA(1)⊗A(2) ≥ R1R2 + 2
• 3) When CI4×R1R2 is full column rank

If
{
kA(1)⊗A(2) ≥ 2
k(�(1)��(2))T ≥ 2 and⎧⎨

⎩
rA(1)rA(2) + k(�(1)��(2))T ≥ R1R2 + 2
or
r(�(1)��(2))T + kA(1)⊗A(2) ≥ R1R2 + 2
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In [67], an application of the PARATUCK-(2,4) model
to tensor space-time (TST) coding is considered. Therein,
the matrix factors A(1) and A(2) represent the symbol and
channel matrices to be estimated, while the constraint
matrices �(1) and �(2) play the role of allocation matrices
of the transmission system, and the tensor C is the coding
tensor. In this context, �(1), �(2), and C can be properly
designed to satisfy the sufficient conditions of item 1) of
the theorem.
The sufficient conditions of this theorem can easily

be extended to the case of PARATUCK-(N1,N) mod-
els in replacing A(1) ⊗ A(2), �(1) � �(2), CI4×R1R2 , and

R1R2, by
N1⊗
n=1

A(n),
N1�
n=1

�(n), CIN1+2...IN×R, and R =
N1∏
n=1

Rn,

respectively.

2 Conclusions
Several tensor models among which some are new have
been presented in a general and unified framework. The
use of the index notation for mode combination based
on Kronecker products provides an original and con-
cise way to derive vectorized and matricized forms of
tensor models. A particular focus on constrained tensor
models has been made with a perspective of designing
MIMO communication systems with resource allocation.
A link between PARATUCK models and constrained
PARAFAC models has been established, which allows
to apply results concerning PARAFAC models to derive
uniqueness properties and parameter estimation algo-
rithms for PARATUCK models. In a companion paper,
several tensor-based MIMO systems are presented in a
unified way based on constrained PARAFAC models, and
a new tensor-based space-time-frequency (TSTF) MIMO
transmission system with a blind receiver is proposed
using a generalized PARATUCK model [96]. Even if this
presentation of constrained tensor models has been made
with the aim of designing MIMO transmission systems,
we believe that such tensor models can be applied to other
areas than telecommunications, like for instance biomed-
ical signal processing, and more particularly for ECG and
EEG signals modeling, with spatial constraints allowing
to take into account the relative weight of the contri-
butions of different areas of surface to electrodes. The
considered constrained tensor models allow to take con-
straints into account either independently on each matrix
factor of a PARAFAC decomposition, in the case of PAR-
ALIND/CONFAC models, or between factors, in the case
of PARATUCK models. A perspective of this work is to
consider constraints into tensor networks which decom-
pose high-order tensors into lower-order tensors for big
data processing [97]. In this case, the constraints could act
either separately on each tensor component to facilitate
their physical interpretability or between tensor compo-
nents to explicit their interactions.

Appendices
Appendix 1
Somematrix formulae
For A(n) ∈ C

In×Rn , B(n) ∈ C
Rn×Jn , �(n) ∈ C

Rn×R, and
�(n) ∈ C

Rn×Q, n = 1, . . . ,N

(
N⊗

n=1
A(n)

)T
= N⊗

n=1
A(n)T ∈ C

R1···RN×I1···IN (84)

(Associative property)(
N⊗

n=1
A(n)

)(
N⊗

n=1
B(n)

)
= N⊗

n=1
A(n)B(n) ∈C

I1···IN×J1···JN

(85)(
N⊗

n=1
A(n)

)(
N�

n=1
�(n)

)
= N�

n=1
A(n)�(n) ∈ C

I1···IN×R

(86)(
N�

n=1
�(n)

)T ( N�
n=1

�(n)

)
= N�

n=1
�(n)T�(n) ∈ C

Q×R.

For A(n) ∈ C
I×J , n = 1, . . . ,N , and B(p) ∈ C

K×L, p =
1, . . . ,P

(Distributive property)( N∑
n=1

A(n)

)
⊗
⎛
⎝ P∑

p=1
B(p)

⎞
⎠ =

N∑
n=1

P∑
p=1

(
A(n)⊗B(p)

)
∈ C

IK×JL

(87)

In particular, for A ∈ C
I×M , B ∈ C

J×N , C ∈ C
M×P ,

D ∈ C
N×Q, E ∈ C

P×J ,� ∈ C
M×R,� ∈ C

N×R,	 ∈ C
M×Q,

� ∈ C
N×Q, and x ∈ C

M×1, we have

(A ⊗ B)T = AT ⊗ BT , (88)
(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (89)
(A ⊗ B)(� � �) = A� � B� , (90)
(	 � �)T (� � �) = 	T� � �T� , (91)
vec(ACE) = (ET ⊗ A)vec(C), (92)
vec
(
Adiag(x)C

) = (CT � A)x. (93)

Appendix 2
Tensor extension of amatrix
Following the same demonstration as for (21) and (22), it
is easy to deduce the following more general formula for
the extension ofB ∈ C

I×Rn into a tensorA ∈ C
I×R1×···×RN

such as ai,r1,...,rn,...,rN = bi,rn ∀ rk = 1, . . . ,Rk , for k =
1, . . . , n − 1, n + 1, . . . ,N . Defining R =

N∏
n=1

Rn, we have

AI×R=B
(
1TR1⊗· · ·⊗1TRn−1⊗IRn⊗1TRn+1⊗· · ·⊗1TRN

)
∈C

I×R.

(94)
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Similarly, for the extension of B ∈ C
In×R into a ten-

sor A ∈ C
I1×···×IN×R such as ai1,...,in,...,iN ,r = bin ,r ∀ ik =

1, . . . , Ik , for k = 1, . . . , n − 1, n + 1, . . . ,N , we have

AI×R = (1I1⊗· · ·⊗1In−1⊗IIn⊗1In+1⊗· · ·⊗1IN )B ∈ C
I×R.
(95)

where I =
N∏

n=1
In.

For instance, if we consider the following tensor exten-
sion of B ∈ C

I×J

am,n,i,j,k,l = bi,j ∀m = 1, . . . ,M,∀ n = 1, . . . ,N ,
∀ k = 1, . . . ,K ,∀ l = 1, . . . , L

the combination of formulae (94) and (95) gives

AMNI×JKL = (1MN ⊗ II)B
(
IJ ⊗ 1TKL

)
(96)

which can be written as

AMNI×JKL = B ×1 �1 ×2 (�2)
T

with �1 = 1MN ⊗ II and �2 = IJ ⊗ 1TKL.

Appendix 3
Proof of (27)
Defining (I1, I2) and (R1,R2) as the sets of indices in and
rn associated respectively with the sets (S1,S2) of index n,
the formula (20) allows writing the element gr1,...,rN of the
core tensor as

gr1,...,rN = eR1GS1;S2eR2 . (97)

whereR1 = {rn, n ∈ S1} andR2 = {rn, n ∈ S2}.
Substituting xi1,...,iN and gr1,...,rN by their expressions (24)
and (97) into (19) gives

XS1;S2 = xi1,...,iN e
I2
I1

= eI1xi1,...,iN eI2

= eI1gr1,...,rN

( N∏
n=1

a(n)
in,rn

)
eI2

=
( N∏
n=1

a(n)
in,rn

)
eI1eR1GS1;S2eR2eI2

=
⎛
⎝∏

n∈S1
a(n)
in,rn

⎞
⎠ eR1

I1
GS1;S2

⎛
⎝∏

n∈S2
a(n)
in,rn

⎞
⎠ eI2R2

(98)

Applying the general Kronecker formula (17) in terms of
the index notation allows to rewrite this matrix unfolding
as

XS1;S2 =
(

⊗
n∈S1

A(n)

)
GS1;S2

(
⊗

n∈S2
A(n)

)T
.

Appendix 4
Proof of (37)
Substituting the expression (34) of xi1,...,iN into (19) and
using the identities (14) and (15) give

XS1;S2 = xi1,...,iN e
I2
I1

=
⎛
⎝∏

n∈S1
a(n)
in,r

⎞
⎠ eI1

⎛
⎝∏

n∈S2
a(n)
in,r

⎞
⎠ eI2

=
(

�
n∈S1

A(n)
.r

)(
�

n∈S2
A(n)
.r

)T

=
(

�
n∈S1

A(n)

)(
�

n∈S2
A(n)

)T
(99)

which ends the proof of (37).

Appendix 5
Proof of (59) and (60)
Let us define the third-order tensors A ∈ C

I1×R1×R2 , B ∈
C
I2×R1×R2 , F ∈ C

I3×R1×R2 , andD ∈ C
I4×R1×R2 such as

ai1,r1,r2 = a(1)
i1,r1 ∀r2 = 1, . . . ,R2 ;

bi2,r1,r2 = a(2)
i2,r2 ∀r1 = 1, . . . ,R1 ;

fi3,r1,r2 = φ
(1)
r1,i3φ

(2)
r2,i3 ; di4,r1,r2 = cr1,r2,i4 .

(100)

The tensor model (57) can be rewritten as

xi1,i2,i3,i4 =
R1∑

r1=1

R2∑
r2=1

ai1,r1,r2bi2,r1,r2 fi3,r1,r2di4,r1,r2 . (101)

Defining the change of variables r = (r1 − 1)R2 + r2
that corresponds to a combination of the last two modes
of the tensorsA,B,F , andD, (101) can be rewritten as the
constrained PARAFAC-4model (58), where ai1,r , bi2,r , fi3,r ,
and di4,r are entries of mode-1 matrix unfoldings of the
tensors A, B, F , and D, i.e., entries of A �= AI1×R1R2 , B

�=
BI2×R1R2 , F

�= FI3×R1R2 , and D �= DI4×R1R2 , respectively.
Using the formulae (21) and (22), we can directly deduce
the following expressions of A and B:

A = A(1) ⊗ 1TR2 = A(1)
(
IR1 ⊗ 1TR2

)
= A(1)�(1). (102)

B = 1TR1 ⊗ A(2) = A(2)
(
1TR1 ⊗ IR2

)
= A(2)�(2) (103)

For the matrix F, using the index notation with the
definition (100) gives

F =
(
fi3,r1,r2e

r1r2
i3

)
=
(
φ

(1)
r1,i3φ

(2)
r2,i3e

r1r2
i3

)
Applying the formula (16), we directly obtain

F =
(
�(1) � �(2)

)T
.
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