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Abstract

A general echo model is derived for the synthetic aperture radar (SAR) imaging with high resolution based on the
scalar form of Maxwell’s equations. After analyzing the relationship between the general echo model in frequency
domain and the existing model in time domain, a compressive sensing (CS) matrix is constructed from random partial
Fourier matrices for processing the range CS SAR imaging. Simulations validate the orthogonality of the proposed CS
matrix and the feasibility of CS SAR imaging based on the general echo model.
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1 Introduction
Synthetic aperture radar (SAR) has been in development
for more than 60 years. Many operations, including strip-
map, spotlight, scan, and multiple platform-borne SAR
systems have become more and more popular in recent
years. SAR systems have been used in many fields, such
as soil moisture, forestry, wetland, and agriculture. Due
to the higher resolution of SAR image required, the accu-
racies of the echo models and imaging algorithms need
improvement. Because the echo model is a kind of output,
it forms a theoretical basis for all SAR imaging algorithms.
From an engineering point of view, the traditional echo
model is the time-delayed signal of the transmitted signal.
There are lots of approximations for echo model. Let us
recall the echo signal model. The SAR echo is one of elec-
tromagnetic wave forms, and Maxwell’s equations are the
basic and accurate tools for electromagnetic wave mea-
surement. Mathematically, the SAR imaging procedure is
an inverse problem of the electromagnetic wave. Many
mathematical and practical researchers are interested in
these types of inverse problems [1-5].
In recent studies of SAR and inverse synthetic aper-

ture radar (ISAR), the data size trends larger and larger as
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the need for high resolution images becomes greater and
greater. It costs too much and many times, the data can-
not be downloaded in real time from some space-borne
platforms, such as satellites. How to disperse the data size
efficiently and decrease the data ratio is a real problem
for engineers. The good news is that compressive sensing
(CS) theory addresses at least some of these problems [6].
Random sampling theory, the CS sampling, and construc-
tion proposed by Donoho et al. in 2006 [7-9] and Baraniuk
in 2007 [10] may also help in this endeavor. Many pub-
lications in the literature cast the CS into radar imaging
[11-16], where they analyzed the sparse characteristics of
SAR signals in different domains. Those are the funda-
mentals of reconstructing the scenes from the equivalent
down-sampling data set. Another application of the CS
SAR imaging is to construct the CS matrix and its opti-
mization [17]. However, most of the past research works
are focused on the classical echo model for SAR [18] and
ISAR image [19].
In this paper, our goal is to analyze a general echo

model and construct a new CS matrix for the SAR imag-
ing. We use the partial differential Maxwell’s equations
to derive the electronic field and then obtain the general
echo model in frequency domain and time domain. Based
on this general model, considering the sparse character-
istic of the scene, we will construct the corresponding
orthogonal CS matrix for the SAR imaging.

© 2014 Sun et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: chenjie@buaa.edu.cn
http://creativecommons.org/licenses/by/4.0


Sun et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:153 Page 2 of 10
http://asp.eurasipjournals.com/content/2014/1/153

Our paper is organized as follows. Section 2 derives the
general SAR echo model based on Maxwell’s equations.
In Section 3, a new CS matrix is constructed for the CS
imaging based on the above general echo model in fre-
quency domain. In Section 4, simulations are given to
validate the orthogonality of the CS matrix and the imag-
ing performance. Some comparisons of two CS methods
and the evaluation method with indices are also provided.
Section 5 concludes the paper.

2 General SAR echomodel
From the scalar form of Maxwell’s equations, the inci-
dent and scattering fields are analyzed first, and then the
general SAR echo model [20] is derived according to the
antenna theory.

2.1 Maxwell’s equations and field expressions
In this paper, the simplified scalar form of Maxwell’s
equations is used directly instead of the vector form of
Maxwell’s equations [21]. That is,

(∇2 − c−2 (x) ∂2t
)
εtot (t, x) = −j (t, x) (1)

where x is the three-dimensional position vector, c (x)
is the local propagation speed of electromagnetic waves
and c (x) = c0 in free space (usually, c0 is the speed of
light), εtot (t, x) and j (t, x) is the total scalar field and the
current density on the antenna, respectively. c (x) satis-
fies c−2 (x) = c−2

0 − V (x), where V (x) stands for the
target reflectivity function, which will be reconstructed
from radar echoes. εtot (t, x) = εin (t, x) + εsc (t, x),
where εin (t, x) and εsc (t, x) are the incident scalar field
and the scattered scalar field, respectively. And εin (t, x)
satisfies(

∇2 − c−2
0 ∂2t

)
εin (t, x) = −j (t, x) . (2)

Then, the expressions of scattered field and the incident
field are as follows:

εsc (t, x) =
∫ ∫

g (t − τ , x − z)V (z) ∂2τ εtot (τ , x) dτdz

(3)

εin (t, x) = −
∫ ∫

g (t − τ , x − z) j (τ , x) dτdz (4)

where g (t, x) = δ(t−|x|/c0)
4π |x| , called Green’s function [22],

is the fundamental solution of the partial differential
equation

(
∇2 − c−2

0 ∂2t

)
g (t, x) = −δ(t)δ (x).

Considering the single scattering approximation in
Equation 3, the scattered field is reduced to

εsc (t, x) ≈
∫ ∫

g (t − τ , x − z)V (z) ∂2τ εin (τ , x) dτdz

(5)

For simplicity, the following analysis is complemented in
frequency domain ω instead of time domain t.

EscB (ω, x) = −
∫

G (ω, x)V (z) ω2Ein (ω, x) dz (6)

Ein (ω, x) =
∫

G (ω, x − y) J (ω, y) dy (7)

where Esc (ω, x) and Ein (ω, x) are the Fourier transforms
of εin (t, x) and εin (t, x), respectively; G (ω, x) = e−ik|x|

4π |x|
is the frequency expression of Green’s function g (t, x);
k = ω

c is the wavenumber in range direction; and J (ω, x)
is the current source in the frequency domain. Then, the
scattered field with a theoretical point antenna is

EscB (ω, x) = −
∫ ∫

G (ω, x − z)G (ω, x − y)

× V (z) ω2J (ω, y) dydz
(8)

2.2 Mathematical signal model
2.2.1 Radiation pattern for a SAR antenna
Generally, the transmitting and receiving antenna is com-
posed with many cells. For the sake of simplicity, a planar
radar antenna over an aperture [−a, a] × [−b, b] is ana-
lyzed and the current density I is constant; then, the
radiation scalar F (k, x) can be expressed by

F (k, x) =
∫ a

−a

∫ b

−b
eikx̂·(s1 ê1+s2 ê2)Ids1ds2

= I
(
2a sinc

(
kax̂·̂e2

)) (
2b sinc

(
kbx̂·̂e1

))
(9)

where sinc(x) = sin(x)
x , ê = (

ê1, ê2
)
is corresponding to the

antenna direction.
Let p(t) be the transmitted signal; then, the current

density on antenna j (t, x) is proportional to p(t) and inde-
pendent of position. So, J (ω, x) is proportional to the
spectrum of transmitted signal P(ω). Then,

F (k, x) = P(ω)
(
2a sinc

(
kax̂·̂e2

)) (
2b sinc

(
kbx̂·̂e1

))
= P(ω)Ga

(
k, x̂, ê

)
(10)

where Ga
(
k, x̂, ê

)
is just an amplitude function inde-

pendent of the transmitted signal, with a function of
wavenumber k, which varies for a wideband signal even
within a short pulse time duration. In fact, this corre-
sponds to the frequency characteristics of antenna, espe-
cially under wide bandwidth.
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2.2.2 Mathematical model of received echo
Suppose that the center of antenna is located at x0, the
incident field Ein (ω, x) and scattered field EscB (ω, x) are

Ein (ω, x) =
∫
y∈antenna

e−ik|x−y|

4π |x − y|P(ω)dy

≈ e−ik|x−x0|

4π |x − x0|F
(
k, x̂ − x0

)
,

(11)

EscB (ω, x) ≈ −
∫
z∈target

e−ik|x−z|

4π |x − z|V (z)

× ω2 e−ik|z−x0|

4π |z − x0|F
(
k, x̂ − x0

)
dz.

(12)

When a monostatic SAR receives echoes, the stop-go
approximation is applied and therefore the received echo
is expressed by

Srec(ω) =
∫
y∈antenna

EscB (ω, y)W (ω, y) dy (13)

where W (ω, y) is the weight function of the antenna cell
at the position y. Substitute Equation 12 into Equation 13,
we have

Drec (ω; x0) ≈ −
∫
z∈target

[∫
y∈antenna

e−ik|y−z|

4π |y − z|W (ω, y) dy
]

V (z) ω2e−ik|z−x0|

4π |z − x0| F
(
k, ẑ − x0

)
dz. (14)

Considering the far field condition, |y − z| ≈ |z − x0| −(
ẑ − x0

)
· (y − x0) and |y−z|−1 ≈ |z−x0|−1 are adopted

to produce the following form

Drec (ω; x0) ≈ −
∫
z∈target

[∫
y∈antenna

eik
(
ẑ−x0

)
·(y−x0)W (ω, y) dy

]

×V (z)ω2e−i2k|z−x0|

4π |z − x0|2 F
(
k, ẑ − x0

)
dz. (15)

Putting the unit weight functionW (ω, y) = 1 yields

Drec(ω; x0) ≈ −
∫
z∈target

V (z)ω2P(ω)
e−i2k|z−x0|

(4π |z − x0|)2
× G2

a

(
k, ẑ − x0, ê

)
dz.

(16)

Until now, we get the general echo model in frequency
domain. According to the properties of Fourier transform,
the general echo model in time domain can be expressed
by

drec (t; x0) ≈
∫
z∈target

V (z)
p̈ (t − 2|z − x0|/c)

(4π |z − x0|)2
⊗ ga

(
t, ẑ − x0, ê

)
dz

(17)

where p̈(t) is the second derivative of p(t), ga
(
t, ẑ − x0, ê

)
is the inverse Fourier transform of G2

a

(
k, ẑ − x0, ê

)
, and

⊗ is convolution on t. If we neglect the antenna’s variety
with frequency ω or wavenumber k, that’s Ga

(
k, x̂, ê

) ≈
Ga

(
k0, x̂, ê

)
, where k0 = ω0

c is the wavenumber corre-
sponding to the carrier frequency, the above expression
can be simplified by

drec (t; x0) ≈
∫
z∈target

V (z)
p̈ (t − 2|z − x0|/c)

(4π |z − x0|)2
× G2

a

(
k0, ẑ − x0, ê

)
dz

(18)

Even if some approximation about antenna radiation has
been made, we can also find the difference between the
above model and the transitional echo model, which is as
simple as the summing the delayed signal of the transmit-
ted signal. That is, the general echo is not the direct delay
of the transmitted signal but the second order differen-
tial function of the transmitted signal. However, because
Doppler phase is much more important in SAR imaging
than the complex amplitude, the amplitude modulation is
not serious for traditional SAR systems. In [20], the rela-
tion and difference between the general echo model and
the classical model were minutely analyzed. However, for
some high resolution applications, the differences may not
be ignored. In this paper, to avoid error as much as possi-
ble, we try to find a CS matrix for the general echo model
in frequency domain directly.

3 Compressive sensing imaging for SAR
3.1 Basics of compressive sensing
Because of the potential advantages for SAR imaging,
there has been a wealth of research work directed towards
CS since 2006. The spirit of CS is the sparse presentation
under some basis. Suppose � ∈ CN×N (in fact, the matrix
was defined on RN×N originally and could be expanded
to the complex matrix) is the orthogonal basis matrix and
s ∈ RN is the coefficients vector, the signal x ∈ RN can be
expressed by

x = �s (19)

where the transform coefficient s can be calculated by s =
�−1xmathematically. If there are only K(� N) non-zero
values (or small absolution) in s, the signal x is sparse in
the corresponding domain and can be reconstructed by a
few random samples with very high probability. Suppose
the linear observing process is 	 ∈ RM×N , whereM < N ,
the observation data y ∈ RM is

y = 	x = 	�s = 
s (20)
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where the observing matrix 
 = 	� ∈ CM×N . Based on
CS theory, the reconstruction of the sparse coefficient s
can be resolved by the following optimization problem.

ŝ = argmin ‖ s ‖0 s.t. y = 
s (21)

Because l0 normalization optimization problem is diffi-
cult to resolve, l0 normalization is replaced by l1 normal-
ization for the actual solution. Then, the signal x is to be
estimated by x̂ = � ŝ.

3.2 Compressive sensing matrix for SAR imaging
To apply CS to SAR imaging, we should consider two con-
ditions: the sparsity of signal and the CS matrix. For the
first condition, according to the theory of electromagnetic
scattering, some targets can be thought as combinations
of several strong scatterers; even for some continuous dis-
tributed scenes, the sparse coefficients can be found in the
frequency domain or wavelet domain, etc. So, the spar-
sity of echo signal has been discussed for some special
applications, such as ocean remote sensing. For the other
condition, the previous literature [23,24] presented one
kind of sensing matrices in time domain as follows.

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

chirp
(
Nτ

2

)
chirp

(
Nτ

2 − 1
)

chirp
(
Nτ

2 − 2
)

. . . 0

chirp
(
Nτ

2 + 1
)

chirp
(
Nτ

2

)
chirp

(
Nτ

2 − 1
)

. . . 0

chirp
(
Nτ

2 + 2
)

chirp
(
Nτ

2 + 1
)

chirp
(
Nτ

2

)
. . . 0

...
...

...
. . .

...
0 0 0 . . . chirp

(
Nτ

2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

where chirp (i) = rect
(
2i−Nτ

2Nτ

)
exp

{
jπb

(
i−0.5∗Nτ

Fs

)2}
is

the transmitted linear frequency modulation (LFM) chirp
signal, b is the frequency modulation ratio of the chirp
signal, fs is the sampling frequency, and τ and Nτ = τ fs
are the pulse width and point numbers of the chirp signal,
respectively.

Table 1 Main simulation parameters

Parameter Value

Height of antenna 5000 m

Velocity of antenna 200 m/s

Look angle 45°

Frequency of carrier 1 GHz

Bandwidth of chirp signal 400 MHz

Sampling frequency 500 MHz

Pulse width of chirp signal 1 μs

Pulse repetition frequency 500 Hz

Number of range cells 1,024

Number of down-sampled range cells 256

Synthetic aperture time 5 s

This CS matrix is based on the idea that the echo signal
is the delay of the transmitted signal, and its orthogonal-
ity also was validated. However, according to Section 2 of
this paper, we have found that the general echo model is
the expansion of the simple delay model of the transmit-
ted signal, and it is more accurate for some high resolution
applications. Our goal is to find a CS matrix correspond-
ing to the general echo model directly.
In the beginning, the received signal after discrete pro-

cessing from the frequency domain expression (Equation
16) can be expressed as

Drec (m, n; x0) = −
Np∑
n=1

σnω
2
mP (ωm)

e−i4ωmRn/c

(4πRn)2

× G2
a

(ωm
c
, ̂zn − x0, ê

) (23)
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Figure 1 Correlation matrix of the CSmatrix. (a) The two
dimensional distribution of the square correlation matrix; (b) the
profile selected from the square matrix along with the 512th row.
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where the subscript m represents the frequency number
for fast time of echo, n represents the target index, Np is
the number of the discrete targets, Rn is the range between
the nth target point located at zn and the center of the
antenna located at x0, ωm = 2π fs(m/N − 1/2) is the dis-
crete frequency,m = 0, 1, . . . ,N − 1, andN is the number
of Fourier transform. Suppose the scatter coefficients vec-
tor � = [

σ1, σ2, . . . , σNp

]T , the (m, n)-th element of the
CS matrix � can be constructed as

�mn = ω2
mP(ωm)

e−i4ωmRn/c

(4πRn)2
G2
a

(ωm
c
, ̂zn − x0, ê

)
(24)

With these definitions, it is not hard to validate
Drec (x0) = ��. Because we use the general echo model
in frequency domain, the CS matrix � is also the func-
tion of the general transmitted signal in frequency domain
P (ωm). For instance, if the transmitted signal is a chirp
signal, according to the principle of stationary phase, we

can get P (ωm) = Ae
−i

(
ω2n
4πb+ π

4

)
, where A is a complex

constant, and then the CS matrix � becomes

�mn = Aω2
me−i π4

(4πRn)
2 e

−i
(

4ωmRn
c + ω2n

4πb

)
G2
a

(ωm
c
, ̂zn − x0, ê

)
(25)

To validate the orthogonality of the CS matrix for dif-
ferent rows, the following correlation will be calculated

Cor
(
�m1n,�m2n

) =
N∑

n=1
�m1n�

∗
m2nm1,m2 ∈ [1,N]

(26)

It is not hard to find that |Cor (
�m1n,�m1n

) | 	
|Cor(�m1n,�m2n)|, (m1 
= m2) because of the cophasal
stacking effect. And after normalization for each row, the
correlation matrix is approximately an identical matrix.
The orthogonality will be validated in the next section. On
the other hand, besides Gaussian and Bernoulli matrices,
another very important class of structured randommatri-
ces is the random partial Fourier matrix, which is also the
object of study in the very first paper on CS [9]. In fact, a
random partial Fouriermatrix relates the time domain sig-
nal and the sparse spectrum items; also, it is the first time
to construct an orthonormal basis in CN×N rather than
RN×N . It has been proved that the Fourier matrix satisfied
the restricted isometry property (RIP) and can be applied
to CS reconstruction. The proposed matrix defined by
Equations 24 or 25 can be thought as one form of the
Fourier matrix and can be applied for CS imaging for the
general SAR echomodel. Randomly selectedM rows from
� will generate a random partial Fourier matrix 
; the
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Figure 2 Non-zero points of reconstruction result corresponding to differentK without interpolation. The six figures correspond to
K = 1, 3, 5, 7, 11, 15.
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Figure 3 Simulation results based on our proposedmatrix in the
frequency domain. (a) Range CS compression after range cell
migration correction; (b) zoom figure of (a); (c) image after azimuth
processing.

range signal reconstruction from the SAR echoes can be
accomplished in range frequency domain instead of the
traditional match filtering.
In this paper, the orthogonal match pursuit (OMP) algo-

rithm [25] is unitized for the reconstruction of the sparse
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Figure 4 Simulation results based on the previous matrix in the
time domain. (a) Range CS compression after range cell migration
correction; (b) zoom figure of (a); (c) image after azimuth processing.
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(a)

(b)

Figure 5 Point quality evaluation results. (a) Results based on our proposed matrix in frequency domain; (b) results based on the previous
matrix in time domain. The four subfigures in both (a) and (b) stand the three-dimensional surface, contour image, range profile, and azimuth
profile. The two-dimensional and one-dimensional Fourier interpolations are used, and the times of interpolation are 64 and 1,024.

Table 2 Point evaluation indices of two CSmethods

Index
Slant range Azimuth

Resolution (m) PSLR (dB) Resolution (m) PSLR (dB)

Results based on the previous matrix 0.2860 −12.60 1.0094 −12.68

Results based on our proposed matrix 0.3277 −13.39 0.9867 −13.79

Theoretical values 0.3322 −13.26 0.9397 −13.26
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signal, which corresponds to the discrete scattering coeffi-
cients in SAR imaging. The orthogonality of the CSmatrix
makes sure of the maximum probability of reconstruction
quickly.

4 Simulations
In this section, the properties of the CS matrix � are
analyzed first, then the CS imaging for a point scene is
simulated with both the previous time-domain CS matrix

like Equation 22 and the proposed matrix corresponding
to the general echo model defined by Equation 24. The
comparison of the range reconstruction results after CS
and the final imaging results are given.

4.1 Simulation parameters
The main parameters for the below simulations are
listed in Table 1. To compare with the time-domain CS
method, the most common chirp signal is chosen as the
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Figure 6 Simulation results of 9-point scene. (a) Simulation scene and imaging geometry; (b) imaging result.
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transmitted signal. In order to display the affections of
wide bandwidth, the frequency of chirp signal ranges from
800 to 1, 200 MHz, and the ratio of bandwidth and carrier
frequency is up to 40%.

4.2 Results and discussion
4.2.1 Compressive sensingmatrix properties
Since there is some complex magnitude term in
Equation 25, the accurate proof of the orthogonality based
on Equation 26 is difficult. However, Figure 1 illustrates
the correlation matrix of � by numerical simulation.
According to Figure 1, the diagonal elements of the

correlation matrix trend to 1, and others are very small.
This correlation matrix is approximate to the identical
matrix, so the CS matrix � can be thought as orthogonal
matrix.

4.2.2 Imaging results and evaluation
Before analyzing the simulation results, we discuss the
evaluation method first. Fourier interpolation is often
applied into the evaluation of the traditional range com-
pressed result or SAR image. However, in the previous
CS reconstruction, it is acceptable that the range recon-
struction result has no sidelobe [18,26,27], and Fourier
interpolation is not suitable to evaluate the result. This
phenomenon might be explained that when K is 1 or a
very small number, after reconstruction of compressive
sensing, there is at most only 1 non-zero value in each
range profile, like a delta function, and any interpolation
does not fit during evaluation. According to our simula-
tion during range CS reconstruction, we still set different
sparse coefficients K for a single target, and a biggerK will
expose the more sidelobes.
Figure 2 illustrates the increasing process of non-zero

points corresponding to differentK without interpolation.
The bigger K is, the more obvious the sidelobes are. For
example, when K = 1, there is only 1 non-zero point,
which likes a delta function and when K = 15, there are at
least two pairs of sidelobes nearby the peak. Also Fourier
interpolation can be carried out for this construction with
some sidelobes. Meanwhile, we set K = 11 when we apply
the previous CS matrix to the same echoes.
To quantitatively analyze the effect of the CS imaging,

Figures 3 and 4 show the corresponding results of range
reconstruction and final imaging with two kinds of CS
matrices.
According to the above results, it is easy to find that

there are a few sidelobes in both range reconstructions in
Figure 3b and Figure 4b. The range reconstruction results
based on our proposed method shown in Figure 3 are
better than those based on the previous matrix shown
in Figure 4. Also, it is easy to find the symmetry of the
range result after CS, and the final result by our matrix is
better.

Moreover, we evaluate the imaging results with Fourier
interpolation, shown in Figure 5. The resolutions and peak
sidelobe ratios (PSLR) of both slant range and azimuth
profiles are listed in Table 2.
According to Figure 5, the symmetry along with range

direction of the result based on our proposed matrix is
better than those based on the previous matrix. That is
also the main reason of the slant range PSLR difference
in Table 2. Also, the evaluation indices of our proposed
method are much closer to the theoretical indices. Usu-
ally the higher the range resolution is, the better the image
effect is. However, the more the indices approach the the-
oretical values, the better the reconstruction algorithm is.
In this respect, the CS imaging based on our proposed
matrix is much better.
Moreover, a 9-point scene was simulated. Figure 6 dis-

played the scene and imaging result by our method.
Figure 6a shows the 9 points and the imaging geometry.
Figure 6b implies that the proposed method based on the
CS matrix in the frequency domain is capable of imaging
a small set of scatterers.

5 Conclusions
In this paper, the general echo model is derived from
Maxwell’s equations. The general echo expressions in both
frequency domain and time domain are given after gen-
erating the scatter field. The general echo model is the
expansion of the classical echo model. Based on the gen-
eral echomodel in the frequency domain, a newCSmatrix
like a random partial Fourier matrix is constructed to
apply for the CS imaging. Simulation results validate the
orthogonality of the proposed CS matrix and the indices
of the CS imaging by our model approach the theoret-
ical values better. Also a bigger sparse number K will
expose the sidelobes of the reconstruction, and Fourier
interpolation can be applied into evaluating the imaging
results.
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